RTEMS 5.2
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cpu.h
Go to the documentation of this file.
1
5/*
6 *
7 * Copyright (c) 2015 University of York.
8 * Hesham ALMatary <hmka501@york.ac.uk>
9 *
10 * COPYRIGHT (c) 1989-1999.
11 * On-Line Applications Research Corporation (OAR).
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#ifndef _EPIPHANY_CPU_H
36#define _EPIPHANY_CPU_H
37
38#ifdef __cplusplus
39extern "C" {
40#endif
41
43#include <rtems/score/epiphany.h> /* pick up machine definitions */
44#ifndef ASM
45#include <rtems/bspIo.h>
46#include <stdint.h>
47#include <stdio.h> /* for printk */
48#endif
49
55/* conditional compilation parameters */
56
57/*
58 * Does the RTEMS invoke the user's ISR with the vector number and
59 * a pointer to the saved interrupt frame (1) or just the vector
60 * number (0)?
61 *
62 */
63
64#define CPU_ISR_PASSES_FRAME_POINTER TRUE
65
66#define CPU_HARDWARE_FP FALSE
67
68#define CPU_SOFTWARE_FP FALSE
69
70#define CPU_ALL_TASKS_ARE_FP FALSE
71
72#define CPU_IDLE_TASK_IS_FP FALSE
73
74#define CPU_USE_DEFERRED_FP_SWITCH FALSE
75
76#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
77
78/*
79 * Does the stack grow up (toward higher addresses) or down
80 * (toward lower addresses)?
81 *
82 * If TRUE, then the grows upward.
83 * If FALSE, then the grows toward smaller addresses.
84 *
85 */
86
87#define CPU_STACK_GROWS_UP FALSE
88
89/* FIXME: Is this the right value? */
90#define CPU_CACHE_LINE_BYTES 64
91
92#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
93
94/*
95 * The following defines the number of bits actually used in the
96 * interrupt field of the task mode. How those bits map to the
97 * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
98 *
99 */
100
101#define CPU_MODES_INTERRUPT_MASK 0x00000001
102
103/*
104 * Processor defined structures required for cpukit/score.
105 */
106
107/*
108 * Contexts
109 *
110 * Generally there are 2 types of context to save.
111 * 1. Interrupt registers to save
112 * 2. Task level registers to save
113 *
114 * This means we have the following 3 context items:
115 * 1. task level context stuff:: Context_Control
116 * 2. floating point task stuff:: Context_Control_fp
117 * 3. special interrupt level context :: Context_Control_interrupt
118 *
119 * On some processors, it is cost-effective to save only the callee
120 * preserved registers during a task context switch. This means
121 * that the ISR code needs to save those registers which do not
122 * persist across function calls. It is not mandatory to make this
123 * distinctions between the caller/callee saves registers for the
124 * purpose of minimizing context saved during task switch and on interrupts.
125 * If the cost of saving extra registers is minimal, simplicity is the
126 * choice. Save the same context on interrupt entry as for tasks in
127 * this case.
128 *
129 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
130 * care should be used in designing the context area.
131 *
132 * On some CPUs with hardware floating point support, the Context_Control_fp
133 * structure will not be used or it simply consist of an array of a
134 * fixed number of bytes. This is done when the floating point context
135 * is dumped by a "FP save context" type instruction and the format
136 * is not really defined by the CPU. In this case, there is no need
137 * to figure out the exact format -- only the size. Of course, although
138 * this is enough information for RTEMS, it is probably not enough for
139 * a debugger such as gdb. But that is another problem.
140 *
141 *
142 */
143#ifndef ASM
144
145typedef struct {
146 uint32_t r[64];
147
148 uint32_t status;
149 uint32_t config;
150 uint32_t iret;
151
152#ifdef RTEMS_SMP
190 volatile bool is_executing;
191#endif
193
194#define _CPU_Context_Get_SP( _context ) \
195 (_context)->r[13]
196
198
199/*
200 * Amount of extra stack (above minimum stack size) required by
201 * MPCI receive server thread. Remember that in a multiprocessor
202 * system this thread must exist and be able to process all directives.
203 *
204 */
205
206#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
207
208/*
209 * Should be large enough to run all RTEMS tests. This insures
210 * that a "reasonable" small application should not have any problems.
211 *
212 */
213
214#define CPU_STACK_MINIMUM_SIZE 4096
215
216/*
217 * CPU's worst alignment requirement for data types on a byte boundary. This
218 * alignment does not take into account the requirements for the stack.
219 *
220 */
221
222#define CPU_ALIGNMENT 8
223
224/*
225 * This is defined if the port has a special way to report the ISR nesting
226 * level. Most ports maintain the variable _ISR_Nest_level.
227 */
228#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
229
230/*
231 * This number corresponds to the byte alignment requirement for the
232 * heap handler. This alignment requirement may be stricter than that
233 * for the data types alignment specified by CPU_ALIGNMENT. It is
234 * common for the heap to follow the same alignment requirement as
235 * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
236 * then this should be set to CPU_ALIGNMENT.
237 *
238 * NOTE: This does not have to be a power of 2 although it should be
239 * a multiple of 2 greater than or equal to 2. The requirement
240 * to be a multiple of 2 is because the heap uses the least
241 * significant field of the front and back flags to indicate
242 * that a block is in use or free. So you do not want any odd
243 * length blocks really putting length data in that bit.
244 *
245 * On byte oriented architectures, CPU_HEAP_ALIGNMENT normally will
246 * have to be greater or equal to than CPU_ALIGNMENT to ensure that
247 * elements allocated from the heap meet all restrictions.
248 *
249 */
250
251#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
252
253/*
254 * This number corresponds to the byte alignment requirement for the
255 * stack. This alignment requirement may be stricter than that for the
256 * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
257 * is strict enough for the stack, then this should be set to 0.
258 *
259 * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
260 *
261 */
262
263#define CPU_STACK_ALIGNMENT 8
264
265#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
266
267/* ISR handler macros */
268
269/*
270 * Support routine to initialize the RTEMS vector table after it is allocated.
271 *
272 * NO_CPU Specific Information:
273 *
274 * XXX document implementation including references if appropriate
275 */
276
277#define _CPU_Initialize_vectors()
278
279/*
280 * Disable all interrupts for an RTEMS critical section. The previous
281 * level is returned in _level.
282 *
283 */
284
285static inline uint32_t epiphany_interrupt_disable( void )
286{
287 uint32_t sr;
288 __asm__ __volatile__ ("movfs %[sr], status \n" : [sr] "=r" (sr):);
289 __asm__ __volatile__("gid \n");
290 return sr;
291}
292
293static inline void epiphany_interrupt_enable(uint32_t level)
294{
295 __asm__ __volatile__("gie \n");
296 __asm__ __volatile__ ("movts status, %[level] \n" :: [level] "r" (level):);
297}
298
299#define _CPU_ISR_Disable( _level ) \
300 _level = epiphany_interrupt_disable()
301
302/*
303 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
304 * This indicates the end of an RTEMS critical section. The parameter
305 * _level is not modified.
306 *
307 */
308
309#define _CPU_ISR_Enable( _level ) \
310 epiphany_interrupt_enable( _level )
311
312/*
313 * This temporarily restores the interrupt to _level before immediately
314 * disabling them again. This is used to divide long RTEMS critical
315 * sections into two or more parts. The parameter _level is not
316 * modified.
317 *
318 */
319
320#define _CPU_ISR_Flash( _level ) \
321 do{ \
322 if ( (_level & 0x2) != 0 ) \
323 _CPU_ISR_Enable( _level ); \
324 epiphany_interrupt_disable(); \
325 } while(0)
326
327RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
328{
329 return ( level & 0x2 ) != 0;
330}
331
332/*
333 * Map interrupt level in task mode onto the hardware that the CPU
334 * actually provides. Currently, interrupt levels which do not
335 * map onto the CPU in a generic fashion are undefined. Someday,
336 * it would be nice if these were "mapped" by the application
337 * via a callout. For example, m68k has 8 levels 0 - 7, levels
338 * 8 - 255 would be available for bsp/application specific meaning.
339 * This could be used to manage a programmable interrupt controller
340 * via the rtems_task_mode directive.
341 *
342 * The get routine usually must be implemented as a subroutine.
343 *
344 */
345
346void _CPU_ISR_Set_level( uint32_t level );
347
348uint32_t _CPU_ISR_Get_level( void );
349
350/* end of ISR handler macros */
351
352/* Context handler macros */
353
354/*
355 * Initialize the context to a state suitable for starting a
356 * task after a context restore operation. Generally, this
357 * involves:
358 *
359 * - setting a starting address
360 * - preparing the stack
361 * - preparing the stack and frame pointers
362 * - setting the proper interrupt level in the context
363 * - initializing the floating point context
364 *
365 * This routine generally does not set any unnecessary register
366 * in the context. The state of the "general data" registers is
367 * undefined at task start time.
368 *
369 * NOTE: This is_fp parameter is TRUE if the thread is to be a floating
370 * point thread. This is typically only used on CPUs where the
371 * FPU may be easily disabled by software such as on the SPARC
372 * where the PSR contains an enable FPU bit.
373 *
374 */
375
383#define EPIPHANY_GCC_RED_ZONE_SIZE 128
384
404 void *stack_area_begin,
405 size_t stack_area_size,
406 uint32_t new_level,
407 void (*entry_point)( void ),
408 bool is_fp,
409 void *tls_area
410);
411
412/*
413 * This routine is responsible for somehow restarting the currently
414 * executing task. If you are lucky, then all that is necessary
415 * is restoring the context. Otherwise, there will need to be
416 * a special assembly routine which does something special in this
417 * case. Context_Restore should work most of the time. It will
418 * not work if restarting self conflicts with the stack frame
419 * assumptions of restoring a context.
420 *
421 */
422
423#define _CPU_Context_Restart_self( _the_context ) \
424 _CPU_Context_restore( (_the_context) )
425
426/* end of Context handler macros */
427
428/* Fatal Error manager macros */
429
430/*
431 * This routine copies _error into a known place -- typically a stack
432 * location or a register, optionally disables interrupts, and
433 * halts/stops the CPU.
434 *
435 */
436
437#include <inttypes.h>
438
439#define _CPU_Fatal_halt(_source, _error ) \
440 printk("Fatal Error %d.%" PRIu32 " Halted\n",_source, _error); \
441 asm("trap 3" :: "r" (_error)); \
442 for(;;)
443
444/* end of Fatal Error manager macros */
445
446#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
447
448#endif /* ASM */
449
457#define CPU_SIZEOF_POINTER 4
458#define CPU_EXCEPTION_FRAME_SIZE 260
459
460#define CPU_MAXIMUM_PROCESSORS 32
461
462#ifndef ASM
463
464typedef struct {
465 uint32_t r[62];
466 uint32_t status;
467 uint32_t config;
468 uint32_t iret;
470
477
478
479/* end of Priority handler macros */
480
481/* functions */
482
483/*
484 * _CPU_Initialize
485 *
486 * This routine performs CPU dependent initialization.
487 *
488 */
489
490void _CPU_Initialize(
491 void
492);
493
494void *_CPU_Thread_Idle_body( uintptr_t ignored );
495
496/*
497 * _CPU_Context_switch
498 *
499 * This routine switches from the run context to the heir context.
500 *
501 * epiphany Specific Information:
502 *
503 * Please see the comments in the .c file for a description of how
504 * this function works. There are several things to be aware of.
505 */
506
508 Context_Control *run,
509 Context_Control *heir
510);
511
512/*
513 * _CPU_Context_restore
514 *
515 * This routine is generally used only to restart self in an
516 * efficient manner. It may simply be a label in _CPU_Context_switch.
517 *
518 * NOTE: May be unnecessary to reload some registers.
519 *
520 */
521
523 Context_Control *new_context
525
526/*
527 * _CPU_Context_save_fp
528 *
529 * This routine saves the floating point context passed to it.
530 *
531 */
532
534 void **fp_context_ptr
535);
536
537/*
538 * _CPU_Context_restore_fp
539 *
540 * This routine restores the floating point context passed to it.
541 *
542 */
543
545 void **fp_context_ptr
546);
547
548/* The following routine swaps the endian format of an unsigned int.
549 * It must be static because it is referenced indirectly.
550 *
551 * This version will work on any processor, but if there is a better
552 * way for your CPU PLEASE use it. The most common way to do this is to:
553 *
554 * swap least significant two bytes with 16-bit rotate
555 * swap upper and lower 16-bits
556 * swap most significant two bytes with 16-bit rotate
557 *
558 * Some CPUs have special instructions which swap a 32-bit quantity in
559 * a single instruction (e.g. i486). It is probably best to avoid
560 * an "endian swapping control bit" in the CPU. One good reason is
561 * that interrupts would probably have to be disabled to insure that
562 * an interrupt does not try to access the same "chunk" with the wrong
563 * endian. Another good reason is that on some CPUs, the endian bit
564 * endianness for ALL fetches -- both code and data -- so the code
565 * will be fetched incorrectly.
566 *
567 */
568
569static inline unsigned int CPU_swap_u32(
570 unsigned int value
571)
572{
573 uint32_t byte1, byte2, byte3, byte4, swapped;
574
575 byte4 = (value >> 24) & 0xff;
576 byte3 = (value >> 16) & 0xff;
577 byte2 = (value >> 8) & 0xff;
578 byte1 = value & 0xff;
579
580 swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
581 return( swapped );
582}
583
584#define CPU_swap_u16( value ) \
585 (((value&0xff) << 8) | ((value >> 8)&0xff))
586
587typedef uint32_t CPU_Counter_ticks;
588
589uint32_t _CPU_Counter_frequency( void );
590
591CPU_Counter_ticks _CPU_Counter_read( void );
592
593static inline CPU_Counter_ticks _CPU_Counter_difference(
594 CPU_Counter_ticks second,
595 CPU_Counter_ticks first
596)
597{
598 return second - first;
599}
600
602typedef uintptr_t CPU_Uint32ptr;
603
604#endif /* ASM */
605
606#ifdef __cplusplus
607}
608#endif
609
610#endif
611
Basic Definitions.
Interface to Kernel Print Methods.
#define RTEMS_NO_RETURN
Definition: basedefs.h:102
#define RTEMS_INLINE_ROUTINE
Definition: basedefs.h:66
void _CPU_ISR_Set_level(uint32_t level)
Sets the hardware interrupt level by the level value.
Definition: cpu.c:57
bool _CPU_ISR_Is_enabled(uint32_t level)
Returns true if interrupts are enabled in the specified ISR level, otherwise returns false.
Definition: cpu.h:375
void * _CPU_Thread_Idle_body(uintptr_t ignored)
Definition: idle-mcf5272.c:20
void _CPU_Initialize(void)
CPU initialization.
Definition: cpu.c:45
uintptr_t CPU_Uint32ptr
Definition: cpu.h:662
uint32_t _CPU_Counter_frequency(void)
Returns the current CPU counter frequency in Hz.
Definition: system-clocks.c:112
void _CPU_Context_switch(Context_Control *run, Context_Control *heir)
CPU switch context.
Definition: cpu_asm.c:91
CPU_Counter_ticks _CPU_Counter_read(void)
Returns the current CPU counter value.
Definition: system-clocks.c:117
void _CPU_Context_restore(Context_Control *new_context) RTEMS_NO_RETURN
Definition: cpu_asm.c:111
uint32_t _CPU_ISR_Get_level(void)
Definition: cpu.c:88
void _CPU_Context_Initialize(Context_Control *context, void *stack_area_begin, size_t stack_area_size, uint32_t new_level, void(*entry_point)(void), bool is_fp, void *tls_area)
Initializes the CPU context.
Definition: epiphany-context-initialize.c:40
void _CPU_Exception_frame_print(const CPU_Exception_frame *frame)
Prints the exception frame via printk().
Definition: vectorexceptions.c:45
register struct Per_CPU_Control *_SPARC_Per_CPU_current __asm__("g6")
The pointer to the current per-CPU control is available via register g6.
Provide printf() PRIxxx Constante Beyond Standards.
uint32_t CPU_Counter_ticks
Unsigned integer type for CPU counter values.
Definition: cpu.h:1210
#define _CPU_Context_restore_fp(_fp_context_ptr)
Nothing to do due to the synchronous or lazy floating point switch.
Definition: cpu.h:904
#define _CPU_Context_save_fp(_fp_context_ptr)
Nothing to do due to the synchronous or lazy floating point switch.
Definition: cpu.h:898
The set of registers that specifies the complete processor state.
Definition: cpu.h:629
Interrupt stack frame (ISF).
Definition: cpu.h:191
Thread register context.
Definition: cpu.h:194
Definition: deflate.c:115
unsigned context
Definition: tlb.h:1