RTEMS  5.0.0
Data Structures | Macros | Typedefs | Functions | Variables
cpu.h File Reference

SPARC CPU Department Source. More...

#include <rtems/score/basedefs.h>
#include <rtems/score/sparc.h>

Go to the source code of this file.

Data Structures

struct  SPARC_Minimum_stack_frame
 
struct  Context_Control
 Thread register context. More...
 
struct  Context_Control_fp
 SPARC basic context. More...
 
struct  CPU_Interrupt_frame
 Interrupt stack frame (ISF). More...
 
struct  CPU_Trap_table_entry
 
struct  CPU_Exception_frame
 The set of registers that specifies the complete processor state. More...
 
struct  SPARC_Counter
 

Macros

#define CPU_SIMPLE_VECTORED_INTERRUPTS   TRUE
 
#define CPU_ISR_PASSES_FRAME_POINTER   FALSE
 
#define CPU_HARDWARE_FP   FALSE
 
#define CPU_SOFTWARE_FP   FALSE
 
#define CPU_ALL_TASKS_ARE_FP   FALSE
 
#define CPU_IDLE_TASK_IS_FP   FALSE
 
#define CPU_USE_DEFERRED_FP_SWITCH   FALSE
 
#define CPU_ENABLE_ROBUST_THREAD_DISPATCH   FALSE
 
#define CPU_STACK_GROWS_UP   FALSE
 
#define CPU_CACHE_LINE_BYTES   64
 
#define CPU_STRUCTURE_ALIGNMENT   RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
 
#define CPU_MODES_INTERRUPT_MASK   0x0000000F
 
#define CPU_STACK_FRAME_L0_OFFSET   0x00
 
#define CPU_STACK_FRAME_L1_OFFSET   0x04
 
#define CPU_STACK_FRAME_L2_OFFSET   0x08
 
#define CPU_STACK_FRAME_L3_OFFSET   0x0c
 
#define CPU_STACK_FRAME_L4_OFFSET   0x10
 
#define CPU_STACK_FRAME_L5_OFFSET   0x14
 
#define CPU_STACK_FRAME_L6_OFFSET   0x18
 
#define CPU_STACK_FRAME_L7_OFFSET   0x1c
 
#define CPU_STACK_FRAME_I0_OFFSET   0x20
 
#define CPU_STACK_FRAME_I1_OFFSET   0x24
 
#define CPU_STACK_FRAME_I2_OFFSET   0x28
 
#define CPU_STACK_FRAME_I3_OFFSET   0x2c
 
#define CPU_STACK_FRAME_I4_OFFSET   0x30
 
#define CPU_STACK_FRAME_I5_OFFSET   0x34
 
#define CPU_STACK_FRAME_I6_FP_OFFSET   0x38
 
#define CPU_STACK_FRAME_I7_OFFSET   0x3c
 
#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x40
 
#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET   0x44
 
#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET   0x48
 
#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET   0x4c
 
#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET   0x50
 
#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET   0x54
 
#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET   0x58
 
#define CPU_STACK_FRAME_PAD0_OFFSET   0x5c
 
#define CPU_MAXIMUM_PROCESSORS   32
 
#define _CPU_Context_Get_SP(_context)   (_context)->o6_sp
 
#define G5_OFFSET   0x00
 
#define G7_OFFSET   0x04
 
#define L0_OFFSET   0x08
 
#define L1_OFFSET   0x0C
 
#define L2_OFFSET   0x10
 
#define L3_OFFSET   0x14
 
#define L4_OFFSET   0x18
 
#define L5_OFFSET   0x1C
 
#define L6_OFFSET   0x20
 
#define L7_OFFSET   0x24
 
#define I0_OFFSET   0x28
 
#define I1_OFFSET   0x2C
 
#define I2_OFFSET   0x30
 
#define I3_OFFSET   0x34
 
#define I4_OFFSET   0x38
 
#define I5_OFFSET   0x3C
 
#define I6_FP_OFFSET   0x40
 
#define I7_OFFSET   0x44
 
#define O6_SP_OFFSET   0x48
 
#define O7_OFFSET   0x4C
 
#define PSR_OFFSET   0x50
 
#define ISR_DISPATCH_DISABLE_STACK_OFFSET   0x54
 
#define FO_F1_OFFSET   0x00
 
#define F2_F3_OFFSET   0x08
 
#define F4_F5_OFFSET   0x10
 
#define F6_F7_OFFSET   0x18
 
#define F8_F9_OFFSET   0x20
 
#define F1O_F11_OFFSET   0x28
 
#define F12_F13_OFFSET   0x30
 
#define F14_F15_OFFSET   0x38
 
#define F16_F17_OFFSET   0x40
 
#define F18_F19_OFFSET   0x48
 
#define F2O_F21_OFFSET   0x50
 
#define F22_F23_OFFSET   0x58
 
#define F24_F25_OFFSET   0x60
 
#define F26_F27_OFFSET   0x68
 
#define F28_F29_OFFSET   0x70
 
#define F3O_F31_OFFSET   0x78
 
#define FSR_OFFSET   0x80
 
#define CONTEXT_CONTROL_FP_SIZE   0x84
 
#define CPU_CONTEXT_FP_SIZE   sizeof( Context_Control_fp )
 
#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK   1024
 
#define CPU_INTERRUPT_NUMBER_OF_VECTORS   256
 
#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER   511
 
#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK   0x100
 
#define SPARC_ASYNCHRONOUS_TRAP(_trap)   (_trap)
 
#define SPARC_SYNCHRONOUS_TRAP(_trap)   ((_trap) + 256 )
 
#define SPARC_REAL_TRAP_NUMBER(_trap)   ((_trap) % 256)
 
#define CPU_PROVIDES_ISR_IS_IN_PROGRESS   FALSE
 
#define CPU_STACK_MINIMUM_SIZE   (1024*4)
 
#define CPU_SIZEOF_POINTER   4
 
#define CPU_ALIGNMENT   8
 
#define CPU_HEAP_ALIGNMENT   CPU_ALIGNMENT
 
#define CPU_STACK_ALIGNMENT   CPU_ALIGNMENT
 
#define CPU_INTERRUPT_STACK_ALIGNMENT   CPU_CACHE_LINE_BYTES
 
#define _CPU_Initialize_vectors()
 
#define _CPU_ISR_Disable(_level)   (_level) = sparc_disable_interrupts()
 
#define _CPU_ISR_Enable(_level)   sparc_enable_interrupts( _level )
 
#define _CPU_ISR_Flash(_level)   sparc_flash_interrupts( _level )
 
#define _CPU_ISR_Is_enabled(_isr_cookie)   sparc_interrupt_is_enabled( _isr_cookie )
 
#define _CPU_ISR_Set_level(_newlevel)   sparc_enable_interrupts( _newlevel << 8)
 
#define _CPU_Context_Initialization_at_thread_begin()
 
#define _CPU_Context_Restart_self(_the_context)   _CPU_Context_restore( (_the_context) );
 
#define _CPU_Context_Initialize_fp(_destination)   do { } while ( 0 )
 Nothing to do due to the synchronous or lazy floating point switch.
 
#define _CPU_Context_save_fp(_fp_context_ptr)   do { } while ( 0 )
 Nothing to do due to the synchronous or lazy floating point switch.
 
#define _CPU_Context_restore_fp(_fp_context_ptr)   do { } while ( 0 )
 Nothing to do due to the synchronous or lazy floating point switch.
 
#define CPU_USE_GENERIC_BITFIELD_CODE   TRUE
 
#define CPU_swap_u16(value)   (((value&0xff) << 8) | ((value >> 8)&0xff))
 SPARC specific method to endian swap an uint16_t. More...
 

Typedefs

typedef struct Context_Control_fp Context_Control_fp
 
typedef void(* CPU_ISR_raw_handler) (void)
 
typedef void(* CPU_ISR_handler) (uint32_t)
 
typedef uint32_t CPU_Counter_ticks
 
typedef CPU_Counter_ticks(* SPARC_Counter_read) (void)
 
typedef uintptr_t CPU_Uint32ptr
 

Functions

RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled (uint32_t level)
 Returns true if interrupts are enabled in the specified ISR level, otherwise returns false. More...
 
uint32_t _CPU_ISR_Get_level (void)
 Obtain the current interrupt disable level. More...
 
void _CPU_Context_Initialize (Context_Control *the_context, uint32_t *stack_base, uint32_t size, uint32_t new_level, void *entry_point, bool is_fp, void *tls_area)
 
void _CPU_Fatal_halt (uint32_t source, uint32_t error) RTEMS_NO_RETURN
 
void _CPU_Initialize (void)
 SPARC specific initialization. More...
 
void _CPU_ISR_install_raw_handler (uint32_t vector, CPU_ISR_raw_handler new_handler, CPU_ISR_raw_handler *old_handler)
 SPARC specific raw ISR installer. More...
 
void _CPU_ISR_install_vector (uint32_t vector, CPU_ISR_handler new_handler, CPU_ISR_handler *old_handler)
 SPARC specific RTEMS ISR installer. More...
 
void * _CPU_Thread_Idle_body (uintptr_t ignored)
 
void _CPU_Context_switch (Context_Control *run, Context_Control *heir)
 SPARC specific context switch. More...
 
void _CPU_Context_restore (Context_Control *new_context) RTEMS_NO_RETURN
 SPARC specific context restore. More...
 
void _CPU_Exception_frame_print (const CPU_Exception_frame *frame)
 Prints the exception frame via printk(). More...
 
uint32_t _CPU_Counter_frequency (void)
 Returns the current CPU counter frequency in Hz. More...
 

Variables

const CPU_Trap_table_entry _CPU_Trap_slot_template
 
const SPARC_Counter _SPARC_Counter
 

Detailed Description

SPARC CPU Department Source.

This include file contains information pertaining to the port of the executive to the SPARC processor.

Macro Definition Documentation

◆ _CPU_Context_Initialization_at_thread_begin

#define _CPU_Context_Initialization_at_thread_begin ( )
Value:
do { \
__asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
} while (0)

This macro is invoked from _Thread_Handler to do whatever CPU specific magic is required that must be done in the context of the thread when it starts.

On the SPARC, this is setting the frame pointer so GDB is happy. Make GDB stop unwinding at _Thread_Handler, previous register window Frame pointer is 0 and calling address must be a function with starting with a SAVE instruction. If return address is leaf-function (no SAVE) GDB will not look at prev reg window fp.

_Thread_Handler is known to start with SAVE.

◆ _CPU_Context_Restart_self

#define _CPU_Context_Restart_self (   _the_context)    _CPU_Context_restore( (_the_context) );

This routine is responsible for somehow restarting the currently executing task.

On the SPARC, this is is relatively painless but requires a small amount of wrapper code before using the regular restore code in of the context switch.

◆ _CPU_Initialize_vectors

#define _CPU_Initialize_vectors ( )

Support routine to initialize the RTEMS vector table after it is allocated.

◆ _CPU_ISR_Disable

#define _CPU_ISR_Disable (   _level)    (_level) = sparc_disable_interrupts()

Disable all interrupts for a critical section. The previous level is returned in _level.

◆ _CPU_ISR_Enable

#define _CPU_ISR_Enable (   _level)    sparc_enable_interrupts( _level )

Enable interrupts to the previous level (returned by _CPU_ISR_Disable). This indicates the end of a critical section. The parameter _level is not modified.

◆ _CPU_ISR_Flash

#define _CPU_ISR_Flash (   _level)    sparc_flash_interrupts( _level )

This temporarily restores the interrupt to _level before immediately disabling them again. This is used to divide long critical sections into two or more parts. The parameter _level is not modified.

◆ _CPU_ISR_Set_level

#define _CPU_ISR_Set_level (   _newlevel)    sparc_enable_interrupts( _newlevel << 8)

Map interrupt level in task mode onto the hardware that the CPU actually provides. Currently, interrupt levels which do not map onto the CPU in a straight fashion are undefined.

◆ CPU_ALIGNMENT

#define CPU_ALIGNMENT   8

CPU's worst alignment requirement for data types on a byte boundary. This alignment does not take into account the requirements for the stack.

On the SPARC, this is required for double word loads and stores.

◆ CPU_ALL_TASKS_ARE_FP

#define CPU_ALL_TASKS_ARE_FP   FALSE

Are all tasks FLOATING_POINT tasks implicitly?

  • If TRUE, then the FLOATING_POINT task attribute is assumed.
  • If FALSE, then the FLOATING_POINT task attribute is followed.

The SPARC GCC port does not implicitly use floating point registers.

◆ CPU_CONTEXT_FP_SIZE

#define CPU_CONTEXT_FP_SIZE   sizeof( Context_Control_fp )

The size of the floating point context area.

◆ CPU_HARDWARE_FP

#define CPU_HARDWARE_FP   FALSE

Does the CPU have hardware floating point?

  • If TRUE, then the FLOATING_POINT task attribute is supported.
  • If FALSE, then the FLOATING_POINT task attribute is ignored.

This is set based upon the multilib settings.

◆ CPU_HEAP_ALIGNMENT

#define CPU_HEAP_ALIGNMENT   CPU_ALIGNMENT

This number corresponds to the byte alignment requirement for the heap handler. This alignment requirement may be stricter than that for the data types alignment specified by CPU_ALIGNMENT. It is common for the heap to follow the same alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap, then this should be set to CPU_ALIGNMENT.

NOTE: This does not have to be a power of 2. It does have to be greater or equal to than CPU_ALIGNMENT.

◆ CPU_IDLE_TASK_IS_FP

#define CPU_IDLE_TASK_IS_FP   FALSE

Should the IDLE task have a floating point context?

  • If TRUE, then the IDLE task is created as a FLOATING_POINT task and it has a floating point context which is switched in and out.
  • If FALSE, then the IDLE task does not have a floating point context.

The IDLE task does not have to be floating point on the SPARC.

◆ CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER

#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER   511

The SPARC has 256 vectors but the port treats 256-512 as synchronous traps.

◆ CPU_INTERRUPT_NUMBER_OF_VECTORS

#define CPU_INTERRUPT_NUMBER_OF_VECTORS   256

This defines the number of entries in the ISR_Vector_table managed by the executive.

On the SPARC, there are really only 256 vectors. However, the executive has no easy, fast, reliable way to determine which traps are synchronous and which are asynchronous. By default, synchronous traps return to the instruction which caused the interrupt. So if you install a software trap handler as an executive interrupt handler (which is desirable since RTEMS takes care of window and register issues), then the executive needs to know that the return address is to the trap rather than the instruction following the trap.

So vectors 0 through 255 are treated as regular asynchronous traps which provide the "correct" return address. Vectors 256 through 512 are assumed by the executive to be synchronous and to require that the return address be fudged.

If you use this mechanism to install a trap handler which must reexecute the instruction which caused the trap, then it should be installed as an asynchronous trap. This will avoid the executive changing the return address.

◆ CPU_ISR_PASSES_FRAME_POINTER

#define CPU_ISR_PASSES_FRAME_POINTER   FALSE

Does the RTEMS invoke the user's ISR with the vector number and a pointer to the saved interrupt frame (1) or just the vector number (0)?

The SPARC port does not pass an Interrupt Stack Frame pointer to interrupt handlers.

◆ CPU_MODES_INTERRUPT_MASK

#define CPU_MODES_INTERRUPT_MASK   0x0000000F

The following defines the number of bits actually used in the interrupt field of the task mode. How those bits map to the CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().

The SPARC has 16 interrupt levels in the PIL field of the PSR.

◆ CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK

#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK   1024

Amount of extra stack (above minimum stack size) required by MPCI receive server thread. Remember that in a multiprocessor system this thread must exist and be able to process all directives.

◆ CPU_PROVIDES_ISR_IS_IN_PROGRESS

#define CPU_PROVIDES_ISR_IS_IN_PROGRESS   FALSE

This is defined if the port has a special way to report the ISR nesting level. Most ports maintain the variable _ISR_Nest_level.

◆ CPU_SIMPLE_VECTORED_INTERRUPTS

#define CPU_SIMPLE_VECTORED_INTERRUPTS   TRUE

Does the CPU follow the simple vectored interrupt model?

  • If TRUE, then RTEMS allocates the vector table it internally manages.
  • If FALSE, then the BSP is assumed to allocate and manage the vector table

THe SPARC is a simple vectored architecture. Usually there is no PIC and the CPU directly vectors the interrupts.

◆ CPU_SIZEOF_POINTER

#define CPU_SIZEOF_POINTER   4

What is the size of a pointer on this architecture?

◆ CPU_SOFTWARE_FP

#define CPU_SOFTWARE_FP   FALSE

The SPARC GCC port does not have a software floating point library that requires RTEMS assistance.

◆ CPU_STACK_ALIGNMENT

#define CPU_STACK_ALIGNMENT   CPU_ALIGNMENT

Stack frames must be doubleword aligned according to the System V ABI for SPARC.

◆ CPU_STACK_FRAME_I0_OFFSET

#define CPU_STACK_FRAME_I0_OFFSET   0x20

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_I1_OFFSET

#define CPU_STACK_FRAME_I1_OFFSET   0x24

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_I2_OFFSET

#define CPU_STACK_FRAME_I2_OFFSET   0x28

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_I3_OFFSET

#define CPU_STACK_FRAME_I3_OFFSET   0x2c

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_I4_OFFSET

#define CPU_STACK_FRAME_I4_OFFSET   0x30

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_I5_OFFSET

#define CPU_STACK_FRAME_I5_OFFSET   0x34

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_I6_FP_OFFSET

#define CPU_STACK_FRAME_I6_FP_OFFSET   0x38

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_I7_OFFSET

#define CPU_STACK_FRAME_I7_OFFSET   0x3c

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L0_OFFSET

#define CPU_STACK_FRAME_L0_OFFSET   0x00

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L1_OFFSET

#define CPU_STACK_FRAME_L1_OFFSET   0x04

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L2_OFFSET

#define CPU_STACK_FRAME_L2_OFFSET   0x08

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L3_OFFSET

#define CPU_STACK_FRAME_L3_OFFSET   0x0c

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L4_OFFSET

#define CPU_STACK_FRAME_L4_OFFSET   0x10

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L5_OFFSET

#define CPU_STACK_FRAME_L5_OFFSET   0x14

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L6_OFFSET

#define CPU_STACK_FRAME_L6_OFFSET   0x18

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_L7_OFFSET

#define CPU_STACK_FRAME_L7_OFFSET   0x1c

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_PAD0_OFFSET

#define CPU_STACK_FRAME_PAD0_OFFSET   0x5c

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_SAVED_ARG0_OFFSET

#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET   0x44

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_SAVED_ARG1_OFFSET

#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET   0x48

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_SAVED_ARG2_OFFSET

#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET   0x4c

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_SAVED_ARG3_OFFSET

#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET   0x50

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_SAVED_ARG4_OFFSET

#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET   0x54

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_FRAME_SAVED_ARG5_OFFSET

#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET   0x58

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_STACK_GROWS_UP

#define CPU_STACK_GROWS_UP   FALSE

Does the stack grow up (toward higher addresses) or down (toward lower addresses)?

  • If TRUE, then the grows upward.
  • If FALSE, then the grows toward smaller addresses.

The stack grows to lower addresses on the SPARC.

◆ CPU_STACK_MINIMUM_SIZE

#define CPU_STACK_MINIMUM_SIZE   (1024*4)

Should be large enough to run all tests. This ensures that a "reasonable" small application should not have any problems.

This appears to be a fairly generous number for the SPARC since represents a call depth of about 20 routines based on the minimum stack frame.

◆ CPU_STRUCTURE_RETURN_ADDRESS_OFFSET

#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x40

This macro defines an offset into the stack frame for use in assembly.

◆ CPU_swap_u16

#define CPU_swap_u16 (   value)    (((value&0xff) << 8) | ((value >> 8)&0xff))

SPARC specific method to endian swap an uint16_t.

The following routine swaps the endian format of a uint16_t.

Parameters
[in]valueis the value to endian swap

◆ CPU_USE_GENERIC_BITFIELD_CODE

#define CPU_USE_GENERIC_BITFIELD_CODE   TRUE

The SPARC port uses the generic C algorithm for bitfield scan if the CPU model does not have a scan instruction.

◆ SPARC_ASYNCHRONOUS_TRAP

#define SPARC_ASYNCHRONOUS_TRAP (   _trap)    (_trap)

This macro indicates that _trap as an asynchronous trap.

◆ SPARC_REAL_TRAP_NUMBER

#define SPARC_REAL_TRAP_NUMBER (   _trap)    ((_trap) % 256)

This macro returns the real hardware vector number associated with _trap.

◆ SPARC_SYNCHRONOUS_TRAP

#define SPARC_SYNCHRONOUS_TRAP (   _trap)    ((_trap) + 256 )

This macro indicates that _trap as a synchronous trap.

◆ SPARC_SYNCHRONOUS_TRAP_BIT_MASK

#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK   0x100

This is the bit step in a vector number to indicate it is being installed as a synchronous trap.

Typedef Documentation

◆ CPU_Uint32ptr

typedef uintptr_t CPU_Uint32ptr

Type that can store a 32-bit integer or a pointer.

Function Documentation

◆ _CPU_Context_Initialize()

void _CPU_Context_Initialize ( Context_Control the_context,
uint32_t *  stack_base,
uint32_t  size,
uint32_t  new_level,
void *  entry_point,
bool  is_fp,
void *  tls_area 
)

Initialize the context to a state suitable for starting a task after a context restore operation. Generally, this involves:

  • setting a starting address
  • preparing the stack
  • preparing the stack and frame pointers
  • setting the proper interrupt level in the context
  • initializing the floating point context
Parameters
[in]the_contextpoints to the context area
[in]stack_baseis the low address of the allocated stack area
[in]sizeis the size of the stack area in bytes
[in]new_levelis the interrupt level for the task
[in]entry_pointis the task's entry point
[in]is_fpis set to TRUE if the task is a floating point task
[in]tls_areais the thread-local storage (TLS) area

NOTE: Implemented as a subroutine for the SPARC port.

Variable Documentation

◆ _CPU_Trap_slot_template

const CPU_Trap_table_entry _CPU_Trap_slot_template

This is the set of opcodes for the instructions loaded into a trap table entry. The routine which installs a handler is responsible for filling in the fields for the _handler address and the _vector trap type.

The constants following this structure are masks for the fields which must be filled in when the handler is installed.