14.2. RTEMS Symbols¶
The RTEMS Symbols (rtems-syms) command is an RTEMS tool to generate symbol tables used by the RTEMS Runtime Loader (RTL). The symbol table contains the exported base kernel symbols user code dynamically loaded can reference.
The RTEMS Runtime Loader supports two methods of loading a symbol table, embedded and runtime loading. Embedding the table requires linking the symbol table with the base image and runtime loading loads the table using the dynamic loader when RTEMS is running.
Embedding the symbol table creates self contained images. A target may not have any external media, for example RTEMS tests, or there is a requirement to avoid the management need to match the symbol table with the kernel base image. Embedding the symbol table requires a 2-pass link process making the application’s build system more complicated.
A dynamically loadable symbol table is simpler to create however the symbol table and the kernel base image must match or the behaviour is undefined. There is currently no mechnanisum to ensure the symbol table and the kernel image match The rtems-syms command is run against the base kernel image and the generated symbol table is installed on to the target hardware and loaded before any other modules.
14.2.1. Symbol Table¶
The symbol table is an ELF object file in the target’s ELF format and is built
using the target’s RTEMS C compiler. The rtems-syms command searches
for the C compller under the prefix this command is installed under or the
system path. If the target’s C compiler is not located in either of these paths
use the option -c
or --cc
to specify the path to the compiler.
The rtems-syms command loads the base kernel image’s ELF file and
reads the global or public symbols, creates a temporary C file and then
compiles it using the target’s RTEMS C compiler. The command automatically
detects the architecture from the base kernel image’s ELF file and uses it to
create the C compiler’s name. The option -E
or --exec-prefix
can be
used to override the executable prefix used.
It is important to supply suitable C compiler flags (cflags
) that match the
kernel image’s so the symbol table can be linked or loaded.
14.2.2. 2-Pass Linking¶
2-Pass linking is used to embed a symbol table in a base kernel image. The
first link pass is a normal RTEMS kernel link process. The link output is
passed to the rtems-syms command and the -e
or --embed
option is used. The symbol table object file created by rtems-syms
is added to the linker command used in the first pass to create the second
pass. The address map will change between the first pass and second pass
without causing a problem, the symbol table embedded in the second link pass
will adjust the symbol addresses to match.
14.2.3. Command¶
rtems-syms [options] kernel
- -V, --version¶
Display the version information and then exit.
- -v, --verbose¶
Increase the verbose level by 1. The option can be used more than once to get more detailed trace and debug information.
- -w, --warn¶
Enable build warnings. This is useful when debugging symbol table generation.
- -k, --keep¶
Do not delete temporary files on exit, keep them.
- -e, --embed¶
Create a symbol table that can be embedded in the base kernel image using a 2-pass link process.
- -S, --symc¶
Specify the symbol’s C source file. The defautl is to use a temporary file name.
- -o, --output¶
Specify the ELF output file name.
- -m, --map¶
Create a map file using the provided file name.
- -C, --cc¶
Specify the C compile executable file name. The file can be absolute and no path is search or relative and the environment’s path is searched.
- -E, --exec-prefix¶
Specify the RTEMS tool prefix. For example for RTEMS 5 and the SPARC architecture the prefix is
sparc-rtems5
.
- -c, --cflags¶
Specify the C compiler flags used to build the symbol table with. These should be the same or compatible with the flags used to build the RTEMS kernel.
- -?, -h¶
Reort the usage help.
14.2.4. Examples¶
Create a dynamlically loaded symbol table for the minimum.exe
sample
program for the i386/pc686
BSP:
$ rtems-syms -o ms.o i386-rtems5/c/pc686/testsuites/samples/minimum/minimum.exe
$ file ms.o
ms.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not stripped
Run the same command, this time create a map file:
$ rtems-syms -o ms.o -m ms.map i386-rtems5/c/pc686/testsuites/samples/minimum/minimum.exe
$ head -10 ms.map
RTEMS Kernel Symbols Map
kernel: i386-rtems5/c/pc686/testsuites/samples/minimum/minimum.exe
Globals:
No. Index Scope Type SHNDX Address Size Name
0 931 STB_GLOBAL STT_OBJECT 11 0x0012df08 4 BSPBaseBaud (minimum.exe)
1 1124 STB_GLOBAL STT_OBJECT 11 0x0012d894 4 BSPPrintkPort (minimum.exe)
2 836 STB_GLOBAL STT_FUNC 1 0x00104b00 302 BSP_dispatch_isr (minimum.exe)
3 1156 STB_GLOBAL STT_FUNC 1 0x001082d0 92 BSP_install_rtems_shared_irq_handler (minimum.exe)
4 876 STB_GLOBAL STT_FUNC 1 0x00106500 138 BSP_outch (minimum.exe)
Run the same command with a raise verbose level to observe the stages the command performs:
$ rtems-syms -vvv -o ms.o i386-rtems5/c/pc686/testsuites/samples/minimum/minimum.exe
RTEMS Kernel Symbols 5.a72a462adc18
kernel: i386-rtems5/c/pc686/testsuites/samples/minimum/minimum.exe
cache:load-sym: object files: 1
cache:load-sym: symbols: 1043
symbol C file: /tmp/rld--X7paaa.c
symbol O file: ms.o
execute: i386-rtems5-gcc -O2 -c -o ms.o /tmp/rld--X7paaa.c
execute: status: 0