RTEMS 5.2
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cpu.h
Go to the documentation of this file.
1
7/*
8 * This include file contains information pertaining to the Moxie
9 * processor.
10 *
11 * Copyright (c) 2013 Anthony Green
12 *
13 * Based on code with the following copyright..
14 * COPYRIGHT (c) 1989-2006, 2010.
15 * On-Line Applications Research Corporation (OAR).
16 *
17 * The license and distribution terms for this file may be
18 * found in the file LICENSE in this distribution or at
19 * http://www.rtems.org/license/LICENSE.
20 */
21
22#ifndef _RTEMS_SCORE_CPU_H
23#define _RTEMS_SCORE_CPU_H
24
25#ifdef __cplusplus
26extern "C" {
27#endif
28
30#include <rtems/score/moxie.h> /* pick up machine definitions */
31
32#include <rtems/bspIo.h> /* printk */
33
34/* conditional compilation parameters */
35
36/*
37 * Should this target use 16 or 32 bit object Ids?
38 *
39 */
40#define RTEMS_USE_32_BIT_OBJECT
41
42/*
43 * Does the CPU follow the simple vectored interrupt model?
44 *
45 * If TRUE, then RTEMS allocates the vector table it internally manages.
46 * If FALSE, then the BSP is assumed to allocate and manage the vector
47 * table
48 *
49 * MOXIE Specific Information:
50 *
51 * XXX document implementation including references if appropriate
52 */
53#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
54
55#define CPU_HARDWARE_FP FALSE
56
57#define CPU_SOFTWARE_FP FALSE
58
59#define CPU_ALL_TASKS_ARE_FP FALSE
60
61#define CPU_IDLE_TASK_IS_FP FALSE
62
63#define CPU_USE_DEFERRED_FP_SWITCH FALSE
64
65#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
66
67/*
68 * Does the stack grow up (toward higher addresses) or down
69 * (toward lower addresses)?
70 *
71 * If TRUE, then the grows upward.
72 * If FALSE, then the grows toward smaller addresses.
73 *
74 * MOXIE Specific Information:
75 *
76 * XXX
77 */
78#define CPU_STACK_GROWS_UP FALSE
79
80/* FIXME: Is this the right value? */
81#define CPU_CACHE_LINE_BYTES 32
82
83#define CPU_STRUCTURE_ALIGNMENT
84
85/*
86 * The following defines the number of bits actually used in the
87 * interrupt field of the task mode. How those bits map to the
88 * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
89 *
90 * MOXIE Specific Information:
91 *
92 * XXX
93 */
94#define CPU_MODES_INTERRUPT_MASK 0x00000001
95
96#define CPU_MAXIMUM_PROCESSORS 32
97
98/*
99 * Processor defined structures required for cpukit/score.
100 *
101 * MOXIE Specific Information:
102 *
103 * XXX
104 */
105
106/* may need to put some structures here. */
107
108/*
109 * Contexts
110 *
111 * Generally there are 2 types of context to save.
112 * 1. Interrupt registers to save
113 * 2. Task level registers to save
114 *
115 * This means we have the following 3 context items:
116 * 1. task level context stuff:: Context_Control
117 * 2. floating point task stuff:: Context_Control_fp
118 * 3. special interrupt level context :: Context_Control_interrupt
119 *
120 * On some processors, it is cost-effective to save only the callee
121 * preserved registers during a task context switch. This means
122 * that the ISR code needs to save those registers which do not
123 * persist across function calls. It is not mandatory to make this
124 * distinctions between the caller/callee saves registers for the
125 * purpose of minimizing context saved during task switch and on interrupts.
126 * If the cost of saving extra registers is minimal, simplicity is the
127 * choice. Save the same context on interrupt entry as for tasks in
128 * this case.
129 *
130 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
131 * care should be used in designing the context area.
132 *
133 * On some CPUs with hardware floating point support, the Context_Control_fp
134 * structure will not be used or it simply consist of an array of a
135 * fixed number of bytes. This is done when the floating point context
136 * is dumped by a "FP save context" type instruction and the format
137 * is not really defined by the CPU. In this case, there is no need
138 * to figure out the exact format -- only the size. Of course, although
139 * this is enough information for RTEMS, it is probably not enough for
140 * a debugger such as gdb. But that is another problem.
141 *
142 * MOXIE Specific Information:
143 *
144 * XXX
145 */
146
147#define nogap __attribute__ ((packed))
148
149typedef struct {
150 void *fp nogap;
151 void *sp nogap;
152 uint32_t r0 nogap;
153 uint32_t r1 nogap;
154 uint32_t r2 nogap;
155 uint32_t r3 nogap;
156 uint32_t r4 nogap;
157 uint32_t r5 nogap;
158 uint32_t r6 nogap;
159 uint32_t r7 nogap;
160 uint32_t r8 nogap;
161 uint32_t r9 nogap;
162 uint32_t r10 nogap;
163 uint32_t r11 nogap;
164 uint32_t r12 nogap;
165 uint32_t r13 nogap;
167
168#define _CPU_Context_Get_SP( _context ) \
169 (_context)->sp
170
171typedef struct {
174
175/*
176 * Amount of extra stack (above minimum stack size) required by
177 * system initialization thread. Remember that in a multiprocessor
178 * system the system intialization thread becomes the MP server thread.
179 *
180 * MOXIE Specific Information:
181 *
182 * It is highly unlikely the MOXIE will get used in a multiprocessor system.
183 */
184#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
185
186/*
187 * This defines the number of entries in the ISR_Vector_table managed
188 * by RTEMS.
189 *
190 * MOXIE Specific Information:
191 *
192 * XXX
193 */
194#define CPU_INTERRUPT_NUMBER_OF_VECTORS 64
195#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER \
196 (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
197
198/*
199 * This is defined if the port has a special way to report the ISR nesting
200 * level. Most ports maintain the variable _ISR_Nest_level.
201 */
202#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
203
204/*
205 * Should be large enough to run all RTEMS tests. This ensures
206 * that a "reasonable" small application should not have any problems.
207 *
208 * MOXIE Specific Information:
209 *
210 * XXX
211 */
212#define CPU_STACK_MINIMUM_SIZE (1536)
213
221#define CPU_SIZEOF_POINTER 4
222
223/*
224 * CPU's worst alignment requirement for data types on a byte boundary. This
225 * alignment does not take into account the requirements for the stack.
226 *
227 * MOXIE Specific Information:
228 *
229 * XXX
230 */
231#define CPU_ALIGNMENT 8
232
233/*
234 * This number corresponds to the byte alignment requirement for the
235 * heap handler. This alignment requirement may be stricter than that
236 * for the data types alignment specified by CPU_ALIGNMENT. It is
237 * common for the heap to follow the same alignment requirement as
238 * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
239 * then this should be set to CPU_ALIGNMENT.
240 *
241 * NOTE: This does not have to be a power of 2. It does have to
242 * be greater or equal to than CPU_ALIGNMENT.
243 *
244 * MOXIE Specific Information:
245 *
246 * XXX
247 */
248#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
249
250/*
251 * This number corresponds to the byte alignment requirement for the
252 * stack. This alignment requirement may be stricter than that for the
253 * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
254 * is strict enough for the stack, then this should be set to 0.
255 *
256 * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
257 *
258 * MOXIE Specific Information:
259 *
260 * XXX
261 */
262#define CPU_STACK_ALIGNMENT 0
263
264#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
265
266/*
267 * ISR handler macros
268 */
269
270/*
271 * Support routine to initialize the RTEMS vector table after it is allocated.
272 */
273#define _CPU_Initialize_vectors()
274
275/*
276 * Disable all interrupts for an RTEMS critical section. The previous
277 * level is returned in _level.
278 *
279 * MOXIE Specific Information:
280 *
281 * TODO: As of 7 October 2014, this method is not implemented.
282 */
283#define _CPU_ISR_Disable( _isr_cookie ) \
284 do { \
285 (_isr_cookie) = 0; \
286 } while (0)
287
288/*
289 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
290 * This indicates the end of an RTEMS critical section. The parameter
291 * _level is not modified.
292 *
293 * MOXIE Specific Information:
294 *
295 * TODO: As of 7 October 2014, this method is not implemented.
296 */
297#define _CPU_ISR_Enable( _isr_cookie ) \
298 do { \
299 (_isr_cookie) = (_isr_cookie); \
300 } while (0)
301
302/*
303 * This temporarily restores the interrupt to _level before immediately
304 * disabling them again. This is used to divide long RTEMS critical
305 * sections into two or more parts. The parameter _level is not
306 * modified.
307 *
308 * MOXIE Specific Information:
309 *
310 * TODO: As of 7 October 2014, this method is not implemented.
311 */
312#define _CPU_ISR_Flash( _isr_cookie ) \
313 do { \
314 _CPU_ISR_Enable( _isr_cookie ); \
315 _CPU_ISR_Disable( _isr_cookie ); \
316 } while (0)
317
318RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
319{
320 return true;
321}
322
323/*
324 * Map interrupt level in task mode onto the hardware that the CPU
325 * actually provides. Currently, interrupt levels which do not
326 * map onto the CPU in a generic fashion are undefined. Someday,
327 * it would be nice if these were "mapped" by the application
328 * via a callout. For example, m68k has 8 levels 0 - 7, levels
329 * 8 - 255 would be available for bsp/application specific meaning.
330 * This could be used to manage a programmable interrupt controller
331 * via the rtems_task_mode directive.
332 *
333 * MOXIE Specific Information:
334 *
335 * TODO: As of 7 October 2014, this method is not implemented.
336 */
337#define _CPU_ISR_Set_level( _new_level ) \
338 { \
339 if (_new_level) asm volatile ( "nop\n" ); \
340 else asm volatile ( "nop\n" ); \
341 }
342
343uint32_t _CPU_ISR_Get_level( void );
344
345/* end of ISR handler macros */
346
347/* Context handler macros */
348
349/*
350 * Initialize the context to a state suitable for starting a
351 * task after a context restore operation. Generally, this
352 * involves:
353 *
354 * - setting a starting address
355 * - preparing the stack
356 * - preparing the stack and frame pointers
357 * - setting the proper interrupt level in the context
358 * - initializing the floating point context
359 *
360 * This routine generally does not set any unnecessary register
361 * in the context. The state of the "general data" registers is
362 * undefined at task start time.
363 *
364 * NOTE: This is_fp parameter is TRUE if the thread is to be a floating
365 * point thread. This is typically only used on CPUs where the
366 * FPU may be easily disabled by software such as on the SPARC
367 * where the PSR contains an enable FPU bit.
368 *
369 * MOXIE Specific Information:
370 *
371 * TODO: As of 7 October 2014, this method does not ensure that the context
372 * is set up with interrupts disabled/enabled as requested.
373 */
374#define CPU_CCR_INTERRUPTS_ON 0x80
375#define CPU_CCR_INTERRUPTS_OFF 0x00
376
377#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
378 _isr, _entry_point, _is_fp, _tls_area ) \
379 /* Locate Me */ \
380 do { \
381 uintptr_t _stack; \
382 \
383 (void) _is_fp; /* avoid warning for being unused */ \
384 (void) _isr; /* avoid warning for being unused */ \
385 _stack = ((uintptr_t)(_stack_base)) + (_size) - 8; \
386 *((void (**)(void))(_stack)) = (_entry_point); \
387 _stack -= 4; \
388 (_the_context)->fp = (void *)_stack; \
389 (_the_context)->sp = (void *)_stack; \
390 } while (0)
391
392
393/*
394 * This routine is responsible for somehow restarting the currently
395 * executing task. If you are lucky, then all that is necessary
396 * is restoring the context. Otherwise, there will need to be
397 * a special assembly routine which does something special in this
398 * case. Context_Restore should work most of the time. It will
399 * not work if restarting self conflicts with the stack frame
400 * assumptions of restoring a context.
401 *
402 * MOXIE Specific Information:
403 *
404 * XXX
405 */
406#define _CPU_Context_Restart_self( _the_context ) \
407 _CPU_Context_restore( (_the_context) );
408
409/* end of Context handler macros */
410
411/* Fatal Error manager macros */
412
413/*
414 * This routine copies _error into a known place -- typically a stack
415 * location or a register, optionally disables interrupts, and
416 * halts/stops the CPU.
417 *
418 * MOXIE Specific Information:
419 *
420 * XXX
421 */
422#define _CPU_Fatal_halt( _source, _error ) \
423 printk("Fatal Error %d.%lu Halted\n",_source,_error); \
424 for(;;)
425
426/* end of Fatal Error manager macros */
427
428#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
429
430/* functions */
431
432/*
433 * _CPU_Initialize
434 *
435 * This routine performs CPU dependent initialization.
436 *
437 * MOXIE Specific Information:
438 *
439 * XXX
440 */
441void _CPU_Initialize(void);
442
443typedef void ( *CPU_ISR_handler )( uint32_t );
444
446 uint32_t vector,
447 CPU_ISR_handler new_handler,
448 CPU_ISR_handler *old_handler
449);
450
451void *_CPU_Thread_Idle_body( uintptr_t );
452
453/*
454 * _CPU_Context_switch
455 *
456 * This routine switches from the run context to the heir context.
457 *
458 * MOXIE Specific Information:
459 *
460 * XXX
461 */
463 Context_Control *run,
464 Context_Control *heir
465);
466
467/*
468 * _CPU_Context_restore
469 *
470 * This routine is generallu used only to restart self in an
471 * efficient manner. It may simply be a label in _CPU_Context_switch.
472 *
473 * NOTE: May be unnecessary to reload some registers.
474 *
475 * MOXIE Specific Information:
476 *
477 * XXX
478 */
480 Context_Control *new_context
482
492typedef struct {
493 uint32_t integer_registers [16];
495
502
503/* The following routine swaps the endian format of an unsigned int.
504 * It must be static because it is referenced indirectly.
505 *
506 * This version will work on any processor, but if there is a better
507 * way for your CPU PLEASE use it. The most common way to do this is to:
508 *
509 * swap least significant two bytes with 16-bit rotate
510 * swap upper and lower 16-bits
511 * swap most significant two bytes with 16-bit rotate
512 *
513 * Some CPUs have special instructions which swap a 32-bit quantity in
514 * a single instruction (e.g. i486). It is probably best to avoid
515 * an "endian swapping control bit" in the CPU. One good reason is
516 * that interrupts would probably have to be disabled to ensure that
517 * an interrupt does not try to access the same "chunk" with the wrong
518 * endian. Another good reason is that on some CPUs, the endian bit
519 * endianness for ALL fetches -- both code and data -- so the code
520 * will be fetched incorrectly.
521 *
522 * MOXIE Specific Information:
523 *
524 * This is the generic implementation.
525 */
526static inline uint32_t CPU_swap_u32(
527 uint32_t value
528)
529{
530 uint32_t byte1, byte2, byte3, byte4, swapped;
531
532 byte4 = (value >> 24) & 0xff;
533 byte3 = (value >> 16) & 0xff;
534 byte2 = (value >> 8) & 0xff;
535 byte1 = value & 0xff;
536
537 swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
538 return( swapped );
539}
540
541#define CPU_swap_u16( value ) \
542 (((value&0xff) << 8) | ((value >> 8)&0xff))
543
544typedef uint32_t CPU_Counter_ticks;
545
546uint32_t _CPU_Counter_frequency( void );
547
548CPU_Counter_ticks _CPU_Counter_read( void );
549
550static inline CPU_Counter_ticks _CPU_Counter_difference(
551 CPU_Counter_ticks second,
552 CPU_Counter_ticks first
553)
554{
555 return second - first;
556}
557
559typedef uintptr_t CPU_Uint32ptr;
560
561#ifdef __cplusplus
562}
563#endif
564
565#endif
Basic Definitions.
Interface to Kernel Print Methods.
#define RTEMS_NO_RETURN
Definition: basedefs.h:102
#define RTEMS_INLINE_ROUTINE
Definition: basedefs.h:66
bool _CPU_ISR_Is_enabled(uint32_t level)
Returns true if interrupts are enabled in the specified ISR level, otherwise returns false.
Definition: cpu.h:375
void * _CPU_Thread_Idle_body(uintptr_t ignored)
Definition: idle-mcf5272.c:20
void _CPU_Initialize(void)
CPU initialization.
Definition: cpu.c:45
uintptr_t CPU_Uint32ptr
Definition: cpu.h:662
RTEMS_INLINE_ROUTINE void _CPU_ISR_install_vector(uint32_t vector, CPU_ISR_handler new_handler, CPU_ISR_handler *old_handler)
SPARC specific RTEMS ISR installer.
Definition: cpu.h:493
uint32_t _CPU_Counter_frequency(void)
Returns the current CPU counter frequency in Hz.
Definition: system-clocks.c:112
void _CPU_Context_switch(Context_Control *run, Context_Control *heir)
CPU switch context.
Definition: cpu_asm.c:91
CPU_Counter_ticks _CPU_Counter_read(void)
Returns the current CPU counter value.
Definition: system-clocks.c:117
void _CPU_Context_restore(Context_Control *new_context) RTEMS_NO_RETURN
Definition: cpu_asm.c:111
uint32_t _CPU_ISR_Get_level(void)
Definition: cpu.c:88
void _CPU_Exception_frame_print(const CPU_Exception_frame *frame)
Prints the exception frame via printk().
Definition: vectorexceptions.c:45
#define sp
stack-pointer *‍/
Definition: regs.h:64
#define fp
frame-pointer *‍/
Definition: regs.h:65
uint32_t CPU_Counter_ticks
Unsigned integer type for CPU counter values.
Definition: cpu.h:1210
The set of registers that specifies the complete processor state.
Definition: cpu.h:629
Interrupt stack frame (ISF).
Definition: cpu.h:191
uint32_t special_interrupt_register
Definition: cpu.h:172
Thread register context.
Definition: cpu.h:194