RTEMS 5.2
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cpu.h
Go to the documentation of this file.
1
7/*
8 * Conversion to MIPS port by Alan Cudmore <alanc@linuxstart.com> and
9 * Joel Sherrill <joel@OARcorp.com>.
10 *
11 * These changes made the code conditional on standard cpp predefines,
12 * merged the mips1 and mips3 code sequences as much as possible,
13 * and moved some of the assembly code to C. Alan did much of the
14 * initial analysis and rework. Joel took over from there and
15 * wrote the JMR3904 BSP so this could be tested. Joel also
16 * added the new interrupt vectoring support in libcpu and
17 * tried to better support the various interrupt controllers.
18 *
19 */
20
21/*
22 * Original MIP64ORION port by Craig Lebakken <craigl@transition.com>
23 * COPYRIGHT (c) 1996 by Transition Networks Inc.
24 *
25 * To anyone who acknowledges that this file is provided "AS IS"
26 * without any express or implied warranty:
27 * permission to use, copy, modify, and distribute this file
28 * for any purpose is hereby granted without fee, provided that
29 * the above copyright notice and this notice appears in all
30 * copies, and that the name of Transition Networks not be used in
31 * advertising or publicity pertaining to distribution of the
32 * software without specific, written prior permission.
33 * Transition Networks makes no representations about the suitability
34 * of this software for any purpose.
35 *
36 * COPYRIGHT (c) 1989-2012.
37 * On-Line Applications Research Corporation (OAR).
38 *
39 * The license and distribution terms for this file may be
40 * found in the file LICENSE in this distribution or at
41 * http://www.rtems.org/license/LICENSE.
42 */
43
44#ifndef _RTEMS_SCORE_CPU_H
45#define _RTEMS_SCORE_CPU_H
46
52#ifdef __cplusplus
53extern "C" {
54#endif
55
57#include <rtems/score/mips.h>
58
59/* conditional compilation parameters */
60
61/*
62 * Does the CPU follow the simple vectored interrupt model?
63 *
64 * If TRUE, then RTEMS allocates the vector table it internally manages.
65 * If FALSE, then the BSP is assumed to allocate and manage the vector
66 * table
67 *
68 * MIPS Specific Information:
69 *
70 * Up to and including RTEMS 4.10, the MIPS port used simple vectored
71 * interrupts. But this was changed to the PIC model after 4.10.
72 */
73#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
74
75/*
76 * Does the RTEMS invoke the user's ISR with the vector number and
77 * a pointer to the saved interrupt frame (1) or just the vector
78 * number (0)?
79 *
80 */
81
82#define CPU_ISR_PASSES_FRAME_POINTER TRUE
83
84
85
86/*
87 * Does the CPU have hardware floating point?
88 *
89 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
90 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
91 *
92 * If there is a FP coprocessor such as the i387 or mc68881, then
93 * the answer is TRUE.
94 *
95 * The macro name "MIPS_HAS_FPU" should be made CPU specific.
96 * It indicates whether or not this CPU model has FP support. For
97 * example, it would be possible to have an i386_nofp CPU model
98 * which set this to false to indicate that you have an i386 without
99 * an i387 and wish to leave floating point support out of RTEMS.
100 */
101
102#if ( MIPS_HAS_FPU == 1 )
103#define CPU_HARDWARE_FP TRUE
104#else
105#define CPU_HARDWARE_FP FALSE
106#endif
107
108/*
109 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
110 *
111 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
112 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
113 *
114 * So far, the only CPU in which this option has been used is the
115 * HP PA-RISC. The HP C compiler and gcc both implicitly use the
116 * floating point registers to perform integer multiplies. If
117 * a function which you would not think utilize the FP unit DOES,
118 * then one can not easily predict which tasks will use the FP hardware.
119 * In this case, this option should be TRUE.
120 *
121 * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
122 *
123 * Mips Note: It appears the GCC can implicitly generate FPU
124 * and Altivec instructions when you least expect them. So make
125 * all tasks floating point.
126 */
127
128#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
129
130/*
131 * Should the IDLE task have a floating point context?
132 *
133 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
134 * and it has a floating point context which is switched in and out.
135 * If FALSE, then the IDLE task does not have a floating point context.
136 *
137 * Setting this to TRUE negatively impacts the time required to preempt
138 * the IDLE task from an interrupt because the floating point context
139 * must be saved as part of the preemption.
140 */
141
142#define CPU_IDLE_TASK_IS_FP FALSE
143
144/*
145 * Should the saving of the floating point registers be deferred
146 * until a context switch is made to another different floating point
147 * task?
148 *
149 * If TRUE, then the floating point context will not be stored until
150 * necessary. It will remain in the floating point registers and not
151 * disturned until another floating point task is switched to.
152 *
153 * If FALSE, then the floating point context is saved when a floating
154 * point task is switched out and restored when the next floating point
155 * task is restored. The state of the floating point registers between
156 * those two operations is not specified.
157 *
158 * If the floating point context does NOT have to be saved as part of
159 * interrupt dispatching, then it should be safe to set this to TRUE.
160 *
161 * Setting this flag to TRUE results in using a different algorithm
162 * for deciding when to save and restore the floating point context.
163 * The deferred FP switch algorithm minimizes the number of times
164 * the FP context is saved and restored. The FP context is not saved
165 * until a context switch is made to another, different FP task.
166 * Thus in a system with only one FP task, the FP context will never
167 * be saved or restored.
168 */
169
170#define CPU_USE_DEFERRED_FP_SWITCH TRUE
171
172#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
173
174/*
175 * Does the stack grow up (toward higher addresses) or down
176 * (toward lower addresses)?
177 *
178 * If TRUE, then the grows upward.
179 * If FALSE, then the grows toward smaller addresses.
180 */
181
182/* our stack grows down */
183#define CPU_STACK_GROWS_UP FALSE
184
185/* FIXME: Is this the right value? */
186#define CPU_CACHE_LINE_BYTES 16
187
188#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
189
190/*
191 * The following defines the number of bits actually used in the
192 * interrupt field of the task mode. How those bits map to the
193 * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
194 */
195
196#define CPU_MODES_INTERRUPT_MASK 0x000000ff
197
198#define CPU_SIZEOF_POINTER 4
199
200#define CPU_MAXIMUM_PROCESSORS 32
201
202/*
203 * Processor defined structures
204 *
205 * Examples structures include the descriptor tables from the i386
206 * and the processor control structure on the i960ca.
207 */
208
209/* may need to put some structures here. */
210
211/*
212 * Contexts
213 *
214 * Generally there are 2 types of context to save.
215 * 1. Interrupt registers to save
216 * 2. Task level registers to save
217 *
218 * This means we have the following 3 context items:
219 * 1. task level context stuff:: Context_Control
220 * 2. floating point task stuff:: Context_Control_fp
221 * 3. special interrupt level context :: Context_Control_interrupt
222 *
223 * On some processors, it is cost-effective to save only the callee
224 * preserved registers during a task context switch. This means
225 * that the ISR code needs to save those registers which do not
226 * persist across function calls. It is not mandatory to make this
227 * distinctions between the caller/callee saves registers for the
228 * purpose of minimizing context saved during task switch and on interrupts.
229 * If the cost of saving extra registers is minimal, simplicity is the
230 * choice. Save the same context on interrupt entry as for tasks in
231 * this case.
232 *
233 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
234 * care should be used in designing the context area.
235 *
236 * On some CPUs with hardware floating point support, the Context_Control_fp
237 * structure will not be used or it simply consist of an array of a
238 * fixed number of bytes. This is done when the floating point context
239 * is dumped by a "FP save context" type instruction and the format
240 * is not really defined by the CPU. In this case, there is no need
241 * to figure out the exact format -- only the size. Of course, although
242 * this is enough information for RTEMS, it is probably not enough for
243 * a debugger such as gdb. But that is another problem.
244 */
245
246#ifndef ASM
247
248/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
249#if (__mips == 1) || (__mips == 32)
250#define __MIPS_REGISTER_TYPE uint32_t
251#define __MIPS_FPU_REGISTER_TYPE uint32_t
252#elif __mips == 3
253#define __MIPS_REGISTER_TYPE uint64_t
254#define __MIPS_FPU_REGISTER_TYPE uint64_t
255#else
256#error "mips register size: unknown architecture level!!"
257#endif
258typedef struct {
259 __MIPS_REGISTER_TYPE s0;
260 __MIPS_REGISTER_TYPE s1;
261 __MIPS_REGISTER_TYPE s2;
262 __MIPS_REGISTER_TYPE s3;
263 __MIPS_REGISTER_TYPE s4;
264 __MIPS_REGISTER_TYPE s5;
265 __MIPS_REGISTER_TYPE s6;
266 __MIPS_REGISTER_TYPE s7;
267 __MIPS_REGISTER_TYPE sp;
268 __MIPS_REGISTER_TYPE fp;
269 __MIPS_REGISTER_TYPE ra;
270 __MIPS_REGISTER_TYPE c0_sr;
271 __MIPS_REGISTER_TYPE c0_epc;
273
274#define _CPU_Context_Get_SP( _context ) \
275 (uintptr_t) (_context)->sp
276
277/* WARNING: If this structure is modified, the constants in cpu.h
278 * must also be updated.
279 */
280
281typedef struct {
282#if ( CPU_HARDWARE_FP == TRUE )
283 __MIPS_FPU_REGISTER_TYPE fp0;
284 __MIPS_FPU_REGISTER_TYPE fp1;
285 __MIPS_FPU_REGISTER_TYPE fp2;
286 __MIPS_FPU_REGISTER_TYPE fp3;
287 __MIPS_FPU_REGISTER_TYPE fp4;
288 __MIPS_FPU_REGISTER_TYPE fp5;
289 __MIPS_FPU_REGISTER_TYPE fp6;
290 __MIPS_FPU_REGISTER_TYPE fp7;
291 __MIPS_FPU_REGISTER_TYPE fp8;
292 __MIPS_FPU_REGISTER_TYPE fp9;
293 __MIPS_FPU_REGISTER_TYPE fp10;
294 __MIPS_FPU_REGISTER_TYPE fp11;
295 __MIPS_FPU_REGISTER_TYPE fp12;
296 __MIPS_FPU_REGISTER_TYPE fp13;
297 __MIPS_FPU_REGISTER_TYPE fp14;
298 __MIPS_FPU_REGISTER_TYPE fp15;
299 __MIPS_FPU_REGISTER_TYPE fp16;
300 __MIPS_FPU_REGISTER_TYPE fp17;
301 __MIPS_FPU_REGISTER_TYPE fp18;
302 __MIPS_FPU_REGISTER_TYPE fp19;
303 __MIPS_FPU_REGISTER_TYPE fp20;
304 __MIPS_FPU_REGISTER_TYPE fp21;
305 __MIPS_FPU_REGISTER_TYPE fp22;
306 __MIPS_FPU_REGISTER_TYPE fp23;
307 __MIPS_FPU_REGISTER_TYPE fp24;
308 __MIPS_FPU_REGISTER_TYPE fp25;
309 __MIPS_FPU_REGISTER_TYPE fp26;
310 __MIPS_FPU_REGISTER_TYPE fp27;
311 __MIPS_FPU_REGISTER_TYPE fp28;
312 __MIPS_FPU_REGISTER_TYPE fp29;
313 __MIPS_FPU_REGISTER_TYPE fp30;
314 __MIPS_FPU_REGISTER_TYPE fp31;
315 uint32_t fpcs;
316#endif
318
319/*
320 * This struct reflects the stack frame employed in ISR_Handler. Note
321 * that the ISR routine save some of the registers to this frame for
322 * all interrupts and exceptions. Other registers are saved only on
323 * exceptions, while others are not touched at all. The untouched
324 * registers are not normally disturbed by high-level language
325 * programs so they can be accessed when required.
326 *
327 * The registers and their ordering in this struct must directly
328 * correspond to the layout and ordering of * shown in iregdef.h,
329 * as cpu_asm.S uses those definitions to fill the stack frame.
330 * This struct provides access to the stack frame for C code.
331 *
332 * Similarly, this structure is used by debugger stubs and exception
333 * processing routines so be careful when changing the format.
334 *
335 * NOTE: The comments with this structure and cpu_asm.S should be kept
336 * in sync. When in doubt, look in the code to see if the
337 * registers you're interested in are actually treated as expected.
338 * The order of the first portion of this structure follows the
339 * order of registers expected by gdb.
340 */
341
342typedef struct
343{
344 __MIPS_REGISTER_TYPE r0; /* 0 -- NOT FILLED IN */
345 __MIPS_REGISTER_TYPE at; /* 1 -- saved always */
346 __MIPS_REGISTER_TYPE v0; /* 2 -- saved always */
347 __MIPS_REGISTER_TYPE v1; /* 3 -- saved always */
348 __MIPS_REGISTER_TYPE a0; /* 4 -- saved always */
349 __MIPS_REGISTER_TYPE a1; /* 5 -- saved always */
350 __MIPS_REGISTER_TYPE a2; /* 6 -- saved always */
351 __MIPS_REGISTER_TYPE a3; /* 7 -- saved always */
352 __MIPS_REGISTER_TYPE t0; /* 8 -- saved always */
353 __MIPS_REGISTER_TYPE t1; /* 9 -- saved always */
354 __MIPS_REGISTER_TYPE t2; /* 10 -- saved always */
355 __MIPS_REGISTER_TYPE t3; /* 11 -- saved always */
356 __MIPS_REGISTER_TYPE t4; /* 12 -- saved always */
357 __MIPS_REGISTER_TYPE t5; /* 13 -- saved always */
358 __MIPS_REGISTER_TYPE t6; /* 14 -- saved always */
359 __MIPS_REGISTER_TYPE t7; /* 15 -- saved always */
360 __MIPS_REGISTER_TYPE s0; /* 16 -- saved on exceptions */
361 __MIPS_REGISTER_TYPE s1; /* 17 -- saved on exceptions */
362 __MIPS_REGISTER_TYPE s2; /* 18 -- saved on exceptions */
363 __MIPS_REGISTER_TYPE s3; /* 19 -- saved on exceptions */
364 __MIPS_REGISTER_TYPE s4; /* 20 -- saved on exceptions */
365 __MIPS_REGISTER_TYPE s5; /* 21 -- saved on exceptions */
366 __MIPS_REGISTER_TYPE s6; /* 22 -- saved on exceptions */
367 __MIPS_REGISTER_TYPE s7; /* 23 -- saved on exceptions */
368 __MIPS_REGISTER_TYPE t8; /* 24 -- saved always */
369 __MIPS_REGISTER_TYPE t9; /* 25 -- saved always */
370 __MIPS_REGISTER_TYPE k0; /* 26 -- NOT FILLED IN, kernel tmp reg */
371 __MIPS_REGISTER_TYPE k1; /* 27 -- NOT FILLED IN, kernel tmp reg */
372 __MIPS_REGISTER_TYPE gp; /* 28 -- saved always */
373 __MIPS_REGISTER_TYPE sp; /* 29 -- saved on exceptions NOT RESTORED */
374 __MIPS_REGISTER_TYPE fp; /* 30 -- saved always */
375 __MIPS_REGISTER_TYPE ra; /* 31 -- saved always */
376 __MIPS_REGISTER_TYPE c0_sr; /* 32 -- saved always, some bits are */
377 /* manipulated per-thread */
378 __MIPS_REGISTER_TYPE mdlo; /* 33 -- saved always */
379 __MIPS_REGISTER_TYPE mdhi; /* 34 -- saved always */
380 __MIPS_REGISTER_TYPE badvaddr; /* 35 -- saved on exceptions, read-only */
381 __MIPS_REGISTER_TYPE cause; /* 36 -- saved on exceptions NOT restored */
382 __MIPS_REGISTER_TYPE epc; /* 37 -- saved always, read-only register */
383 /* but logically restored */
384 __MIPS_FPU_REGISTER_TYPE f0; /* 38 -- saved if FP enabled */
385 __MIPS_FPU_REGISTER_TYPE f1; /* 39 -- saved if FP enabled */
386 __MIPS_FPU_REGISTER_TYPE f2; /* 40 -- saved if FP enabled */
387 __MIPS_FPU_REGISTER_TYPE f3; /* 41 -- saved if FP enabled */
388 __MIPS_FPU_REGISTER_TYPE f4; /* 42 -- saved if FP enabled */
389 __MIPS_FPU_REGISTER_TYPE f5; /* 43 -- saved if FP enabled */
390 __MIPS_FPU_REGISTER_TYPE f6; /* 44 -- saved if FP enabled */
391 __MIPS_FPU_REGISTER_TYPE f7; /* 45 -- saved if FP enabled */
392 __MIPS_FPU_REGISTER_TYPE f8; /* 46 -- saved if FP enabled */
393 __MIPS_FPU_REGISTER_TYPE f9; /* 47 -- saved if FP enabled */
394 __MIPS_FPU_REGISTER_TYPE f10; /* 48 -- saved if FP enabled */
395 __MIPS_FPU_REGISTER_TYPE f11; /* 49 -- saved if FP enabled */
396 __MIPS_FPU_REGISTER_TYPE f12; /* 50 -- saved if FP enabled */
397 __MIPS_FPU_REGISTER_TYPE f13; /* 51 -- saved if FP enabled */
398 __MIPS_FPU_REGISTER_TYPE f14; /* 52 -- saved if FP enabled */
399 __MIPS_FPU_REGISTER_TYPE f15; /* 53 -- saved if FP enabled */
400 __MIPS_FPU_REGISTER_TYPE f16; /* 54 -- saved if FP enabled */
401 __MIPS_FPU_REGISTER_TYPE f17; /* 55 -- saved if FP enabled */
402 __MIPS_FPU_REGISTER_TYPE f18; /* 56 -- saved if FP enabled */
403 __MIPS_FPU_REGISTER_TYPE f19; /* 57 -- saved if FP enabled */
404 __MIPS_FPU_REGISTER_TYPE f20; /* 58 -- saved if FP enabled */
405 __MIPS_FPU_REGISTER_TYPE f21; /* 59 -- saved if FP enabled */
406 __MIPS_FPU_REGISTER_TYPE f22; /* 60 -- saved if FP enabled */
407 __MIPS_FPU_REGISTER_TYPE f23; /* 61 -- saved if FP enabled */
408 __MIPS_FPU_REGISTER_TYPE f24; /* 62 -- saved if FP enabled */
409 __MIPS_FPU_REGISTER_TYPE f25; /* 63 -- saved if FP enabled */
410 __MIPS_FPU_REGISTER_TYPE f26; /* 64 -- saved if FP enabled */
411 __MIPS_FPU_REGISTER_TYPE f27; /* 65 -- saved if FP enabled */
412 __MIPS_FPU_REGISTER_TYPE f28; /* 66 -- saved if FP enabled */
413 __MIPS_FPU_REGISTER_TYPE f29; /* 67 -- saved if FP enabled */
414 __MIPS_FPU_REGISTER_TYPE f30; /* 68 -- saved if FP enabled */
415 __MIPS_FPU_REGISTER_TYPE f31; /* 69 -- saved if FP enabled */
416 __MIPS_REGISTER_TYPE fcsr; /* 70 -- saved on exceptions */
417 /* (oddly not documented on MGV) */
418 __MIPS_REGISTER_TYPE feir; /* 71 -- saved on exceptions */
419 /* (oddly not documented on MGV) */
420
421 /* GDB does not seem to care about anything past this point */
422
423 __MIPS_REGISTER_TYPE tlbhi; /* 72 - NOT FILLED IN, doesn't exist on */
424 /* all MIPS CPUs (at least MGV) */
425#if __mips == 1
426 __MIPS_REGISTER_TYPE tlblo; /* 73 - NOT FILLED IN, doesn't exist on */
427 /* all MIPS CPUs (at least MGV) */
428#endif
429#if (__mips == 3) || (__mips == 32)
430 __MIPS_REGISTER_TYPE tlblo0; /* 73 - NOT FILLED IN, doesn't exist on */
431 /* all MIPS CPUs (at least MGV) */
432#endif
433
434 __MIPS_REGISTER_TYPE inx; /* 74 -- NOT FILLED IN, doesn't exist on */
435 /* all MIPS CPUs (at least MGV) */
436 __MIPS_REGISTER_TYPE rand; /* 75 -- NOT FILLED IN, doesn't exist on */
437 /* all MIPS CPUs (at least MGV) */
438 __MIPS_REGISTER_TYPE ctxt; /* 76 -- NOT FILLED IN, doesn't exist on */
439 /* all MIPS CPUs (at least MGV) */
440 __MIPS_REGISTER_TYPE exctype; /* 77 -- NOT FILLED IN (not enough info) */
441 __MIPS_REGISTER_TYPE mode; /* 78 -- NOT FILLED IN (not enough info) */
442 __MIPS_REGISTER_TYPE prid; /* 79 -- NOT FILLED IN (not need to do so) */
443 __MIPS_REGISTER_TYPE tar ; /* 80 -- target address register, filled on exceptions */
444 /* end of __mips == 1 so NREGS == 81 */
445#if (__mips == 3) || (__mips == 32)
446 __MIPS_REGISTER_TYPE tlblo1; /* 81 -- NOT FILLED IN */
447 __MIPS_REGISTER_TYPE pagemask; /* 82 -- NOT FILLED IN */
448 __MIPS_REGISTER_TYPE wired; /* 83 -- NOT FILLED IN */
449 __MIPS_REGISTER_TYPE count; /* 84 -- NOT FILLED IN */
450 __MIPS_REGISTER_TYPE compare; /* 85 -- NOT FILLED IN */
451 __MIPS_REGISTER_TYPE config; /* 86 -- NOT FILLED IN */
452 __MIPS_REGISTER_TYPE lladdr; /* 87 -- NOT FILLED IN */
453 __MIPS_REGISTER_TYPE watchlo; /* 88 -- NOT FILLED IN */
454 __MIPS_REGISTER_TYPE watchhi; /* 89 -- NOT FILLED IN */
455 __MIPS_REGISTER_TYPE ecc; /* 90 -- NOT FILLED IN */
456 __MIPS_REGISTER_TYPE cacheerr; /* 91 -- NOT FILLED IN */
457 __MIPS_REGISTER_TYPE taglo; /* 92 -- NOT FILLED IN */
458 __MIPS_REGISTER_TYPE taghi; /* 93 -- NOT FILLED IN */
459 __MIPS_REGISTER_TYPE errpc; /* 94 -- NOT FILLED IN */
460 __MIPS_REGISTER_TYPE xctxt; /* 95 -- NOT FILLED IN */
461 /* end of __mips == 3 so NREGS == 96 */
462#endif
463
465
467
468/*
469 * This variable is optional. It is used on CPUs on which it is difficult
470 * to generate an "uninitialized" FP context. It is filled in by
471 * _CPU_Initialize and copied into the task's FP context area during
472 * _CPU_Context_Initialize.
473 */
474
476
477/*
478 * Nothing prevents the porter from declaring more CPU specific variables.
479 */
480
481/* XXX: if needed, put more variables here */
482
483/*
484 * The size of the floating point context area. On some CPUs this
485 * will not be a "sizeof" because the format of the floating point
486 * area is not defined -- only the size is. This is usually on
487 * CPUs with a "floating point save context" instruction.
488 */
489
490#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
491
492/*
493 * Amount of extra stack (above minimum stack size) required by
494 * system initialization thread. Remember that in a multiprocessor
495 * system the system intialization thread becomes the MP server thread.
496 */
497
498#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
499
500/*
501 * Should be large enough to run all RTEMS tests. This ensures
502 * that a "reasonable" small application should not have any problems.
503 */
504
505#define CPU_STACK_MINIMUM_SIZE (8 * 1024)
506
507/*
508 * CPU's worst alignment requirement for data types on a byte boundary. This
509 * alignment does not take into account the requirements for the stack.
510 */
511
512#define CPU_ALIGNMENT 8
513
514/*
515 * This number corresponds to the byte alignment requirement for the
516 * heap handler. This alignment requirement may be stricter than that
517 * for the data types alignment specified by CPU_ALIGNMENT. It is
518 * common for the heap to follow the same alignment requirement as
519 * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
520 * then this should be set to CPU_ALIGNMENT.
521 *
522 * NOTE: This does not have to be a power of 2. It does have to
523 * be greater or equal to than CPU_ALIGNMENT.
524 */
525
526#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
527
528/*
529 * This number corresponds to the byte alignment requirement for the
530 * stack. This alignment requirement may be stricter than that for the
531 * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
532 * is strict enough for the stack, then this should be set to 0.
533 *
534 * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
535 */
536
537#define CPU_STACK_ALIGNMENT CPU_ALIGNMENT
538
539#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
540
541void mips_vector_exceptions( CPU_Interrupt_frame *frame );
542
543/*
544 * ISR handler macros
545 */
546
547/*
548 * Declare the function that is present in the shared libcpu directory,
549 * that returns the processor dependent interrupt mask.
550 */
551
552uint32_t mips_interrupt_mask( void );
553
554/*
555 * Disable all interrupts for an RTEMS critical section. The previous
556 * level is returned in _level.
557 */
558
559#define _CPU_ISR_Disable( _level ) \
560 do { \
561 unsigned int _scratch; \
562 mips_get_sr( _scratch ); \
563 mips_set_sr( _scratch & ~SR_INTERRUPT_ENABLE_BITS ); \
564 _level = _scratch & SR_INTERRUPT_ENABLE_BITS; \
565 } while(0)
566
567/*
568 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
569 * This indicates the end of an RTEMS critical section. The parameter
570 * _level is not modified.
571 */
572
573#define _CPU_ISR_Enable( _level ) \
574 do { \
575 unsigned int _scratch; \
576 mips_get_sr( _scratch ); \
577 mips_set_sr( (_scratch & ~SR_INTERRUPT_ENABLE_BITS) | (_level & SR_INTERRUPT_ENABLE_BITS) ); \
578 } while(0)
579
580/*
581 * This temporarily restores the interrupt to _level before immediately
582 * disabling them again. This is used to divide long RTEMS critical
583 * sections into two or more parts. The parameter _level is not
584 * modified.
585 */
586
587#define _CPU_ISR_Flash( _xlevel ) \
588 do { \
589 unsigned int _scratch2 = _xlevel; \
590 _CPU_ISR_Enable( _scratch2 ); \
591 _CPU_ISR_Disable( _scratch2 ); \
592 _xlevel = _scratch2; \
593 } while(0)
594
595RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
596{
597 return ( level & SR_INTERRUPT_ENABLE_BITS ) != 0;
598}
599
600/*
601 * Map interrupt level in task mode onto the hardware that the CPU
602 * actually provides. Currently, interrupt levels which do not
603 * map onto the CPU in a generic fashion are undefined. Someday,
604 * it would be nice if these were "mapped" by the application
605 * via a callout. For example, m68k has 8 levels 0 - 7, levels
606 * 8 - 255 would be available for bsp/application specific meaning.
607 * This could be used to manage a programmable interrupt controller
608 * via the rtems_task_mode directive.
609 *
610 * On the MIPS, 0 is all on. Non-zero is all off. This only
611 * manipulates the IEC.
612 */
613
614uint32_t _CPU_ISR_Get_level( void ); /* in cpu.c */
615
616void _CPU_ISR_Set_level( uint32_t ); /* in cpu.c */
617
618/* end of ISR handler macros */
619
620/* Context handler macros */
621
622/*
623 * Initialize the context to a state suitable for starting a
624 * task after a context restore operation. Generally, this
625 * involves:
626 *
627 * - setting a starting address
628 * - preparing the stack
629 * - preparing the stack and frame pointers
630 * - setting the proper interrupt level in the context
631 * - initializing the floating point context
632 *
633 * This routine generally does not set any unnecessary register
634 * in the context. The state of the "general data" registers is
635 * undefined at task start time.
636 *
637 * NOTE: This is_fp parameter is TRUE if the thread is to be a floating
638 * point thread. This is typically only used on CPUs where the
639 * FPU may be easily disabled by software such as on the SPARC
640 * where the PSR contains an enable FPU bit.
641 *
642 * The per-thread status register holds the interrupt enable, FP enable
643 * and global interrupt enable for that thread. It means each thread can
644 * enable its own set of interrupts. If interrupts are disabled, RTEMS
645 * can still dispatch via blocking calls. This is the function of the
646 * "Interrupt Level", and on the MIPS, it controls the IEC bit and all
647 * the hardware interrupts as defined in the SR. Software ints
648 * are automatically enabled for all threads, as they will only occur under
649 * program control anyhow. Besides, the interrupt level parm is only 8 bits,
650 * and controlling the software ints plus the others would require 9.
651 *
652 * If the Interrupt Level is 0, all ints are on. Otherwise, the
653 * Interrupt Level should supply a bit pattern to impose on the SR
654 * interrupt bits; bit 0 applies to the mips1 IEC bit/mips3 EXL&IE, bits 1 thru 6
655 * apply to the SR register Intr bits from bit 10 thru bit 15. Bit 7 of
656 * the Interrupt Level parameter is unused at this time.
657 *
658 * These are the only per-thread SR bits, the others are maintained
659 * globally & explicitly preserved by the Context Switch code in cpu_asm.s
660 */
661
662
663#if (__mips == 3) || (__mips == 32)
664#define _INTON SR_IE
665#if __mips_fpr==64
666#define _EXTRABITS SR_FR
667#else
668#define _EXTRABITS 0
669#endif /* __mips_fpr==64 */
670#endif /* __mips == 3 */
671#if __mips == 1
672#define _INTON SR_IEC
673#define _EXTRABITS 0 /* make sure we're in user mode on MIPS1 processors */
674#endif /* __mips == 1 */
675
676
678 Context_Control *the_context,
679 uintptr_t *stack_base,
680 uint32_t size,
681 uint32_t new_level,
682 void *entry_point,
683 bool is_fp,
684 void *tls_area
685);
686
687
688/*
689 * This routine is responsible for somehow restarting the currently
690 * executing task. If you are lucky, then all that is necessary
691 * is restoring the context. Otherwise, there will need to be
692 * a special assembly routine which does something special in this
693 * case. Context_Restore should work most of the time. It will
694 * not work if restarting self conflicts with the stack frame
695 * assumptions of restoring a context.
696 */
697
698#define _CPU_Context_Restart_self( _the_context ) \
699 _CPU_Context_restore( (_the_context) );
700
701/*
702 * This routine initializes the FP context area passed to it to.
703 * There are a few standard ways in which to initialize the
704 * floating point context. The code included for this macro assumes
705 * that this is a CPU in which a "initial" FP context was saved into
706 * _CPU_Null_fp_context and it simply copies it to the destination
707 * context passed to it.
708 *
709 * Other models include (1) not doing anything, and (2) putting
710 * a "null FP status word" in the correct place in the FP context.
711 */
712
713#if ( CPU_HARDWARE_FP == TRUE )
714#define _CPU_Context_Initialize_fp( _destination ) \
715 { \
716 *(*(_destination)) = _CPU_Null_fp_context; \
717 }
718#endif
719
720/* end of Context handler macros */
721
722/* Fatal Error manager macros */
723
724/*
725 * This routine copies _error into a known place -- typically a stack
726 * location or a register, optionally disables interrupts, and
727 * halts/stops the CPU.
728 */
729
730#define _CPU_Fatal_halt( _source, _error ) \
731 do { \
732 unsigned int _level; \
733 _CPU_ISR_Disable(_level); \
734 (void)_level; \
735 loop: goto loop; \
736 } while (0)
737
738
739extern void mips_break( int error );
740
741#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
742
743/* functions */
744
745/*
746 * _CPU_Initialize
747 *
748 * This routine performs CPU dependent initialization.
749 */
750
751void _CPU_Initialize(void);
752
753void *_CPU_Thread_Idle_body( uintptr_t ignored );
754
755/*
756 * _CPU_Context_switch
757 *
758 * This routine switches from the run context to the heir context.
759 */
760
762 Context_Control *run,
763 Context_Control *heir
764);
765
766/*
767 * _CPU_Context_restore
768 *
769 * This routine is generally used only to restart self in an
770 * efficient manner. It may simply be a label in _CPU_Context_switch.
771 *
772 * NOTE: May be unnecessary to reload some registers.
773 */
774
776 Context_Control *new_context
778
779/*
780 * _CPU_Context_save_fp
781 *
782 * This routine saves the floating point context passed to it.
783 */
784
786 Context_Control_fp **fp_context_ptr
787);
788
789/*
790 * _CPU_Context_restore_fp
791 *
792 * This routine restores the floating point context passed to it.
793 */
794
796 Context_Control_fp **fp_context_ptr
797);
798
800
801/* The following routine swaps the endian format of an unsigned int.
802 * It must be static because it is referenced indirectly.
803 *
804 * This version will work on any processor, but if there is a better
805 * way for your CPU PLEASE use it. The most common way to do this is to:
806 *
807 * swap least significant two bytes with 16-bit rotate
808 * swap upper and lower 16-bits
809 * swap most significant two bytes with 16-bit rotate
810 *
811 * Some CPUs have special instructions which swap a 32-bit quantity in
812 * a single instruction (e.g. i486). It is probably best to avoid
813 * an "endian swapping control bit" in the CPU. One good reason is
814 * that interrupts would probably have to be disabled to ensure that
815 * an interrupt does not try to access the same "chunk" with the wrong
816 * endian. Another good reason is that on some CPUs, the endian bit
817 * endianness for ALL fetches -- both code and data -- so the code
818 * will be fetched incorrectly.
819 */
820
821static inline uint32_t CPU_swap_u32(
822 uint32_t value
823)
824{
825 uint32_t byte1, byte2, byte3, byte4, swapped;
826
827 byte4 = (value >> 24) & 0xff;
828 byte3 = (value >> 16) & 0xff;
829 byte2 = (value >> 8) & 0xff;
830 byte1 = value & 0xff;
831
832 swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
833 return( swapped );
834}
835
836#define CPU_swap_u16( value ) \
837 (((value&0xff) << 8) | ((value >> 8)&0xff))
838
839typedef uint32_t CPU_Counter_ticks;
840
841uint32_t _CPU_Counter_frequency( void );
842
843CPU_Counter_ticks _CPU_Counter_read( void );
844
845static inline CPU_Counter_ticks _CPU_Counter_difference(
846 CPU_Counter_ticks second,
847 CPU_Counter_ticks first
848)
849{
850 return second - first;
851}
852
854typedef uintptr_t CPU_Uint32ptr;
855
856#endif
857
858#ifdef __cplusplus
859}
860#endif
861
863#endif
Basic Definitions.
#define RTEMS_NO_RETURN
Definition: basedefs.h:102
#define RTEMS_INLINE_ROUTINE
Definition: basedefs.h:66
void _CPU_ISR_Set_level(uint32_t level)
Sets the hardware interrupt level by the level value.
Definition: cpu.c:57
bool _CPU_ISR_Is_enabled(uint32_t level)
Returns true if interrupts are enabled in the specified ISR level, otherwise returns false.
Definition: cpu.h:375
void * _CPU_Thread_Idle_body(uintptr_t ignored)
Definition: idle-mcf5272.c:20
void _CPU_Initialize(void)
CPU initialization.
Definition: cpu.c:45
uintptr_t CPU_Uint32ptr
Definition: cpu.h:662
uint32_t _CPU_Counter_frequency(void)
Returns the current CPU counter frequency in Hz.
Definition: system-clocks.c:112
void _CPU_Context_switch(Context_Control *run, Context_Control *heir)
CPU switch context.
Definition: cpu_asm.c:91
CPU_Counter_ticks _CPU_Counter_read(void)
Returns the current CPU counter value.
Definition: system-clocks.c:117
void _CPU_Context_restore(Context_Control *new_context) RTEMS_NO_RETURN
Definition: cpu_asm.c:111
uint32_t _CPU_ISR_Get_level(void)
Definition: cpu.c:88
void _CPU_Context_Initialize(Context_Control *context, void *stack_area_begin, size_t stack_area_size, uint32_t new_level, void(*entry_point)(void), bool is_fp, void *tls_area)
Initializes the CPU context.
Definition: epiphany-context-initialize.c:40
void _CPU_Exception_frame_print(const CPU_Exception_frame *frame)
Prints the exception frame via printk().
Definition: vectorexceptions.c:45
#define ra
return address *‍/
Definition: regs.h:66
#define sp
stack-pointer *‍/
Definition: regs.h:64
#define k0
kernel private register 0 *‍/
Definition: regs.h:61
#define k1
kernel private register 1 *‍/
Definition: regs.h:62
#define fp
frame-pointer *‍/
Definition: regs.h:65
#define gp
global data pointer *‍/
Definition: regs.h:63
Information to build RTEMS for a "no cpu" while in protected mode.
uint32_t CPU_Counter_ticks
Unsigned integer type for CPU counter values.
Definition: cpu.h:1210
Context_Control_fp _CPU_Null_fp_context
#define _CPU_Context_restore_fp(_fp_context_ptr)
Nothing to do due to the synchronous or lazy floating point switch.
Definition: cpu.h:904
#define _CPU_Context_save_fp(_fp_context_ptr)
Nothing to do due to the synchronous or lazy floating point switch.
Definition: cpu.h:898
The set of registers that specifies the complete processor state.
Definition: cpu.h:629
Interrupt stack frame (ISF).
Definition: cpu.h:191
SPARC basic context.
Definition: cpu.h:194
Thread register context.
Definition: cpu.h:194
Definition: bootldr.h:45
Definition: deflate.c:115
unsigned size
Definition: tte.h:1