RTEMS CPU Kit with SuperCore  4.11.3
endian.h
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2002 Thomas Moestl <tmm@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #ifndef _SYS_ENDIAN_H_
30 #define _SYS_ENDIAN_H_
31 
32 #include <sys/cdefs.h>
33 #include <rtems/endian.h>
34 
35 /*
36  * General byte order swapping functions.
37  */
38 #define bswap16(x) CPU_swap_u16(x)
39 #define bswap32(x) CPU_swap_u32(x)
40 static __inline uint64_t
41 bswap64(uint64_t v)
42 {
43 #ifdef __GNUC__
44  return __builtin_bswap64(v);
45 #else
46  return ((v >> 56) | ((v >> 40) & 0xff00) | ((v >> 24) & 0xff0000) |
47  ((v >> 8) & 0xff000000) | ((v << 8) & ((uint64_t)0xff << 32)) |
48  ((v << 24) & ((uint64_t)0xff << 40)) |
49  ((v << 40) & ((uint64_t)0xff << 48)) | ((v << 56)));
50 #endif
51 }
52 
53 /*
54  * Host to big endian, host to little endian, big endian to host, and little
55  * endian to host byte order functions as detailed in byteorder(9).
56  */
57 #if BYTE_ORDER == LITTLE_ENDIAN
58 #define htobe16(x) bswap16((x))
59 #define htobe32(x) bswap32((x))
60 #define htobe64(x) bswap64((x))
61 #define htole16(x) ((uint16_t)(x))
62 #define htole32(x) ((uint32_t)(x))
63 #define htole64(x) ((uint64_t)(x))
64 
65 #define be16toh(x) bswap16((x))
66 #define be32toh(x) bswap32((x))
67 #define be64toh(x) bswap64((x))
68 #define le16toh(x) ((uint16_t)(x))
69 #define le32toh(x) ((uint32_t)(x))
70 #define le64toh(x) ((uint64_t)(x))
71 #else /* BYTE_ORDER != LITTLE_ENDIAN */
72 #define htobe16(x) ((uint16_t)(x))
73 #define htobe32(x) ((uint32_t)(x))
74 #define htobe64(x) ((uint64_t)(x))
75 #define htole16(x) bswap16((x))
76 #define htole32(x) bswap32((x))
77 #define htole64(x) bswap64((x))
78 
79 #define be16toh(x) ((uint16_t)(x))
80 #define be32toh(x) ((uint32_t)(x))
81 #define be64toh(x) ((uint64_t)(x))
82 #define le16toh(x) bswap16((x))
83 #define le32toh(x) bswap32((x))
84 #define le64toh(x) bswap64((x))
85 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
86 
87 /* Alignment-agnostic encode/decode bytestream to/from little/big endian. */
88 
89 static __inline uint16_t
90 be16dec(const void *pp)
91 {
92  uint8_t const *p = (uint8_t const *)pp;
93 
94  return (((unsigned)p[0] << 8) | p[1]);
95 }
96 
97 static __inline uint32_t
98 be32dec(const void *pp)
99 {
100  uint8_t const *p = (uint8_t const *)pp;
101 
102  return (((uint32_t)p[0] << 24) | ((uint32_t)p[1] << 16) |
103  ((uint32_t)p[2] << 8) | p[3]);
104 }
105 
106 static __inline uint64_t
107 be64dec(const void *pp)
108 {
109  uint8_t const *p = (uint8_t const *)pp;
110 
111  return (((uint64_t)be32dec(p) << 32) | be32dec(p + 4));
112 }
113 
114 static __inline uint16_t
115 le16dec(const void *pp)
116 {
117  uint8_t const *p = (uint8_t const *)pp;
118 
119  return (((unsigned)p[1] << 8) | p[0]);
120 }
121 
122 static __inline uint32_t
123 le32dec(const void *pp)
124 {
125  uint8_t const *p = (uint8_t const *)pp;
126 
127  return (((uint32_t)p[3] << 24) | ((uint32_t)p[2] << 16) |
128  ((uint32_t)p[1] << 8) | p[0]);
129 }
130 
131 static __inline uint64_t
132 le64dec(const void *pp)
133 {
134  uint8_t const *p = (uint8_t const *)pp;
135 
136  return (((uint64_t)le32dec(p + 4) << 32) | le32dec(p));
137 }
138 
139 static __inline void
140 be16enc(void *pp, uint16_t u)
141 {
142  uint8_t *p = (uint8_t *)pp;
143 
144  p[0] = (u >> 8) & 0xff;
145  p[1] = u & 0xff;
146 }
147 
148 static __inline void
149 be32enc(void *pp, uint32_t u)
150 {
151  uint8_t *p = (uint8_t *)pp;
152 
153  p[0] = (u >> 24) & 0xff;
154  p[1] = (u >> 16) & 0xff;
155  p[2] = (u >> 8) & 0xff;
156  p[3] = u & 0xff;
157 }
158 
159 static __inline void
160 be64enc(void *pp, uint64_t u)
161 {
162  uint8_t *p = (uint8_t *)pp;
163 
164  be32enc(p, (uint32_t)(u >> 32));
165  be32enc(p + 4, (uint32_t)(u & 0xffffffffU));
166 }
167 
168 static __inline void
169 le16enc(void *pp, uint16_t u)
170 {
171  uint8_t *p = (uint8_t *)pp;
172 
173  p[0] = u & 0xff;
174  p[1] = (u >> 8) & 0xff;
175 }
176 
177 static __inline void
178 le32enc(void *pp, uint32_t u)
179 {
180  uint8_t *p = (uint8_t *)pp;
181 
182  p[0] = u & 0xff;
183  p[1] = (u >> 8) & 0xff;
184  p[2] = (u >> 16) & 0xff;
185  p[3] = (u >> 24) & 0xff;
186 }
187 
188 static __inline void
189 le64enc(void *pp, uint64_t u)
190 {
191  uint8_t *p = (uint8_t *)pp;
192 
193  le32enc(p, (uint32_t)(u & 0xffffffffU));
194  le32enc(p + 4, (uint32_t)(u >> 32));
195 }
196 
197 #endif /* _SYS_ENDIAN_H_ */
This include file provides endian information about the target.