
RTEMS Development Environment Guide
Release 5.2 (16th December 2022)
© 1988, 2022 RTEMS Project and contributors

CONTENTS

1 Introduction 3

2 Directory Structure 5
2.1 BSPs Directory . 7

2.1.1 CPU Kit Directory . 7
2.1.2 testsuites/ Test Suites . 9

3 Sample Applications 11
3.1 Introduction . 12
3.2 Hello World . 14
3.3 Clock Tick . 15
3.4 Base Single Processor Application . 16
3.5 Base Multiple Processor Application . 17
3.6 Constructor/Destructor C++ Application . 18
3.7 Minimum Size Test . 19
3.8 Nanosecond Granularity Application . 20
3.9 Paranoia Floating Point Application . 22
3.10 Network Loopback Test . 23

4 RTEMS Specific Utilities 25
4.1 packhex - Compress Hexadecimal File . 27
4.2 unhex - Convert Hexadecimal File into Binary Equivalent 28

5 Command and Variable Index 29

i

ii

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

Copyrights and License

© 1988, 2015 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://devel.rtems.org/wiki/Developer/Bug_Reporting
Git Repositories https://git.rtems.org
Developers https://devel.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://devel.rtems.org/wiki/Developer/Bug_Reporting
https://git.rtems.org
https://devel.rtems.org

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This document describes the RTEMS development environment. Discussions are provided for
the following topics:

• the directory structure used by RTEMS,

• usage of the GNU Make utility within the RTEMS development environment,

• sample applications, and

• the RTEMS specific utilities.

RTEMS was designed as a reusable software component. Highly reusable software such as
RTEMS is typically distributed in the form of source code without providing any support tools.
RTEMS is the foundation for a complex family of facilities including board support packages,
device drivers, and support libraries. The RTEMS Development Environment is not a CASE tool.
It is a collection of tools designed to reduce the complexity of using and enhancing the RTEMS
family. Tools are provided which aid in the management of the development, maintenance, and
usage of RTEMS, its run-time support facilities, and applications which utilize the executive.

A key component of the RTEMS development environment is the GNU family of free tools.
This is robust set of development and POSIX compatible tools for which source code is freely
available. The primary compilers, assemblers, linkers, and make utility used by the RTEMS
development team are the GNU tools. They are highly portable supporting a wide variety of
host computers and, in the case of the development tools, a wide variety of target processors.

It is recommended that the RTEMS developer become familiar with the RTEMS Development
Environment before proceeding with any modifications to the executive source tree. The source
code for the executive is very modular and source code is divided amongst directories based
upon functionality as well as dependencies on CPU and target board. This organization is
aimed at isolating and minimizing non-portable code. This has the immediate result that adding
support for a new CPU or target board requires very little “wandering” around the source tree.

3

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 1 Section 1.0

4 Chapter 1. Introduction

CHAPTER

TWO

DIRECTORY STRUCTURE

The RTEMS directory structure is designed to meet the following requirements:

• encourage development of modular components.

• isolate processor and target dependent code, while allowing as much common source
code as possible to be shared across multiple processors and target boards.

• allow multiple RTEMS users to perform simultaneous compilation of RTEMS and its sup-
port facilities for different processors and targets.

The resulting directory structure has processor and board dependent source files isolated from
generic files. When RTEMS is configured and built, object directories and an install point will
be automatically created based upon the target CPU family and BSP selected.

The placement of object files based upon the selected BSP name ensures that object files are
not mixed across CPUs or targets. This in combination with the makefiles allows the specific
compilation options to be tailored for a particular target board. For example, the efficiency of
the memory subsystem for a particular target board may be sensitive to the alignment of data
structures, while on another target board with the same processor memory may be very limited.
For the first target, the options could specify very strict alignment requirements, while on the
second the data structures could be packed to conserve memory. It is impossible to achieve this
degree of flexibility without providing source code.

The RTEMS source tree is organized based on the following variables:

• functionality,

• target processor family,

• target processor model,

• peripherals, and

• target board.

Each of the following sections will describe the contents of the directories in the RTEMS source
tree. The top of the tree will be referenced as ${RTEMS_ROOT} in this discussion.

1 rtems-VERSION
2 |
3 +----+----+----+--+-----+---+-------+--------+
4 | | | | | | | |
5 c contrib cpukit doc make testsuites tools

5

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 2 Section 2.0

${RTEMS_ROOT}/c/
Historically, this directory was the root of the portions of the RTEMS source tree which must
be built tailored for a particular CPU model or BSP. In the current source, only the build
support files for the autoconf/automake based build system remain in this subdirectory.

${RTEMS_ROOT}/cpukit/
This directory is the root for all of the “multilib’able” portions of RTEMS. This is a GNU
way of saying the contents of this directory can be compiled like the C Library (libc.a) and
the functionality is neither CPU model nor BSP specific. The source code for most RTEMS
services reside under this directory. The contents of this directory will be discussed in the CPU
Kit Directory (page 7) section.

${RTEMS_ROOT}/bsps
This directory is the root for all of the BSP specific source in RTEMS. The contents of this
directory are discussed in the BSPs Directory (page 7) section.

${RTEMS_ROOT}/make/
This directory contains files which support RTEMS Makefile’s. From a user’s perspective,
the most important part is the BSP specific information found in the config subdirectory of
each BSP. Each “.cfg” file is associated with a specific BSP and describes the CPU model, and
compiler flags used to produce an executable for the target board. These files are described in
detail in the RTEMS BSP and Driver Guide and will not be discussed further in this document.

${RTEMS_ROOT}/testsuites/
This directory contains the test suites for the various RTEMS APIs and support libraries. The
contents of this directory are discussed in the testsuites/ Test Suites (page 9) section.

6 Chapter 2. Directory Structure

Chapter 2 Section 2.1RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

2.1 BSPs Directory

The “bsps” directory contains a directory for each CPU family supported by RTEMS. Beneath
each CPU directory is a directory for each BSP for that processor family.

The “bsps” directory provides all the BSPs provided with this release of RTEMS. The subdirecto-
ries are divided, as discussed previously, based on specific processor family, then further broken
down into specific target board environments. The “no_cpu” subdirectory provides a starting
point template BSP which can be used to develop a specific BSP for an unsupported target
board. The files in this subdirectory may aid in preliminary testing of the RTEMS development
environment that has been built for no particular target in mind.

Below each CPU dependent directory is a directory for each target BSP supported in this release.

Each BSP provides the modules which comprise an RTEMS BSP. The modules are separated into
various subdirectories such as “clock”, “console”, “include”, “shmsupp”, “startup”, and “timer”
as shown in the following figure:

1 Each BSP
2 |
3 +-----------+----------+-----+-----+----------+----------+
4 | | | | | |
5 clock console include shmsupp startup timer

2.1.1 CPU Kit Directory

The @code{cpukit/} directory contains many subdirectories with the most important ones being
shown in the structure below:

1 cpukit
2 |
3 +-----------+----------+-----------+
4 | | | |
5 posix rtems sapi score

The cpukit/ directory contains a set of subdirectories which contains the source files compris-
ing the executive portion of the RTEMS development environment as well as portable support
libraries such as support for the C Library and filesystems. The API specific and “SuperCore”
(e.g. score/ directory) source code files are separated into distinct directory trees.

The following is a description of each of the subdirectories under cpukit/:

${RTEMS_ROOT}/cpukit/ftpd/
This directory contains the RTEMS ftpd server.

${RTEMS_ROOT}/cpukit/mhttpd/
This directory contains the port of the Mongoose web server to RTEMS.

${RTEMS_ROOT}/cpukit/include/
This directory contains header files which are private to RTEMS and not considered to be
owned by any other component in the CPU Kit.

${RTEMS_ROOT}/cpukit/libblock/
This directory contains support code for using Block Devices such as hard drives, floppies, and

2.1. BSPs Directory 7

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 2 Section 2.1

CD-ROMs. It includes the generic IO primitives for block device drivers, disk caching support,
and a RAM disk block device driver.

${RTEMS_ROOT}/cpukit/libcsupport/
This directory contains the RTEMS specific support routines for the Newlib C Library. This
includes what are referred to as system calls and found in section 2 of the traditional UNIX
manual. In addition, it contains a thread-safe implementation of the Malloc family of routines
as well as BSD and POSIX services not found in Newlib.

${RTEMS_ROOT}/cpukit/libfs/
This directory contains the various non-networked filesystem implementations for RTEMS. It
includes the In-Memory FileSystem (IMFS), the mini-IMFS, and FAT filesystems.

${RTEMS_ROOT}/cpukit/libi2c/
This directory contains the RTEMS I2C framework.

${RTEMS_ROOT}/cpukit/libmd/
This directory contains a port of the standard MD5 checksum code.

${RTEMS_ROOT}/cpukit/libmisc/
This directory contains support facilities which are RTEMS specific but otherwise unclassified.
In general, they do not adhere to a standard API. Among the support facilities in this directory
are a /dev/null device driver, the Stack Overflow Checker, a mini-shell, the CPU and rate
monotonic period usage monitoring libraries, and a utility to “dump a buffer” in a nicely
formatted way similar to many ROM monitors.

${RTEMS_ROOT}/cpukit/libnetworking/
This directory contains the port of the FreeBSD TCP/IP stack to RTEMS.

${RTEMS_ROOT}/cpukit/librpc/
This directory contains the port of the FreeBSD RPC/XDR source to RTEMS.

${RTEMS_ROOT}/cpukit/libpci/
This directory contains RTEMS PCI Library.

${RTEMS_ROOT}/cpukit/posix/
This directory contains the RTEMS implementation of the threading portions of the POSIX
API.

${RTEMS_ROOT}/cpukit/pppd/
This directory contains a port of the free implementation of the PPPD network protocol.

${RTEMS_ROOT}/cpukit/rtems/
This directory contains the implementation of the Classic API.

${RTEMS_ROOT}/cpukit/sapi/
This directory contains the implementation of RTEMS services which are required but beyond
the realm of any standardization efforts. It includes initialization, shutdown, and IO services.

${RTEMS_ROOT}/cpukit/score/
This directory contains the “SuperCore” of RTEMS. All APIs are implemented in terms of
SuperCore services. For example, Classic API tasks and POSIX threads are all implemented
in terms of SuperCore threads. This provides a common infrastructure and a high degree
of interoperability between the APIs. For example, services from all APIs may be used by
any task/thread independent of the API used to create it. Within the score/ directory the
CPU dependent modules are found. The score/cpu/ subdirectory contains a subdirectory for
each target CPU supported by this release of the RTEMS executive. Each processor directory
contains the CPU dependent code necessary to host RTEMS. The no_cpu directory provides

8 Chapter 2. Directory Structure

Chapter 2 Section 2.1RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

a starting point for developing a new port to an unsupported processor. The files contained
within the no_cpu directory may also be used as a reference for the other ports to specific
processors.

${RTEMS_ROOT}/cpukit/telnetd/
This directory contains the RTEMS telnetd server.

${RTEMS_ROOT}/cpukit/wrapup/
This directory is responsible for taking the individual libraries and objects built in each of the
components in the RTEMS CPU Kit source tree and bundling them together to form the single
RTEMS library librtemscpu.a. This library contains all BSP and CPU model specific software.

${RTEMS_ROOT}/cpukit/zlib/
This directory contains a port of the GNU Zlib compression library to RTEMS.

2.1.2 testsuites/ Test Suites

This directory provides all of the RTEMS Test Suite except those for the Classic API Ada95
binding This includes the single processor tests, multiprocessor tests, timing tests, library tests,
and sample tests. Additionally, subdirectories for support functions and test related header files
are provided. The following table lists the test suites currently included with the RTEMS and
the directory in which they may be located:

${RTEMS_ROOT}/testsuites/libtests/
This directory contains the test suite for the various RTEMS support components.

${RTEMS_ROOT}/testsuites/mptests/
This directory contains the test suite for the multiprocessor support in the Classic API. The
tests provided address two node configurations and provide coverage for the multiprocessor
code found in RTEMS.

${RTEMS_ROOT}/testsuites/psxtests/
This directory contains the test suite for the RTEMS POSIX API.

${RTEMS_ROOT}/testsuites/samples/
This directory provides sample application tests which aid in the testing a newly built RTEMS
environment, a new BSP, or as starting points for the development of an application using the
RTEMS executive. They are discussed in ::ref::Sample Applications.

${RTEMS_ROOT}/testsuites/sptests/
This directory contains the test suite for the RTEMS Classic API when executing on a single
processor. The tests were originally designed to provide near complete test coverage for the
entire executive code. With the addition of multiple APIs, this is no longer the case as some
SuperCore functionality is not available through the Classic API. Thus some functionality in
the SuperCore is only covered by tests in the POSIX API Test Suites.

${RTEMS_ROOT}/testsuites/support/
This directory contains support software and header files for the various test suites.

${RTEMS_ROOT}/testsuites/tmtests/
This directory contains the timing test suite for the RTEMS Classic API. This include tests that
benchmark each directive in the Classic API as well as a set of critical SuperCore functions.
These tests are important for helping to verify that RTEMS performs as expected on your
target hardware. It is not uncommon to discover mistakes in board initialization such as
caching being disabled as a side-effect of analyzing the results of these tests.

2.1. BSPs Directory 9

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 2 Section 2.1

${RTEMS_ROOT}/testsuites/tools/
This directory contains tools which execute on the development host and aid in executing
and evaluating the results of the test suite. The tools difftest compares the output of one or
more tests with the expected output. If you place the output of all the tmtests/ in a single
file, then the utility sorttimes will be able to produce a report organizing the execution times
by manager.

10 Chapter 2. Directory Structure

CHAPTER

THREE

SAMPLE APPLICATIONS

11

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 3 Section 3.1

3.1 Introduction

The RTEMS source distribution includes a set of sample applications that are located in the
${RTEMS_ROOT}/testsuites/samples/ directory. These applications are intended to illustrate
the basic format of RTEMS single and multiple processor applications and the use of some fea-
tures. In addition, these relatively simple applications can be used to test locally developed
board support packages and device drivers as they exercise a critical subset of RTEMS function-
ality that is often broken in new BSPs.

Some of the following sample applications will be covered in more detail in subsequent sections:

Hello World
The RTEMS Hello World test is provided in the subdirectory ${RTEMS_ROOT}/testsuites/
samples/hello/. This test is helpful when testing new RTEMS development environment.

Clock Tick
The ${RTEMS_ROOT}/testsuites/samples/ticker/ subdirectory provides a test for verifica-
tion of clock chip device drivers of BSPs.

Base Single Processor
A simple single processor test similar to those in the single processor test suite is provided in
${RTEMS_ROOT}/testsuites/samples/base_sp/.

Base Multiple Processor
A simple two node multiprocessor test capable of testing an newly developed MPCI layer is
provided in ${RTEMS_ROOT}/testsuites/samples/base_mp/.

Capture
The RTEMS Capture test is provided in the subdirectory ${RTEMS_ROOT}/testsuites/
samples/capture/. This is an interactive test which demonstrates the capabilities of the
RTEMS Capture Engine. It includes a few test threads which generate interesting execu-
tion patterns. Look at the file ${RTEMS_ROOT}/testsuites/samples/capture/capture.scn for
a sample session.

Constructor/Destructor C++ Test
The ${RTEMS_ROOT}/testsuites/samples/cdtest/ subdirectory provides a simple C++ ap-
plication using constructors and destructors. It is only built when C++ is enabled and its
primary purpose is to demonstrate that global constructors and destructors work. Since this
requires that the linker script for your BSP be correct, this is an important test.

File IO
The RTEMS File IO test is provided in the subdirectory ${RTEMS_ROOT}/testsuites/samples/
fileio/. This is an interactive test which allows the user to interact with an ATA/IDE device.
It will read the partition table and allow the user to dynamically mount one of the FAT32
partitions it finds. Commands are also provided to write and read files on the disk.

IO Stream
The RTEMS IO Stream test is provided in the subdirectory ${RTEMS_ROOT}/testsuites/
samples/iostream/. This test is a simple C++ application which demonstrates that C++
iostreams are functional. This requires that the RTEMS C++ run-time support is functioning
properly. This test is only build when C++ is enabled.

Network Loopback Test
The ${RTEMS_ROOT}/testsuites/samples/loopback/ directory contains a sample test that
demonstrates the use of sockets and the loopback network device. It does not require the

12 Chapter 3. Sample Applications

Chapter 3 Section 3.1RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

presence of network hardware in order to run. It is only built if RTEMS was configured with
networking enabled.

Minimum Size Test
The directory ${RTEMS_ROOT}/testsuites/samples/minimum/ contains a simple RTEMS pro-
gram that results in a non-functional executable. It is intended to show the size of a minimum
footprint application based upon the current RTEMS configuration.

Nanoseconds
The RTEMS Nanoseconds test is provided in the subdirectory ${RTEMS_ROOT}/testsuites/
samples/nsecs/. This test demonstrates that the BSP has support for nanosecond timestamp
granularity. It prints the time of day and uptime multiple times as quickly as possible. It
should be possible from the output to determine if your BSP has nanosecond accurate clock
support and it is functional.

Paranoia Floating Point Test
The directory ${RTEMS_ROOT}/testsuites/samples/paranoia/ contains the public domain
floating point and math library test.

Point-to-Point Protocol Daemon
The RTEMS Point-to-Point Protocol Daemon test is provided in the subdirectory
${RTEMS_ROOT}/testsuites/samples/pppd/. This test primarily serves as the baseline for a
user application using the PPP protocol.

Unlimited Object Allocation
The ${RTEMS_ROOT}/testsuites/samples/unlimited/ directory contains a sample test that
demonstrates the use of the*unlimited* object allocation configuration option to RTEMS.

The sample tests are written using the Classic API so the reader should be familiar with the
terms used and material presented in the RTEMS Applications Users Guide.

3.1. Introduction 13

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 3 Section 3.2

3.2 Hello World

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/hello/

It provides a rudimentary test of the BSP start up code and the console output routine. The C
version of this sample application uses the printf function from the RTEMS Standard C Library
to output messages. The Ada version of this sample uses the TEXT_IO package to output the
hello messages. The following messages are printed:

1 *** HELLO WORLD TEST ***
2 Hello World
3 *** END OF HELLO WORLD TEST ***

These messages are printed from the application’s single initialization task. If the above mes-
sages are not printed correctly, then either the BSP start up code or the console output routine
is not operating properly.

14 Chapter 3. Sample Applications

Chapter 3 Section 3.3RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

3.3 Clock Tick

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/ticker/

This application is designed as a simple test of the clock tick device driver. In addition, this
application also tests the printf function from the RTEMS Standard C Library by using it to
output the following messages:

1 *** CLOCK TICK TEST ***
2 TA1 - tm_get - 09:00:00 12/31/1988
3 TA2 - tm_get - 09:00:00 12/31/1988
4 TA3 - tm_get - 09:00:00 12/31/1988
5 TA1 - tm_get - 09:00:05 12/31/1988
6 TA1 - tm_get - 09:00:10 12/31/1988
7 TA2 - tm_get - 09:00:10 12/31/1988
8 TA1 - tm_get - 09:00:15 12/31/1988
9 TA3 - tm_get - 09:00:15 12/31/1988

10 TA1 - tm_get - 09:00:20 12/31/1988
11 TA2 - tm_get - 09:00:20 12/31/1988
12 TA1 - tm_get - 09:00:25 12/31/1988
13 TA1 - tm_get - 09:00:30 12/31/1988
14 TA2 - tm_get - 09:00:30 12/31/1988
15 TA3 - tm_get - 09:00:30 12/31/1988
16 *** END OF CLOCK TICK TEST ***

The clock tick sample application utilizes a single initialization task and three copies of the
single application task. The initialization task prints the test herald, sets the time and date,
and creates and starts the three application tasks before deleting itself. The three application
tasks generate the rest of the output. Every five seconds, one or more of the tasks will print the
current time obtained via the tm_get directive. The first task, TA1, executes every five seconds,
the second task, TA2, every ten seconds, and the third task, TA3, every fifteen seconds. If the
time printed does not match the above output, then the clock device driver is not operating
properly.

3.3. Clock Tick 15

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 3 Section 3.4

3.4 Base Single Processor Application

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/base_sp/

It provides a framework from which a single processor RTEMS application can be developed.
The use of the task argument is illustrated. This sample application uses the printf function from
the RTEMS Standard C Library or TEXT_IO functions when using the Ada version to output the
following messages:

1 *** SAMPLE SINGLE PROCESSOR APPLICATION ***
2 Creating and starting an application task
3 Application task was invoked with argument (0) and has id of 0x10002
4 *** END OF SAMPLE SINGLE PROCESSOR APPLICATION ***

The first two messages are printed from the application’s single initialization task. The final
messages are printed from the single application task.

16 Chapter 3. Sample Applications

Chapter 3 Section 3.5RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

3.5 Base Multiple Processor Application

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/base_mp/

It provides a framework from which a multiprocessor RTEMS application can be developed. This
directory has a subdirectory for each node in the multiprocessor system. The task argument is
used to distinguish the node on which the application task is executed. The first node will print
the following messages:

1 *** SAMPLE MULTIPROCESSOR APPLICATION ***
2 Creating and starting an application task
3 This task was invoked with the node argument (1)
4 This task has the id of 0x10002
5 *** END OF SAMPLE MULTIPROCESSOR APPLICATION ***

The second node will print the following messages:

1 *** SAMPLE MULTIPROCESSOR APPLICATION ***
2 Creating and starting an application task
3 This task was invoked with the node argument (2)
4 This task has the id of 0x20002
5 *** END OF SAMPLE MULTIPROCESSOR APPLICATION ***

The herald is printed from the application’s single initialization task on each node. The final
messages are printed from the single application task on each node.

In this sample application, all source code is shared between the nodes except for the node
dependent configuration files. These files contains the definition of the node number used in the
initialization of the RTEMS Multiprocessor Configuration Table. This file is not shared because
the node number field in the RTEMS Multiprocessor Configuration Table must be unique on
each node.

3.5. Base Multiple Processor Application 17

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 3 Section 3.6

3.6 Constructor/Destructor C++ Application

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/cdtest/

This sample application demonstrates that RTEMS is compatible with C++ applications. It uses
constructors, destructor, and I/O stream output in testing these various capabilities. The board
support package responsible for this application must support a C++ environment.

This sample application uses the printf function from the RTEMS Standard C Library to output
the following messages:

1 Hey I'M in base class constructor number 1 for 0x400010cc.
2 Hey I'M in base class constructor number 2 for 0x400010d4.
3 Hey I'M in derived class constructor number 3 for 0x400010d4.
4 *** CONSTRUCTOR/DESTRUCTOR TEST ***
5 Hey I'M in base class constructor number 4 for 0x4009ee08.
6 Hey I'M in base class constructor number 5 for 0x4009ee10.
7 Hey I'M in base class constructor number 6 for 0x4009ee18.
8 Hey I'M in base class constructor number 7 for 0x4009ee20.
9 Hey I'M in derived class constructor number 8 for 0x4009ee20.

10 Testing a C++ I/O stream
11 Hey I'M in derived class constructor number 8 for 0x4009ee20.
12 Derived class - Instantiation order 8
13 Hey I'M in base class constructor number 7 for 0x4009ee20.
14 Instantiation order 8
15 Hey I'M in base class constructor number 6 for 0x4009ee18.
16 Instantiation order 6
17 Hey I'M in base class constructor number 5 for 0x4009ee10.
18 Instantiation order 5
19 Hey I'M in base class constructor number 4 for 0x4009ee08.
20 Instantiation order 5
21 *** END OF CONSTRUCTOR/DESTRUCTOR TEST ***
22 Hey I'M in base class constructor number 3 for 0x400010d4.
23 Hey I'M in base class constructor number 2 for 0x400010d4.
24 Hey I'M in base class constructor number 1 for 0x400010cc.

18 Chapter 3. Sample Applications

Chapter 3 Section 3.7RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

3.7 Minimum Size Test

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/minimum/

This sample application is designed to produce the minimum code space required for any
RTEMS application based upon the current RTEMS configuration and BSP. In many situations,
the bulk of this executable consists of hardware and RTEMS initialization, basic infrastructure
such as malloc(), and RTEMS and hardware shutdown support.

3.7. Minimum Size Test 19

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 3 Section 3.8

3.8 Nanosecond Granularity Application

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/nsecs/

This sample application exercises the Clock Driver for this BSP and demonstrates its ability to
generate accurate timestamps. This application does this by exercising the time subsystem in
three ways:

• Obtain Time of Day Twice Back to Back

• Obtain System Up Time Twice Back to Back

• Use System Up Time to Measure Loops

The following is an example of what the output of this test may appear like:

1 *** NANOSECOND CLOCK TEST ***
2 10 iterations of getting TOD
3 Start: Sat Mar 24 11:15:00 2007:540000
4 Stop : Sat Mar 24 11:15:00 2007:549000 --> 0:9000
5 Start: Sat Mar 24 11:15:00 2007:3974000
6 Stop : Sat Mar 24 11:15:00 2007:3983000 --> 0:9000
7 Start: Sat Mar 24 11:15:00 2007:7510000
8 Stop : Sat Mar 24 11:15:00 2007:7519000 --> 0:9000
9 Start: Sat Mar 24 11:15:00 2007:11054000

10 Stop : Sat Mar 24 11:15:00 2007:11063000 --> 0:9000
11 Start: Sat Mar 24 11:15:00 2007:14638000
12 Stop : Sat Mar 24 11:15:00 2007:14647000 --> 0:9000
13 Start: Sat Mar 24 11:15:00 2007:18301000
14 Stop : Sat Mar 24 11:15:00 2007:18310000 --> 0:9000
15 Start: Sat Mar 24 11:15:00 2007:21901000
16 Stop : Sat Mar 24 11:15:00 2007:21910000 --> 0:9000
17 Start: Sat Mar 24 11:15:00 2007:25526000
18 Stop : Sat Mar 24 11:15:00 2007:25535000 --> 0:9000
19 Start: Sat Mar 24 11:15:00 2007:29196000
20 Stop : Sat Mar 24 11:15:00 2007:29206000 --> 0:10000
21 Start: Sat Mar 24 11:15:00 2007:32826000
22 Stop : Sat Mar 24 11:15:00 2007:32835000 --> 0:9000
23 10 iterations of getting Uptime
24 0:38977000 0:38986000 --> 0:9000
25 0:40324000 0:40332000 --> 0:8000
26 0:41636000 0:41645000 --> 0:9000
27 0:42949000 0:42958000 --> 0:9000
28 0:44295000 0:44304000 --> 0:9000
29 0:45608000 0:45617000 --> 0:9000
30 0:46921000 0:46930000 --> 0:9000
31 0:48282000 0:48291000 --> 0:9000
32 0:49595000 0:49603000 --> 0:8000
33 0:50908000 0:50917000 --> 0:9000
34 10 iterations of getting Uptime with different loop values
35 loop of 10000 0:119488000 0:119704000 --> 0:216000

(continues on next page)

20 Chapter 3. Sample Applications

Chapter 3 Section 3.8RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

(continued from previous page)

36 loop of 20000 0:124028000 0:124463000 --> 0:435000
37 loop of 30000 0:128567000 0:129220000 --> 0:653000
38 loop of 40000 0:133097000 0:133964000 --> 0:867000
39 loop of 50000 0:137643000 0:138728000 --> 0:1085000
40 loop of 60000 0:142265000 0:143572000 --> 0:1307000
41 loop of 70000 0:146894000 0:148416000 --> 0:1522000
42 loop of 80000 0:151519000 0:153260000 --> 0:1741000
43 loop of 90000 0:156145000 0:158099000 --> 0:1954000
44 loop of 100000 0:160770000 0:162942000 --> 0:2172000
45 *** END OF NANOSECOND CLOCK TEST ***

3.8. Nanosecond Granularity Application 21

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 3 Section 3.9

3.9 Paranoia Floating Point Application

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/paranoia/

This sample application uses a public domain floating point and math library test to verify these
capabilities of the RTEMS executive. Deviations between actual and expected results are re-
ported to the screen. This is a very extensive test which tests all mathematical and number
conversion functions. Paranoia is also very large and requires a long period of time to run.
Problems which commonly prevent this test from executing to completion include stack over-
flow and FPU exception handlers not installed.

22 Chapter 3. Sample Applications

Chapter 3 Section 3.10RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

3.10 Network Loopback Test

This sample application is in the following directory:

1 ${RTEMS_ROOT}/testsuites/samples/loopback/

This sample application uses the network loopback device to demonstrate the use of the RTEMS
TCP/IP stack. This sample test illustrates the basic configuration and initialization of the TCP/IP
stack as well as simple socket usage.

3.10. Network Loopback Test 23

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 3 Section 3.10

24 Chapter 3. Sample Applications

CHAPTER

FOUR

RTEMS SPECIFIC UTILITIES

This section describes the additional commands available within the RTEMS Development Envi-
ronment. Although some of these commands are of general use, most are included to provide
some capability necessary to perform a required function in the development of the RTEMS
executive, one of its support components, or an RTEMS based application.

Some of the commands are implemented as C programs. However, most commands are imple-
mented as Bourne shell scripts. Even if the current user has selected a different shell, the scripts
will automatically invoke the Bourne shell during their execution lifetime.

The commands are presented in UNIX manual page style for compatibility and convenience. A
standard set of paragraph headers were used for all of the command descriptions. If a section
contained no data, the paragraph header was omitted to conserve space. Each of the permissible
paragraph headers and their contents are described below:

SYNOPSIS
describes the command syntax

DESCRIPTION
a full description of the command

OPTIONS
describes each of the permissible options for the command

NOTES
lists any special noteworthy comments about the command

ENVIRONMENT
describes all environment variables utilized by the command

EXAMPLES
illustrates the use of the command with specific examples

FILES
provides a list of major files that the command references

SEE ALSO
lists any relevant commands which can be consulted

Most environment variables referenced by the commands are defined for the RTEMS Develop-
ment Environment during the login procedure. During login, the user selects a default RTEMS
environment through the use of the Modules package. This tool effectively sets the environment
variables to provide a consistent development environment for a specific user. Additional envi-
ronment variables within the RTEMS environment were set by the system administrator during

25

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 4 Section 4.0

installation. When specifying paths, a command description makes use of these environment
variables.

When referencing other commands in the SEE ALSO paragraph, the following notation is used:
command(code). Where command is the name of a related command, and code is a section
number. Valid section numbers are as follows:

1
Section 1 of the standard UNIX documentation

1G
Section 1 of the GNU documentation

1R
a manual page from this document, the RTEMS Development Environment Guide

For example, ls(1) means see the standard ls command in section 1 of the UNIX documentation.
gcc020(1G) means see the description of gcc020 in section 1 of the GNU documentation.

26 Chapter 4. RTEMS Specific Utilities

Chapter 4 Section 4.1RTEMS Development Environment Guide, Release 5.2 (16th December 2022)

4.1 packhex - Compress Hexadecimal File

SYNOPSIS

1 packhex <source >destination

DESCRIPTION

packhex accepts Intel Hexadecimal or Motorola Srecord on its standard input and attempts to
pack as many contiguous bytes as possible into a single hexadecimal record. Many programs
output hexadecimal records which are less than 80 bytes long (for human viewing). The over-
head required by each unnecessary record is significant and packhex can often reduce the size
of the download image by 20%. packhex attempts to output records which are as long as the
hexadecimal format allows.

OPTIONS

This command has no options.

EXAMPLES

Assume the current directory contains the Motorola Srecord file download.sr. Then executing
the command:

1 packhex <download.sr >packed.sr

will generate the file packed.sr which is usually smaller than download.sr.

CREDITS

The source for packhex first appeared in the May 1993 issue of Embedded Systems magazine.
The code was downloaded from their BBS. Unfortunately, the author’s name was not provided
in the listing.

4.1. packhex - Compress Hexadecimal File 27

RTEMS Development Environment Guide, Release 5.2 (16th December 2022)Chapter 4 Section 4.2

4.2 unhex - Convert Hexadecimal File into Binary Equivalent

SYNOPSIS

1 unhex [-valF] [-o file] [file [file ...]]

DESCRIPTION

unhex accepts Intel Hexadecimal, Motorola Srecord, or TI ‘B’ records and converts them to their
binary equivalent. The output may sent to standout or may be placed in a specified file with
the -o option. The designated output file may not be an input file. Multiple input files may be
specified with their outputs logically concatenated into the output file.

OPTIONS

This command has the following options:

v
Verbose

a base
First byte of output corresponds with base address

l
Linear Output

o file
Output File

F k_bits
Fill holes in input with 0xFFs up to k_bits * 1024 bits

EXAMPLES

The following command will create a binary equivalent file for the two Motorola S record files
in the specified output file binary.bin:

1 unhex -o binary.bin downloadA.sr downloadB.sr

28 Chapter 4. RTEMS Specific Utilities

CHAPTER

FIVE

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable Index entries.

29

	Introduction
	Directory Structure
	BSPs Directory
	CPU Kit Directory
	testsuites/ Test Suites

	Sample Applications
	Introduction
	Hello World
	Clock Tick
	Base Single Processor Application
	Base Multiple Processor Application
	Constructor/Destructor C++ Application
	Minimum Size Test
	Nanosecond Granularity Application
	Paranoia Floating Point Application
	Network Loopback Test

	RTEMS Specific Utilities
	packhex - Compress Hexadecimal File
	unhex - Convert Hexadecimal File into Binary Equivalent

	Command and Variable Index

