Getting Started with RTEMS

Edition 4.9.5, for 4.9.5

9 February 2011

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2009-08-14.15

COPYRIGHT (©) 1988 - 2011.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/oarsupport.

http://www.rtems.com
http://www.rtems.com/oarsupport

Table of Contents

1 Introduction.................., 1
1.1 Real-Time Embedded Systems............. ... oo .. 1
1.2 Cross Development.......... .o i 2
1.3 Resources on the Internet i 3

1.3.1 Online Tool Documentationccvviiieea.... 3
1.3.2 RTEMS Mailing List ..o, 3
1.3.3 GCC Mailing Lists ..o e 3

2 Requirements................l 5
2.1 Disk Space. ...t 5
2.2 General Host Software Requirements 5

221 GO . 6
222 GNU MakKke.o e 6
2.2.3 GNU makeinfo Version Requirements...................... 6
2.3 Host Specific Notes. 6
2.3. 1 S0lariS 2.X . ot e 6
2.3.2 Distribution Independent Potential GNU /Linux Issues..... 6
2.3.3 GNU/Linux Distrobutions using Debian Packaging Format
... 7

3 Prebuilt Toolset Executables.................. 9

3.1 RP M. 9
3.1.1 Locating the RPMs for your GNU /Linux Distribution 9
3.1.2 Managing RPMs Using Yumooooi... 10

3.1.2.1 Installing RPMs Using Yum 10
3.1.2.2 Removing RPMs Using Yum......................... 11
3.1.3 Managing RPMs Without Using Yum 11
3.1.3.1 Installing RPMs Without Yum 11
3.1.3.2 Removing RPMs Without Using Yum 12
3.1.4 Determining Which RTEMS RPMs are Installed.......... 13

3.2 Zipped Tar Files ... 13
3.2.1 Installing Zipped Tar Files, 13
3.2.2 Removing Zipped Tar Files........... ... oo .. 13

4 Building the GNU Cross Compiler Toolset

.. 15

4.1 Preparation.ttt 15
4.1.1 Determining Tool Version and Patch Revision 15
4.1.2 Obtain Source and Patches........................ 16

4.2 Installing the Tools Without RPM 16
4.2.1 Archive and Build Directory Format...................... 16

4.2.2 Unarchiving the Tools............. ... it 17

ii Getting Started with RTEMS

4.2.3 Applying RTEMS Project Tool Patches................... 18
4.2.4 Installing AUTOCONF Without RPM 18
4.2.5 Installing AUTOMAKE Without RPM................... 18
4.2.6 Installing BINUTILS Without RPM...................... 19
4.2.7 Installing GCC and NEWLIB Without RPM 19
4.2.8 Building GCC with Ada Support......................... 20
4.2.9 Installing GDB Without RPM................ 21
4.3 Using RPM to Build Tools ...t 22
4.3.1 Building AUTOCONF using RPM........................ 23
4.3.2 Building AUTOMAKE using RPM 23
4.3.3 Building BINUTILS using RPM.................... 23
4.3.4 Building GCC and NEWLIB using RPM 24
4.3.5 Building the GDB using RPM............................ 24
4.4 Common Problems.......... . i i 24
4.4.1 Error Message Indicates Invalid Option to Assembler 24
4.4.2 Error Messages Indicating Configuration Problems........ 25

5 Building RTEMS.............................. 27
5.1 Obtain the RTEMS Source Codecoiiiiiiia... 27
5.2 Unarchive the RTEMS Source..............cooiiiiiiiiii.. 27
5.3 Add <INSTALL_POINT?>/bin to Executable PATH............ 27
5.4 Verifying the Operation of the Cross Toolset................... 27
5.5 Building RTEMS for a Specific Target and BSP 28
5.5.1 Using the RTEMS configure Script Directly............... 28

6 Building the Sample Applications............ 31
6.1 Set the Environment Variable RTEMS_MAKEFILE_PATH 31
6.2 Executing the Sample Applications....................cooov... 31
6.3 C/C++ Sample Applications.ooveiiiiiiiiiiai... 32
6.4 Ada Sample Applications.............co i 33
6.5 Build the Sample Application, 33
6.6 Application Executable............. i 33
6.7 More Information on RTEMS Application Makefiles 34
7 Where To Go From Here..................... 35
7.1 Documentation OVerview.couiuuiieniiienniineannn. 35
7.2 Writing an Application........... ... i, 36

Appendix A Using MS-Windows as a

Development Host 37
A.1 Microsoft Windows Version Requirements..................... 37
A2 CygWin. .o 37
A3 Text EAItOr . ..o 38

A.4 System Requirements........... i 38

Chapter 1: Introduction 1

1 Introduction

The purpose of this document is to guide you through the process of installing a GNU cross
development environment to use with RTEMS.

If you are already familiar with the concepts behind a cross compiler and have a background
in Unix, these instructions should provide the bare essentials for performing a setup of the
following items:

e GNU Cross Compilation Tools for RTEMS on your build-host system
e RTEMS OS for the target
e GNU Debugger (GDB)

The remainder of this chapter provides background information on real-time embedded
systems and cross development and an overview of other resources of interest on the Internet.
If you are not familiar with real-time embedded systems or the other areas, please read
those sections. These sections will help familiarize you with the types of systems RTEMS
is designed to be used in and the cross development process used when developing RTEMS
applications.

1.1 Real-Time Embedded Systems

Real-time embedded systems are found in practically every facet of our everyday lives.
Today’s systems range from the common telephone, automobile control systems, and kitchen
appliances to complex air traffic control systems, military weapon systems, and production
line control including robotics and automation. However, in the current climate of rapidly
changing technology, it is difficult to reach a consensus on the definition of a real-time
embedded system. Hardware costs are continuing to rapidly decline while at the same
time the hardware is increasing in power and functionality. As a result, embedded systems
that were not considered viable two years ago are suddenly a cost effective solution. In
this domain, it is not uncommon for a single hardware configuration to employ a variety
of architectures and technologies. Therefore, we shall define an embedded system as any
computer system that is built into a larger system consisting of multiple technologies such
as digital and analog electronics, mechanical devices, and sensors.

Even as hardware platforms become more powerful, most embedded systems are critically
dependent on the real-time software embedded in the systems themselves. Regardless of
how efficiently the hardware operates, the performance of the embedded real-time software
determines the success of the system. As the complexity of the embedded hardware platform
grows, so does the size and complexity of the embedded software. Software systems must
routinely perform activities which were only dreamed of a short time ago. These large,
complex, real-time embedded applications now commonly contain one million lines of code
or more.

Real-time embedded systems have a complex set of characteristics that distinguish them
from other software applications. Real-time embedded systems are driven by and must
respond to real world events while adhering to rigorous requirements imposed by the envi-
ronment with which they interact. The correctness of the system depends not only on the
results of computations, but also on the time at which the results are produced. The most

2 Getting Started with RTEMS

important and complex characteristic of real-time application systems is that they must
receive and respond to a set of external stimuli within rigid and critical time constraints.

A single real-time application can be composed of both soft and hard real-time components.
A typical example of a hard real-time system is a nuclear reactor control system that must
not only detect failures, but must also respond quickly enough to prevent a meltdown.
This application also has soft real-time requirements because it may involve a man-machine
interface. Providing an interactive input to the control system is not as critical as setting
off an alarm to indicate a failure condition. However, the interactive system component
must respond within an acceptable time limit to allow the operator to interact efficiently
with the control system.

1.2 Cross Development

Today almost all real-time embedded software systems are developed in a cross development
environment using cross development tools. In the cross development environment, software
development activities are typically performed on one computer system, the build-host
system, while the result of the development effort (produced by the cross tools) is a software
system that executes on the target platform. The requirements for the target platform are
usually incompatible and quite often in direct conflict with the requirements for the build-
host. Moreover, the target hardware is often custom designed for a particular project.
This means that the cross development toolset must allow the developer to customize the
tools to address target specific run-time issues. The toolset must have provisions for board
dependent initialization code, device drivers, and error handling code.

The build-host computer is optimized to support the code development cycle with sup-
port for code editors, compilers, and linkers requiring large disk drives, user development
windows, and multiple developer connections. Thus the build-host computer is typically
a traditional UNIX workstation such as those available from SUN or Silicon Graphics, or
a PC running either a version of MS-Windows or UNIX. The build-host system may also
be required to execute office productivity applications to allow the software developer to
write documentation, make presentations, or track the project’s progress using a project
management tool. This necessitates that the build-host computer be general purpose with
resources such as a thirty-two or sixty-four bit processor, large amounts of RAM, a monitor,
mouse, keyboard, hard and floppy disk drives, CD-ROM drive, and a graphics card. It is
likely that the system will be multimedia capable and have some networking capability.

Conversely, the target platform generally has limited traditional computer resources. The
hardware is designed for the particular functionality and requirements of the embedded sys-
tem and optimized to perform those tasks effectively. Instead of hard drives and keyboards,
it is composed of sensors, relays, and stepper motors. The per-unit cost of the target plat-
form is typically a critical concern. No hardware component is included without being cost
justified. As a result, the processor of the target system is often from a different processor
family than that of the build-host system and usually has lower performance. In addition
to the processor families designed only for use in embedded systems, there are versions of
nearly every general-purpose processor specifically tailored for real-time embedded systems.
For example, many of the processors targeting the embedded market do not include hard-
ware floating point units, but do include peripherals such as timers, serial controllers, or
network interfaces.

Chapter 1: Introduction 3

1.3 Resources on the Internet

This section describes various resources on the Internet which are of use to RTEMS users.

1.3.1 Online Tool Documentation

Each of the tools in the GNU development suite comes with documentation. It is in the
reader’s and tool maintainers’ interest that one read the documentation before posting a
problem to a mailing list or news group. The RTEMS Project provides formatted documen-
tation for the primary tools in the cross development toolset including BINUTILS, GCC,
NEWLIB, and GDB with the pre-built versions of those tools.

Much of the documentation is available at other sites on the Internet. The following is a
list of URLs where one can find HTML versions of the GNU manuals:
Free Software Foundation

http://www.gnu.org/manual /manual.html

Delorie Software http://www.delorie.com/gnu/docs

1.3.2 RTEMS Mailing List
rtems-users@rtems.com

This is the primary mailing list for the discussion of issues related to RTEMS, including
GNAT/RTEMS. If you have questions about RTEMS, wish to make suggestions, track
development efforts, or just want to pick up hints, this is a good list to monitor. If you
would like to browse the thousands of messages in the fifteen year archive of the mailing
list or subscribe to it, please visit http://www.rtems.org/mailman for more information,

1.3.3 GCC Mailing Lists

The GCC Project is hosted at http://gcc.gnu.org. They maintain multiple mailing lists
that are described at the web site along with subscription information.

http://www.gnu.org/manual/manual.html
http://www.delorie.com/gnu/docs
mailto:rtems-users@rtems.com
http://www.rtems.org/mailman
http://gcc.gnu.org

Chapter 2: Requirements 5

2 Requirements

This chapter describes the build-host system requirements and initial steps in installing the
GNU Cross Compiler Tools and RTEMS on a build-host.

2.1 Disk Space

A fairly large amount of disk space is required to perform the build of the GNU C/C++
Cross Compiler Tools for RTEMS. The following table may help in assessing the amount of
disk space required for your installation:

e e +
| Component | Disk Space Required |
o e +
I archive directory | 120 Mbytes |
[tools src unarchived [1400 Mbytes |
| each individual build directory | up to 2500 Mbytes |
| each installation directory | 900 Mbytes |
et e e +

It is important to understand that the above requirements only address the GNU C/C++
Cross Compiler Tools themselves. Adding additional languages such as Ada or Go can
increase the size of the build and installation directories. Also, the unarchived source and
build directories can be removed after the tools are installed.

After the tools themselves are installed, RTEMS must be built and installed for each Board
Support Package that you wish to use. Thus the precise amount of disk space required for
each installation directory depends highly on the number of RTEMS BSPs which are to be
installed. If a single BSP is installed, then the additional size of each install directory will
tend to be in the 40-60 Mbyte range.

There are a number of factors which must be taken into account in order to estimate the
amount of disk space required to build RTEMS itself. Attempting to build multiple BSPs
in a single step increases the disk space requirements. One some target architectures, this
can lead to disk usage during the build of over one gigabyte.

Similarly enabling optional features increases the build and install space requirements. In
particular, enabling and building the RTEMS tests results in a significant increase in build
space requirements but since the tests are not installed has, enabling them has no impact
on installation requirements.

2.2 General Host Software Requirements

The instructions in this manual should work on any computer running a POSIX environment
including GNU/Linux and Cygwin. Mingw users may encounter additional issues due to the
limited POSIX compatibility. Some native GNU tools are used by this procedure including:

e GCC

e GNU make

e GNU makeinfo

6 Getting Started with RTEMS

In addition, some native utilities may be deficient for building the GNU tools. On hosts
which have m4 but it is not GNU m4, it is not uncommon to have to install GNU m4.
Similarly, some shells are not capable of fully supporting the RITEMS configure scripts.

2.2.1 GCC

Although RTEMS itself is intended to execute on an embedded target, there is source
code for some native programs included with the RTEMS distribution. Some of these
programs are used to assist in the building of RTEMS itself, while others are BSP specific
tools. Regardless, no attempt has been made to compile these programs with a non-GNU
compiler.

2.2.2 GNU Make

Both NEWLIB and RTEMS use GNU make specific features and can only be built using
GNU make. Many systems include a make utility that is not GNU make. The safest way
to meet this requirement is to ensure that when you invoke the command make, it is GNU
make. This can be verified by attempting to print the GNU make version information:

make --version
If you have GNU make and another make on your system, it is common to put the directory

containing GNU make before the directory containing other implementations of make.

2.2.3 GNU makeinfo Version Requirements

In order to build gce 2.9.x or newer versions, the GNU makeinfo program installed on your
system must be at least version 1.68. The appropriate version of makeinfo is distributed
with gcc.

The following demonstrates how to determine the version of makeinfo on your machine:

makeinfo --version

2.3 Host Specific Notes
2.3.1 Solaris 2.x

The following problems have been reported by Solaris 2.x users:

e The build scripts are written in "shell". The program /bin/sh on Solaris 2.x is not
robust enough to execute these scripts. If you are on a Solaris 2.x host, then use
the /bin/ksh or /bin/bash shell instead.

e The native patch program is broken. Install the GNU version.

e The native m4 program is deficient. Install the GNU version.

2.3.2 Distribution Independent Potential GNU /Linux Issues

The following problems have been reported by users of various GNU/Linux distributions:

e Certain versions of GNU fileutils include a version of install which does not work
properly. Please perform the following test to see if you need to upgrade:

install -c -4 /tmp/foo/bar

Chapter 2: Requirements 7

If this does not create the specified directories your install program will not install
RTEMS properly. You will need to upgrade to at least GNU fileutils version 3.16
to resolve this problem.

2.3.3 GNU/Linux Distrobutions using Debian Packaging Format

The RTEMS Project does not currently provide prebuilt toolsets in the Debian packaging
format used by the Debian and Ubuntu distributions. If you are using a distribution using
this packaging format, then you have two options for installing the RTEMS toolset.

The first option is to build the toolset from source following the instructions in the Chapter 4
[Building the GNU Cross Compiler Toolset], page 15. This is an approach taken by many
users.

Alternatively, it is often possible to extract the contents of the RPM files which contain
the portions of the toolset you require. In this case, you will follow the instructions in
Section 3.1.1 [Locating the RPMs for your GNU/Linux Distribution], page 9 but assume
your distribution is the RedHat Enterprise Linux version which is closest to yours from a
shared library perspective. As of December 2010, this is usually RedHat Enterprise Linux
version 5. As time passes, it is expected that version 6 will be appropriate in more cases.
You will extract the contents of these RPM files using either rpm2cpio and install them or
you may be able to use the alien tool to convert them to Debian packaging.

Chapter 3: Prebuilt Toolset Executables 9

3 Prebuilt Toolset Executables

Precompiled toolsets are available for GNU/Linux and MS-Windows. Other hosts will need
to build from source. Packaged binaries are in the following formats:

e GNU/Linux - RPM
e Cygwin - tar.bz2
e Mingw - tar.bz2

RPM is an acronym for the RPM Package Manager. RPM is the native package installer
for many GNU /Linux distributions including RedHat Enterprise Linux, Centos, SuSE, and
Fedora.

The RTEMS Project maintains a Yum Repository which makes it quite simple to install
and update RTEMS toolsets.

The prebuilt binaries are intended to be easy to install and the instructions are similar
regardless of the host environment. There are a few structural issues with the packaging of
the RTEMS Cross Toolset binaries that you need to be aware of.

1. There are dependencies between the various packages. This requires that certain
packages be installed before others may be. Some packaging formats enforce this
dependency.

2. Some packages are target CPU family independent and shared across all target
architectures. These are referred to as "base" packages.

3. Pre-built GNU Binary Utilities (binutils) packages are available for all RTEMS
targets. These include tools such as the assembler and linker and must be installed.

4. Pre-built C language packages are available which include a C compiler as well as
the Standard C libraries for the embedded RTEMS targets. These must be installed.

5. Pre-built C++ language packages are available for most target architectures which
includes a C++ compiler as well as the Standard C++ libraries for the embedded
RTEMS targets. These are not part of the minimum installation and need only be
installed if the application is using C++.

NOTE: Installing toolset binaries does not install RTEMS itself, only the tools required to
build RTEMS. See Chapter 5 [Building RTEMS], page 27 for the next step in the process.

3.1 RPMs

This section provides information on installing and removing RPMs.

Note that RTEMS tools for multiple major versions of RTEMS can be installed in parallel
since they are installed into different host directories. The tools also include the RTEMS
Release Series in their name.

3.1.1 Locating the RPMs for your GNU /Linux Distribution

The RTEMS Project maintains a Yum Repository of RPMs for its toolsets. Whether you
use Yum to install the RPMs or download and install them via another procedure, you will

10 Getting Started with RTEMS

need to locate the appropriate set of RPMs on the RTEMS Yum Repository. The following
instructions are generalized.

If your host operating system uses Yum and RPMs, then you will only have to download
and install two RPMs by hand

1. Point your browser at http://www.rtems.org/ftp/pub/rtems/linux. In this direc-
tory, you will see a list of RTEMS major versions such as 4.11, 4.10, 4.9, etc..
Descend into the appropriate directory for the version of RTEMS you are using.

2. Now that you are in the directory for a specific RTTEMS major version, you will
be presented with a list of GNU/Linux distributions. This will include options like
redhat, centos, fedora, and suse. Select the appropriate distribution.

3. Now that you are in the directory for your selected distribution, you will be presented
with a list of distribution versions for which RTEMS pre-built RPMs are available.
Select the appropriate distribution version.

4. Now that you are in the directory for the proper version of your selected distribution,
you will be presented with a choice of host architecture versions such as 1386, 1686,
and x86_64. Select the appropriate version for your development computer.

5. At this point, you will have a long list of RPMs to select from.

The RTEMS Projects supports a wide variety of host OS and target combinations. In
addition, these toolsets are specific to a particular RTEMS Release Series. Given the large
number of possible combinations, the instructions use variables to indicate where versions
go in the real package names you will use. These variable are used in the examples of RPM
version names:

e <VERSION> is the tool version will be found at this location in the RPM name. This
will be a release number such as 2.20 or 4.4.5.

e <DIST> indicates the GNU/Linux distribution version. This will be a string such as
fcl4 or el6.

e <ARCH> indicates the architecture used for RPMs on your GNU/Linux installation.
This will be a string such as 1386 or x86_64.

e <RPM> indicates the RPM revision level. This will be a single integer.

The tool VERSION and RPM release may vary within the set of current RPMs for a
particular RTEMS Release series based upon the target architecture.

If you are using Yum, please continue to the next section. If you are downloading the RPMs
to install by hand, then go to the Section 3.1.3.1 [Installing RPMs Without Yum]|, page 11
section.

3.1.2 Managing RPMs Using Yum

This section describes how to install and remove RTEMS Toolsets using Yum.

3.1.2.1 Installing RPMs Using Yum

If you are on a host operating system that uses Yum, you are fortunate because this is the
one of the simplest ways to install the tools. After locating the appropriate directory on

http://www.rtems.org/ftp/pub/rtems/linux

Chapter 3: Prebuilt Toolset Executables 11

the RTEMS Yum Repository using the instructions in Section 3.1.1 [Locating the RPMs
for your GNU /Linux Distribution], page 9, you will need to install the following RPMs:

o rtems-4.9--release-<VERSION>-<RPM>.<DIST>.noarch.rpm

o rtems-4.9--yum-conf-<VERSION>-<RPM>.<DIST>.noarch.rpm

You can use the search within page feature of your browser to locate the RPMs with
"release" or "yum" in their names.

You will need to download the RPMs above or RPM can be given the URLs for them and
it will fetch them for you. Either way, the commands similar to the following will install
the common or base RPMs required.

rpm -U rtems-4.9--release-<VERSION>-<RPM>.<DIST>.noarch.rpm \
rtems-4.9--yum-conf-<VERSION>-<RPM>.<DIST>.noarch.rpm

Once these are installed, Yum knows about the RTEMS Yum repository for /opt/rtems-
4.9. This means that you can install and upgrade RTEMS Toolsets just like the packages
provided by your distribution. To install complete C and C++ toolset targeting the SPARC
architecture for the RTEMS 4.9 Release series, commands similar to the following will be
used.

yum install /opt/rtems-4.9-auto*
yum install /opt/rtems-4.9-sparc-*

The first command installs GNU autoconf and automake which are used by all RTEMS
targets. The second command installs the complete sparc-/opt/rtems-4.9 toolset including
all dependencies.

3.1.2.2 Removing RPMs Using Yum

The following is a sample session illustrating the removal of a C/C++ toolset targeting the
SPARC architecture.

yum erase rtems-4.9--sparc-x*

If this is the last target architecture for which tools are installed, then you can remove the
RTEMS GNU autotools and common packages as follows:

yum erase rtems-4.9--autox
yum erase rtems-4.9--*common*

NOTE: If you have installed any RTEMS BSPs, then it is likely that RPM will complain
about not being able to remove everything. These will have to be removed by hand.

3.1.3 Managing RPMs Without Using Yum

This section describes how to install and remove RTEMS Toolsets without using Yum. This
is NOT expected to be the norm for RPM users.

3.1.3.1 Installing RPMs Without Yum

The following is a sample session illustrating the installation of the complete C and C++
toolset targeting the SPARC architecture for the RTEMS 4.9 Release series.

12 Getting Started with RTEMS

Since you are not using Yum, you will need to download all of the RPMs you will install.
Alternatively, RPM can be given a URL for an RPM file and it will fetch it for you. Either
way, the commands similar to the following will install the common or base RPMs required.

rpm -U rtems-4.9-binutils-common-<VERSION>-<RPM>.<DIST>.noarch.rpm \
rtems-4.9-gcc-common-<VERSION>-<RPM>.<DIST>.noarch.rpm \
rtems-4.9-newlib-common-<VERSION>-<RPM>.<DIST>.noarch.rpm \
rtems—4.9-gdb—common-<VERSION>-<RPM>.<DIST>.noarch.rpm

The above RPMs are shared across all RTEMS targets and include common files such
as the documentation. The following illustrates how to install the GNU Autoconf and
Automake RPMs that match your RTEMS installation. RTEMS uses the GNU Autotools
for its configure and build infrastructure and you will need these if you modify the build
infrastructure or check out RTEMS from CVS and have to bootstrap the source tree.

rpm -U rtems-4.9-autoconf-<VERSION>-<RPM>.<DIST>.noarch.rpm \
rtems—-4.9-automake-<VERSION>-<RPM>.<DIST>.noarch.rpm

Now that you have installed all of the RPMs that are independent of the target architecture
you can install the C toolset for a specific target. The following command will install the
target architecture specific set of the RPMs for a C toolset including GDB.

rpm -U rtems-4.9-sparc-rtems4.9-binutils-<VERSION>-<RPM>.<ARCH>.rpm \
rtems-4.9-sparc-rtems4.9-gcc-<VERSION>-<RPM>.<ARCH>.rpm \
rtems-4.9-sparc-rtems4.9-newlib-<VERSION>-<RPM>.<ARCH>.rpm \
rtems-4.9-sparc-rtems4.9-1ibgcc-<VERSION>-<RPM>.<ARCH>.rpm \
rtems-4.9-sparc-rtems4.9-gdb-<VERSION>-<RPM>.<ARCH>.rpm

The following command illustrates how to install the C++ specific portion of the RPMs.

rpm -U rtems-4.9-sparc-rtems4.9-gcc-c++-<VERSION>-<RPM>.<ARCH>.rpm \
rtems—4.9-sparc-rtems4.9-1ibstd++-<VERSION>-<RPM>.<ARCH>.rpm

Upon successful completion of the above command sequence, a C/C++ cross development
toolset targeting the SPARC is installed in /opt/rtems-4.9. In order to use this toolset,
the directory /opt/rtems-4.9/bin should be at the start of your PATH. At this point,
the tools are installed for a specific target architecture adn you may proceed directly to
Chapter 5 [Building RTEMS], page 27.

If you want to build RTEMS for multiple target architectures, you will need to install the
target specific portion of the RPMs for each target.

3.1.3.2 Removing RPMs Without Using Yum

The following is a sample session illustrating the removal of a C/C++ toolset targeting the
SPARC architecture.

rpm -e ‘rpm -qa | grep rtems-4.9--sparc-‘
If this is the last target architecture for which tools are installed, then you can remove the
RTEMS GNU autotools and common packages as follows:

rpm -e ‘rpm -qa | grep rtems-4.9--auto

rpm -e ‘rpm -qa | grep rtems-4.9- | grep common‘

Chapter 3: Prebuilt Toolset Executables 13

NOTE: If you have installed any RTEMS BSPs, then it is likely that RPM will complain
about not being able to remove everything. These will have to be removed by hand.

3.1.4 Determining Which RTEMS RPMs are Installed
The following command will report which RTEMS RPMs are currently installed:

rpm -qa | grep 4.9

3.2 Zipped Tar Files

The tool binaries for some hosts are provided as compressed tar files. This section provides
information on installing and removing Zipped Tar Files (e.g .tar.gz or .tar.bz2).

3.2.1 Installing Zipped Tar Files

The following is a sample session illustrating the installation of a C/C++ toolset targeting
the SPARC architecture assuming that GNU tar is installed as tar for a set of archive files
compressed with GNU Zip (gzip):

cd /

tar xzf rtems-4.9-binutils-common-<VERSION>-<RPM>.tar.gz

tar xzf rtems-4.9-sparc-rtems4.9-binutils-<VERSION>-<RPM>.tar.gz
tar xzf rtems-4.9-gcc-common-<VERSION>-<RPM>.tar.gz

tar xzf rtems-4.9-sparc-rtems4.9-gcc-<VERSION>-<RPM>.tar.gz

tar xzf rtems-4.9-sparc-rtems4.9-newlib-<VERSION>-<RPM>.tar.gz
tar xzf rtems-4.9-gdb-common-<VERSION>-<RPM>.tar.gz

tar xzf rtems-4.9-sparc-rtems4.9-gdb-<VERSION>-<RPM>.tar.gz

The following command set is the equivalent command sequence for the same toolset as-
suming that is was compressed with GNU BZip (bzip2):

cd /

tar xjf rtems-4.9-binutils-common-<VERSION>-<RPM>.tar.bz2

tar xjf rtems-4.9-sparc-rtems4.9-binutils-<VERSION>-<RPM>.tar.bz2
tar xjf rtems-4.9-gcc-common-<VERSION>-<RPM>.tar.bz2

tar xjf rtems-4.9-sparc-rtems4.9-newlib-<VERSION>-<RPM>.tar.bz2
tar xjf rtems-4.9-sparc-rtems4.9-gcc-<VERSION>-<RPM>.tar.bz2

tar xjf rtems-4.9-gdb-common-<VERSION>-<RPM>.tar.bz2

tar xjf rtems-4.9-sparc-rtems4.9-gdb-<VERSION>-<RPM>.tar.bz2

Upon successful completion of the above command sequence, a C/C++ cross development
toolset targeting the SPARC is installed in /opt/rtems-4.9. In order to use this toolset,
the directory /opt/rtems-4.9 must be included in your PATH.

3.2.2 Removing Zipped Tar Files

There is no automatic way to remove the contents of a tar.gz or tar.bz2 once it is installed.
The contents of the directory /opt/rtems-4.9 can be removed but this will likely result in
other packages being removed as well.

Chapter 4: Building the GNU Cross Compiler Toolset 15

4 Building the GNU Cross Compiler Toolset

NOTE: This chapter does NOT apply if you installed prebuilt toolset executables for BINU-
TILS, GCC, NEWLIB, and GDB. If you installed prebuilt executables for all of those,
proceed to Chapter 5 [Building RTEMS], page 27. If you require a GDB with a special con-
figuration to connect to your target board, then proceed to Section 4.2.9 [Installing GDB
Without RPM], page 21 for some advice.

This chapter describes the steps required to acquire the source code for a GNU cross compiler
toolset, apply any required RTEMS specific patches, compile that toolset and install it.

It is recommended that when toolset binaries are available for your particular host, that
they be used. Prebuilt binaries are much easier to install. They are also much easier for
the RTEMS Project to support.

4.1 Preparation

Before you can build an RTEMS toolset from source, there are some preparatory steps
which must be performed. You will need to determine the various tool versions and patches
required and download them You will also have to unarchive the source and apply any
patches.

4.1.1 Determining Tool Version and Patch Revision

The tool versions and patch revisions change on a fairly frequent basis. In addition, these
may vary based upon the target architecture. In some cases, the RTEMS Project may
have to stick with a particular version of a tool to provide a working version for a specific
architecture. Because of this, it is impossible to provide this information in a complete and
accurate manner in this manual. You will need to refer to the configuration files used by
the RTEMS RPM specification files to determine the current versions and, if a patch is
required, what version. This section describes how to locate the appropriate tool versions
and patches for a particular target architecture.

All patches and RPM specification files are kept in CVS. They are not included in release
tarballs. You will have to access the CVS branch for RTEMS 4.9. For details on this,
visit http://www.rtems.org and look for instructions on accessing the RTEMS Source Code
Repository in read-only mode.

In the checked out source code, you will need to look in the subdirectory
contrib/crossrpms/autotools to determine the versions of AUTOCONF and AU-
TOMAKE as well as any patches required. In this directory are a few files you will need
to look at. The first is Makefile.am which defines the versions of AUTOCONF and AU-
TOMAKE required for this RTEMS Release Series. Make a note of the version numbers
required for AUTOCONF and AUTOMAKE. Then examine the following files to determine
the master location for the source tarballs and to determine if a patch is required for each
tool version cited in the Makefile.am.

autoconf-sources.add
automake-sources.add

http://www.rtems.org

16 Getting Started with RTEMS

If any patches are required, they will be in the contrib/crossrpms/patches subdirectory
of your checked out RTEMS source tree.

In the checked out source code, you will need to look in the subdirectory
contrib/crossrpms/rtems4.9 to determine the target specific tool versions and patches
required. In this directory, you will find a number of subdirectories with many named after
target architectures supported by RTEMS. Descend into the directory for the architecture
you plan to build tools for. Again, the Makefile.am defines the tool versions for this ar-
chitecture and RTEMS Release Series. Make a note of the version numbers required for
BINUTILS, GCC, NEWLIB, and GDB. Then examine the following files to determine the
master location for the source tarballs and to determine if a patch is required for each tool
version cited in the Makefile.am.

binutils-sources.add gcc-sources.add gdb-sources.add

If any patches are required, they will be in the contrib/crossrpms/patches subdirectory
of your checked out RTEMS source tree.

This is the entire set of source tarballs and patches required for a toolset targeting the
selected architecture. In many cases, this will be the same versions required by other
targets on this RTEMS Release Series.

Depending on the build method chosen, you may have to download source and patches or
only patches. Also the destination directory for the downloaded source is dependent on the
build method followed. But the versions required are the same. Specific information on
what to download and where to place it is in subsequent sections.

4.1.2 Obtain Source and Patches

You will need to download the sources for the various packages from their master locations
as identified in the previous section.

Any patches needed should be in the contrib/crossrpms/patches directory of your
RTEMS source.

4.2 Installing the Tools Without RPM

This section describes the procedure for building and installing an RTEMS cross toolset
from source code without using the RPM build infrastructure.

Direct invocation of configure and make provides more control and easier recovery from
problems when building.

4.2.1 Archive and Build Directory Format

When no packaging format requirements are present, the root directory for the storage of
source archives and patches as well as for building the tools is up to the user. The only
concern is that there be enough disk space to complete the build. In this document, the
following organization will be used.

Make an archive directory to contain the downloaded source code and pataches. Addi-
tionally, a tools directory to be used as a build directory. The command sequence to do
this is shown below:

Chapter 4: Building the GNU Cross Compiler Toolset 17

mkdir archive
mkdir tools

This will result in an initial directory structure similar to the one shown in the following
figure:

/whatever/prefix/you/choose/
archive/
tools/

The RTEMS Project tries to submit all of our patches upstream to the parent projects. In
the event there are patches, the master copy of them is located in the appropriate branch
of the RTEMS source module in CVS. Patches are in the contrib/crossrpms/patches.

4.2.2 Unarchiving the Tools

NOTE: This step is required if building any of the tools without using RPM. It is NOT
required if using the procedure described in Section 4.3 [Using RPM to Build Tools|, page 22.
This section describes the process of unarchiving the tools that comprise an RTEMS toolset.

GNU source distributions are archived using tar and compressed using either gzip or bzip.
If compressed with gzip, the extension .gz is used. If compressed with bzip, the extension
.bz2 is used.

While in the tools directory, unpack the compressed tar files using the appropriate com-
mand based upon the compression program used.

cd tools
tar xzf ../archive/TOOLNAME.tar.gz # for gzip’ed tools
tar xjf ../archive/TOOLNAME.tar.bz2 # for bzip’ed tools

Assuming you are building a complete toolset, after all of the the compressed tar files have
been unpacked using the appropriate commands, the following directories will have been
created under tools.

autoconf-<VERSION>
e automake-<VERSION>
e binutils-<VERSION>

e gcc-<VERSION>

e binutils-<VERSION>

e gdb-<VERSION>

The tree should look something like the following figure:

/whatever/prefix/you/choose/
archive/
variable tarballs
variable patches
tools/
various tool source trees

18 Getting Started with RTEMS

4.2.3 Applying RTEMS Project Tool Patches

NOTE: This step is required if building any of the tools IF they have a patch currently
required and you are building the tools without using RPM. is NOT required if using the
procedure described in Section 4.3 [Using RPM to Build Tools], page 22. This section

describes the process of applying the RTEMS patches to any of the tools.

If a patch is required for a particular tool source tree, then you will perform a command
similar to the following to apply the patch. In this example, <TOOL> should be replaced
by the appropriate tool directory and <TOOL_PATCH> with the appropriate patch file.

cd tools/<TOOL>
cat ../../archive/<TOOL_PATCH> | patch -pl

NOTE: If you add the --dry-run option to the patch command in the above commands, it
will attempt to apply the patch and report any issues without actually modifying any files.

If the patch was compressed with the gzip program, it will have a suffix of .gz and you
should use zcat instead of cat as shown above. If the patch was compressed with the gzip
program, it will have a suffix of .bz2 and you should use bzcat instead of cat as shown
above.

Check to see if any of these patches have been rejected using the following sequence:

cd tools/<TOOL>
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file which is properly applied.

4.2.4 Installing AUTOCONF Without RPM

The following example illustrates the invocation of configure and make to build and install
autoconf-<version>. This tool is installed as a native utility and is independent of any
RTEMS target.

mkdir b-autoconf

cd b-autoconf

. ./autoconf-<VERSION>/configure --prefix=/opt/rtems-4.9
make all

make info

make install

After autoconf-<VERSION> is built and installed the build directory b-autoconf may be
removed.

For more information on the invocation of configure, please refer to the documentation for
autoconf-<VERSION> or invoke the autoconf-VERSION> configure command with the
--help option.

4.2.5 Installing AUTOMAKE Without RPM

The following example illustrates the invocation of configure and make to build and install
automake-<version>. This tool is installed as a native utility and is independent of any
RTEMS target.

Chapter 4: Building the GNU Cross Compiler Toolset 19

mkdir b-automake

cd b-automake

. ./automake-<VERSION>/configure --prefix=/opt/rtems-4.9
make all

make info

make install

After automake-<VERSION> is built and installed the build directory b-automake may be
removed.

For more information on the invocation of configure, please refer to the documentation
for automake-<VERSION> or invoke the automake-VERSION> configure command with
the --help option.

4.2.6 Installing BINUTILS Without RPM

The following example illustrates the invocation of configure and make to build and install
binutils-<version> sparc-rtems4.9 target:

mkdir b-binutils

cd b-binutils

../binutils-<VERSION>/configure --target=sparc-rtems4.9 \
—-prefix=/opt/rtems-4.9

make all

make info

make install

After binutils-<VERSION> is built and installed the build directory b-binutils may be
removed.

For more information on the invocation of configure, please refer to the documentation
for binutils-<VERSION> or invoke the binutils-VERSION> configure command with the
—--help option.

NOTE: The shell PATH variable needs to be updated to include the path the binutils user
executables have been installed in. The directory containing the executables is the prefix
used above with ‘bin’ post-fixed.

export PATH=/opt/rtems-4.9/bin:${PATH}

Failure to have the binutils in the path will cause the GCC and NEWLIB build to fail with
an error message similar to:

sparc-rtems4.9-ar: command not found

4.2.7 Installing GCC and NEWLIB Without RPM
Before building gec-<VERSION> and newlib-<VERSION>, binutils-<VERSION> must be
installed and the directory containing those executables must be in your PATH.

The C Library is built as a subordinate component of gcc-<VERSION>. Because of this, the
newlib-<VERSION> directory source must be available inside the gcc-<VERSION> source
tree. This is normally accomplished using a symbolic link as shown in this example:

20 Getting Started with RTEMS

cd gcc-<VERSION>
1n -s ../newlib-<VERSION>/newlib .

The following example illustrates the invocation of configure and make to build and install
gcc-<VERSION> with only C and C++ support for the sparc-rtems4.9 target:

mkdir b-gcc

cd b-gcc

. ./gcc—-<VERSION>/configure --target=sparc-rtems4.9 \
--with-gnu-as --with-gnu-1d --with-newlib --verbose \
--enable-threads --enable-languages="c,c++" \
—--prefix=/opt/rtems-4.9

make all

make info

make install

After gce-<VERSION> is built and installed the build directory b-gcc may be removed.

For more information on the invocation of configure, please refer to the documentation
for gcc-<VERSION> or invoke the gcc-<VERSION> configure command with the --help
option.

4.2.8 Building GCC with Ada Support

If you want a GCC toolset that includes support for Ada (e.g. GNAT), there are some
additional requirements on the host environment and additional build steps to perform. It
is critical that you use the same version of GCC/GNAT as the native compiler. GNAT must
be compiled with an Ada compiler and when building a GNAT cross-compiler, it should be
the same version of GNAT itself.

It is also important to verify whether there is an RTEMS specific Ada patch required for
GCC. These can be found in http://www.rtems.org/ftp/pub/rtems/people/joel/ada. The
patch is often a minor version or two behind GCC but will usually apply cleanly. This
patch must be applied.

After this, it is critical to perform these steps in the correct order. GNAT requires that the
C Library and RTEMS itself be installed before the language run-time can be built.

e install native GCC with GNAT

e place new native GNAT at head of PATH

e install BINUTILS

e place RTEMS prefix at head of PATH

e install C toolset (C++ is optional)

e install RTEMS built multilib

e install RTEMS built for your BSP

The build procedure is the same until the Ada configure step. A GCC toolset with GNAT
enabled requires that ada be included in the set of enabled languages. The following example
illustrates the invocation of configure and make to build and install gcc-<VERSION> with
only C, C++, and Ada support for the sparc-rtems4.9 target:

http://www.rtems.org/ftp/pub/rtems/people/joel/ada

Chapter 4: Building the GNU Cross Compiler Toolset 21

mkdir b-gcc

cd b-gcc

../gcc-<VERSION>/configure --target=sparc-rtems4.9 \
--with-gnu-as --with-gnu-1d --with-newlib --verbose \
--enable-threads --enable-languages="c,c++,ada" \
—--prefix=/opt/rtems-4.9

make all

make info

make install

After gcc-<VERSION> is built and installed the build directory b-gcc may be removed.

4.2.9 Installing GDB Without RPM
NOTE: This step is NOT required if prebuilt executables for the GDB were installed and
they meet your target interface requirements.

GDB supports many configurations but requires some means of communicating between the
host computer and target board. This communication can be via a serial port, Ethernet,
BDM, or ROM emulator. The communication protocol can be the GDB remote protocol
or GDB can talk directly to a ROM monitor. This setup is target board specific. Some of
the configurations that have been successfully used with RTEMS applications are:

e BDM with ColdFire, 683xx, MPC860 CPUs

e Motorola Mxxxbug found on M68xxx VME boards

e Motorola PPCbug found on PowerPC VME, CompactPCI, and MTX boards

e ARM based Cogent EDB7312

e PC(C’s using various Intel and AMD CPUs including 1386, i486, Pentium and above,
and Athlon

e PowerPC Instruction Simulator in GDB (PSIM)
e MIPS Instruction Simulator in GDB (JMR3904)
e Sparc Instruction Simulator in GDB (SIS)

e Sparc Instruction Simulator (TSIM)

GDB is currently RTEMS thread/task aware only if you are using the remote debugging
support via Ethernet. These are configured using gdb targets of the form CPU-RTEMS.
Note the capital RTEMS.

It is recommended that when toolset binaries are available for your particular host, that
they be used. Prebuilt binaries are much easier to install but in the case of gdb may or may
not include support for your particular target board.

The following example illustrates the invocation of configure and make to build and install
gdb-<VERSION> for the m68k-rtems4.9 target:

mkdir b-gdb

cd b-gdb

. ./gdb-<VERSION>/configure --target=m68k-rtems4.9 \
—--prefix=/opt/rtems-4.9

22 Getting Started with RTEMS

make all
make info
make install

For some configurations, it is necessary to specify extra options to configure to enable
and configure option components such as a processor simulator. The following is a list of
configurations for which there are extra options:

powerpc-rtems4.9 —--enable-sim ——enable-sim-powerpc -—enable-sim-timebase
--enable-sim-hardware

sparc-rtems4.9 --enable-sim

After gdb-<VERSION> is built and installed the build directory b-gdb may be removed.

For more information on the invocation of configure, please refer to the documentation
for gdb-<VERSION> or invoke the gdb-<VERSION> configure command with the --help
option.

4.3 Using RPM to Build Tools

RPM is a packaging format which can be used to distribute binary files as well as to capture
the procedure and source code used to produce those binary files. For RPM, it is assumed
that the following subdirectories are under a root directory such as /usr/src/redhat or
/usr/local/src/redhat) on your machine.

BUILD
RPMS
SOURCES
SPECS
SRPMS

For the purposes of this document, the RPM SOURCES directory is the directory into which
all tool source and patches are assumed to reside. The BUILD directory is where the actual
build is performed when building binaries from a source RPM.

RPM automatically unarchives the source and applies any needed patches so you do NOT
have to manually perform the procedures described Section 4.2.2 [Unarchiving the Tools],
page 17 and Section 4.2.3 [Applying RTEMS Project Tool Patches|, page 18. But you are
responsible for placing all source tarballs and patches in the SOURCES directory per the
instructions in Section 4.1.2 [Obtain Source and Patches], page 16

This procedure starts by installing the source (e.g. .src.rpm extension) RPMs. The
RTEMS tool source RPMS are called "nosrc" to indicate that one or more source files
required to produce the RPMs are not present. The RTEMS source RPMs typically in-
clude all required patches, but do not include the large .tar.gz or .tgz files for each
component such as BINUTILS, GCC, or NEWLIB. These are shared by all RTEMS RPMs
regardless of target CPU and there was no reason to duplicate them. You will have to get
the required source archive files by hand and place them in the SOURCES directory before
attempting to build. If you forget to do this, RPM is smart — it will tell you what is missing.
You can fetch any missing files and try again.

Chapter 4: Building the GNU Cross Compiler Toolset 23

4.3.1 Building AUTOCONF using RPM

This section illustrates the invocation of RPM to build a new, locally compiled, AUTO-
CONTF binary RPM that matches the installed source RPM. This example assumes that all
of the required source is installed.

rpm -U rtems-4.9-1386-rtems4.9-autoconf-<VERSION>-<RPM_RELEASE>.src.rpm

cd <RPM_ROOT_DIRECTORY>/SPECS
rpm -bb i386-rtems4.9-autoconf-<VERSION>.spec

If the build completes successfully, RPMS like the following will be generated in a build-host
architecture specific subdirectory of the RPMs directory under the RPM root directory.

rtems-4.9-rtems4.9-autoconf-<VERSION>-<RPM_RELEASE>.<ARCH>.rpm

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

4.3.2 Building AUTOMAKE using RPM

This section illustrates the invocation of RPM to build a new, locally compiled, AU-
TOMAKE binary RPM that matches the installed source RPM. This example assumes
that all of the required source is installed.

rpm -U rtems-4.9-i1386-rtems4.9-automake-<VERSION>-<RPM_RELEASE>.src.rpm

cd <RPM_ROOT_DIRECTORY>/SPECS
rpm -bb i386-rtems4.9-automake-<VERSION>.spec

If the build completes successfully, RPMS like the following will be generated in a build-host
architecture specific subdirectory of the RPMs directory under the RPM root directory.

rtems-4.9-rtems4.9-automake-<VERSION>-<RPM_RELEASE>.<ARCH>.rpm

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

4.3.3 Building BINUTILS using RPM

This section illustrates the invocation of RPM to build a new, locally compiled, binutils
binary RPM that matches the installed source RPM. This example assumes that all of the
required source is installed.

rpm -U rtems-4.9-i386-rtems4.9-binutils-<VERSION>-<RPM_RELEASE>.src.rpm

cd <RPM_ROOT_DIRECTORY>/SPECS
rpm -bb i386-rtems4.9-binutils-<VERSION>.spec

If the build completes successfully, RPMS like the following will be generated in a build-host
architecture specific subdirectory of the RPMS directory under the RPM root directory.

rtems-4.9-binutils-common-<VERSION>-<RPM_RELEASE>.<ARCH>.rpm
rtems-4.9-i386-rtems4.9-binutils-<VERSION>-<RPM_RELEASE>.<ARCH>.rpm

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

24 Getting Started with RTEMS

4.3.4 Building GCC and NEWLIB using RPM

This section illustrates the invocation of RPM to build a new, locally compiled, set of GCC
and NEWLIB binary RPMs that match the installed source RPM. It is also necessary to
install the BINUTILS RPMs and place them in your PATH. This example assumes that all
of the required source is installed.

cd <RPM_ROOT_DIRECTORY>/SPECS
rpm -bb 1386-rtems4.9-gcc-<VERSION>.spec

If the build completes successfully, a set of RPMS like the following will be generated in a
build-host architecture specific subdirectory of the RPMS directory under the RPM root
directory.

rtems-4.9-gcc-common-<VERSION>-<RPM>.<DIST>.noarch.rpm \

rtems-4.9-newlib-common-<VERSION>-<RPM>.<DIST>.noarch.rpm \
rtems-4.9-i386-rtems4.9-gcc-<VERSION>-<RPM>.<ARCH>.rpm \

rtems-4.9-i386-rtems4.9-newlib-<VERSION>-<RPM>.<ARCH>.rpm \
rtems-4.9-i386-rtems4.9-1ibgcc-<VERSION>-<RPM>.<ARCH>.rpm \
rtems-4.9-i1386-rtems4.9-gcc-c++-<VERSION>-<RPM>.<ARCH>.rpm \
rtems-4.9-1386-rtems4.9-1ibstd++-<VERSION>-<RPM>.<ARCH>.rpm

NOTE: Some targets do not support building all languages.

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

4.3.5 Building the GDB using RPM

The following example illustrates the invocation of RPM to build a new, locally compiled,
binutils binary RPM that matches the installed source RPM. This example assumes that
all of the required source is installed.

rpm -U rtems-4.9-i386-rtems4.9-gdb-<VERSION>-<RPM_RELEASE>.src.rpm

cd <RPM_ROOT_DIRECTORY>/SPECS
rpm -bb i386-rtems4.9-gdb-<VERSION>.spec

If the build completes successfully, RPMS like the following will be generated in a build-host
architecture specific subdirectory of the RPMS directory under the RPM root directory.

rtems-4.9-gdb-common-<VERSION>-<RPM_RELEASE>.<ARCH>.rpm
rtems-4.9-i386-rtems4.9-gdb-<VERSION>-<RPM_RELEASE>.<ARCH>.rpm

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

4.4 Common Problems

4.4.1 Error Message Indicates Invalid Option to Assembler

If a message like this is printed then the new cross compiler is most likely using the native
assembler instead of the cross assembler or vice-versa (native compiler using new cross
assembler). This can occur for one of the following reasons:

Chapter 4: Building the GNU Cross Compiler Toolset 25

e Binutils Patch Improperly Applied
e Binutils Not Built
e Current Directory is in Your PATH

If you are using binutils 2.9.1 or newer with certain older versions of gcc, they do not agree
on what the name of the newly generated cross assembler is. Older binutils called it as.new
which became as.new.exe under Windows. This is not a valid file name, so as.new is now
called as-new. By using the latest released tool versions and RTEMS patches, this problem
will be avoided.

If binutils did not successfully build the cross assembler, then the new cross gee (xgec) used
to build the libraries can not find it. Make sure the build of the binutils succeeded.

If you include the current directory in your PATH, then there is a chance that the native
compiler will accidentally use the new cross assembler instead of the native one. This usually
indicates that "." is before the standard system directories in your PATH. As a general rule,
including "." in your PATH is a security risk and should be avoided. Remove "." from your
PATH.

NOTE: In some environments, it may be difficult to remove "." completely from your PATH.
In this case, make sure that "." is after the system directories containing "as" and "1d".

4.4.2 Error Messages Indicating Configuration Problems
If you see error messages like the following,
e cannot configure libiberty

e coff-emulation not found

e ctc.

Then it is likely that one or more of your gnu tools is already configured locally in its source
tree. You can check for this by searching for the config.status file in the various tool
source trees. The following command does this for the binutils source:

find binutils-<VERSION> -name config.status -print

The solution for this is to execute the command make distclean in each of the GNU tools
root source directory. This should remove all generated files including Makefiles.

This situation usually occurs when you have previously built the tool source for some
non-RTEMS target. The generated configuration specific files are still in the source tree
and the include path specified during the RTEMS build accidentally picks up the previous
configuration. The include path used is something like this:

-I../../binutils-<VERSION>/gcc -I/binutils-<VERSION>/gcc/include -I.
Note that the tool source directory is searched before the build directory.

This situation can be avoided entirely by never using the source tree as the build directory
— even for

Chapter 5: Building RTEMS 27

5 Building RTEMS

5.1 Obtain the RTEMS Source Code

This section provides pointers to the RTEMS source code and example programs. These
files should be placed in your archive directory. The set of tarballs which comprise an
RTEMS release is placed in a directory whose name if the release on the ftp site. The
RTEMS ftp site is accessible via both the ftp and http protocols at the following URLs:

e http://www.rtems.org/ftp/pub/rtems
e ftp://www.rtems.org/pub/rtems

Associated with each RTEMS Release is a set of example programs. Prior to the 4.10
Release Series, these examples were in a "Class Examples" and an "Examples" collection.
Beginning with the 4.10 Release Series, these examples collections were merged and other
examples added. This new collection is called "Examples V2". It is contained in the file
examples-v2-<VERSION>.tar.bz2> within the RTEMS release directory.

5.2 Unarchive the RTEMS Source

Use the following command sequence to unpack the RTEMS source into the tools directory:

cd tools
tar xjf ../archive/rtems-4.9.<VERSION>.tar.bz2

This creates the directory rtems-4.9.<VERSION>

5.3 Add <INSTALL_POINT>/bin to Executable PATH

In order to compile RTEMS, you must have the cross compilation toolset in your search
path. It is important to have the RTEMS toolset first in your path to ensure that you
are using the intended version of all tools. The following command prepends the directory
where the tools were installed in a previous step. If you are using binaries provided by the
RTEMS Project, the <INSTALL_POINT> will be /opt/rtems-4.9

export PATH=<INSTALL_POINT>/bin:${PATH}

NOTE: The above command is in Bourne shell (sh) syntax and should work with the Korn
(ksh) and GNU Bourne Again Shell (bash). It will not work with the C Shell (csh) or
derivatives of the C Shell.

5.4 Verifying the Operation of the Cross Toolset

In order to insure that the cross-compiler is invoking the correct subprograms (like as
and 1d), one can test assemble a small program. When in verbose mode, gcc prints out
information showing where it found the subprograms it invokes. In a temporary working
directory, place the following function in a file named f.c:

int £f(int x)
{

return x + 1;

http://www.rtems.org/ftp/pub/rtems
ftp://www.rtems.org/pub/rtems

28 Getting Started with RTEMS

}
Then assemble the file using a command similar to the following:
m68k-rtems4.9-gcc -v -8 f.c

Where m68k should be changed to match the target architecture of your cross compiler.
The result of this command will be a sequence of output showing where the cross-compiler
searched for and found its subcomponents. Verify that these paths correspond to your
<INSTALL_POINT>.

Look at the created file £.s and verify that it is in fact for your target processor.
Then try to compile the file f . c directly to object code using a command like the following;:
m68k-rtemsRTEMSAPI-gcc -v -c f.c

If this produces messages that indicate the assembly code is not valid, then it is likely that
you have fallen victim to one of the problems described in Section 4.4.1 [Error Message
Indicates Invalid Option to Assembler|, page 24 Please do not feel bad about this and do
not give up, one of the most common installation errors is for the cross-compiler not to be
able to find the cross assembler and default to using the native as. This can result in very
confusing error messages.

5.5 Building RTEMS for a Specific Target and BSP

This section describes how to configure and build RTEMS so that it is specifically tailored
for your BSP and the CPU model it uses. There is currently only one supported method
to compile and install RTEMS:

e direct invocation of configure and make

Direct invocation of configure and make provides more control and easier recovery from
problems when building.

This section describes how to build RTEMS.

5.5.1 Using the RTEMS configure Script Directly

Make a build directory under tools and build the RTEMS product in this directory.
The ../rtems-4.9.<VERSION>/configure command has numerous command line argu-
ments. These arguments are discussed in detail in documentation that comes with the
RTEMS distribution. A full list of these arguments can be obtained by running . ./rtems-
4.9.<VERSION>/configure —--help If you followed the procedure described in the section
Section 5.2 [Unarchive the RTEMS Source], page 27, these configuration options can be
found in the file tools/rtems-4.9.<VERSION>/README.configure.

NOTE: The GNAT/RTEMS run-time implementation is based on the POSIX API and the
GNAT/RTEMS run-time cannot be compiled with networking disabled. Your application
does not have to use networking but it must be enabled. Thus the RTEMS configuration for
a GNAT/RTEMS environment MUST include the --enable-posix --enable-networking
flag.

Chapter 5: Building RTEMS 29

The following shows the command sequence required to configure, compile, and install
RTEMS with the POSIX API, FreeBSD TCP/IP, and C++ support disabled. RTEMS will
be built to target the BOARD_SUPPORT_PACKAGE board.

mkdir build-rtems

cd build-rtems

../rtems-4.9.VERSION/configure --target=<TARGET_CONFIGURATION> \
--disable-posix --disable-networking --disable-cxx \
--enable-rtemsbsp=<BSP>\
—--prefix=<INSTALL_POINT>

make all install

<TARGET> is of the form <CPU>-rtems4.9 and the list of currently sup-
ported <TARGET> configuration’s and <BSP>’s can be found in tools/RTEMS-
4.9.<VERSION>/README. configure.

<INSTALL_POINT> is typically the installation point for the tools and defaults to
/opt/rtems-4.9.

BSP is a supported BSP for the selected CPU family. The list of supported BSPs may be
found in the file tools/rtems-4.9.<VERSION>/README. configure in the RTEMS source
tree. If the BSP parameter is not specified, then all supported BSPs for the selected CPU
family will be built.

NOTE: The POSIX API and networking must be enabled to use GNAT/RTEMS.
NOTE: The make utility used should be GNU make.

Chapter 6: Building the Sample Applications 31

6 Building the Sample Applications

The RTEMS distribution includes a number of sample C, C++, Ada, and networking appli-
cations. This chapter will provide an overview of those sample applications.

6.1 Set the Environment Variable
RTEMS_MAKEFILE_PATH

The sample application sets use the RTEMS Application Makefiles. This requires that the
environment variable RTEMS_MAKEFILE_PATH point to the appropriate directory containing
the installed RTEMS image built to target your particular CPU and board support package
combination.

export RTEMS_MAKEFILE_PATH=<INSTALLATION_POINT>/<CPU>-rtems/<BOARD_SUPPORT_PACKAGE>]

Where <INSTALLATION_POINT> and <BOARD_SUPPORT_PACKAGE> are those used
when configuring and installing RTEMS.

NOTE: In release 4.0, BSPs were installed at <INSTALLATION_POINT>/rtems/<BOARD_
SUPPORT_PACKAGE>. This was changed to be more in compliance with GNU standards.

NOTE: GNU make is the preferred make utility. Other make implementations may work
but all testing is done with GNU make.

If no errors are detected during the sample application build, it is reasonable to assume that
the build of the GNU Cross Compiler Tools for RTEMS and RTEMS itself for the selected
host and target combination was done properly.

6.2 Executing the Sample Applications

How each sample application executable is downloaded to your target board and ex-
ecuted is very dependent on the board you are using. The following is a list of
commonly used BSPs classified by their RTEMS CPU family and pointers to instruc-
tions on how to use them. [NOTE: All file names should be prepended with rtems-
4.9.<VERSION>/c/src/1lib/1libbsp.]

arm/edp7312 The arm/edp7312 BSP is for the ARMT7-based Cogent EDP7312
board.
c4x/c4xsim The c4x/cdxsim BSP is designed to execute on any member of the

Texas Instruments C3x/C4x DSP family using only on-CPU periph-
erals for the console and timers.

i386/pc386 See 1386/pc386/HOWTO

i386/pc486 The 1386 /pc386 BSP specially compiled for an i486-class CPU.
i386/pc586 The i386/pc386 BSP specially compiled for a Pentium-class CPU.
i386/pc686 The i386/pc386 BSP specially compiled for a Pentium II.
i386/pck6 The 1386 /pc386 BSP specially compiled for an AMD K6.
m68k/gen68360 This BSP is for a MC68360 CPU. See m68k/gen68360/README for

details.

32 Getting Started with RTEMS

m68k /mvme162 See m68k/mvme162/README.
m68k /mvmel67 See m68k/mvme 167 /README.
mips/jmr3904 This is a BSP for the Toshiba TX3904 evaluation board simula-

tor included with mipstx39-rtems-gdb. The BSP is located in
mips/jmr3904. The TX3904 is a MIPS R3000 class CPU with serial
ports and timers integrated with the processor. This BSP can be
used with either real hardware or with the simulator included with
mipstx39-rtems-gdb. An application can be run on the simulator by
executing the following commands upon entering mipstx39-rtems-

gdb:
target sim --board=jmr3904
load
run
powerpc/mcp750 See powerpc/motorola_shared/README.

powerpc/mvme230x See powerpc/motorola_shared/README.MVME2300.

powerpc/psim This is a BSP for the PowerPC simulator included with powerpc-
rtems-gdb. The simulator is complicated to initialize by hand. The
user is referred to the script powerpc/psim/tools/psim.

sparc/erc32 The ERC32 is a radiation hardened SPARC V7. This BSP can be

used with either real ERC32 hardware or with the simulator included
with sparc-rtems-gdb. An application can be run on the simulator
by executing the following commands upon entering sparc-rtems-
gdb:

target sim

load

run

RTEMS has many more BSPs and new BSPs for commercial boards and CPUs with on-CPU
peripherals are generally welcomed.

6.3 C/C++ Sample Applications

The C/C++ sample application set includes a number of simple applications. Some demon-
strate some basic functionality in RTEMS such as writing a file, closing it, and reading it
back while others can serve as starting points for RTEMS applications or libraries. Start
by unarchiving them so you can peruse them. Use a command similar to the following to
unarchive the sample applications:

cd tools
tar xjf ../archive/examples-v2-4.9.<VERSION>.tgz

Each tests is found in a separate subdirectory and built using the same command sequence.
The hello/hello_world_c sample will be used as an example.

Chapter 6: Building the Sample Applications 33

Build the C Hello World Application

Use the following command to start the build of the sample hello world application:

cd hello_world_c
make

If the sample application has successfully been built, then the application executable is
placed in the following directory:

hello_world_c/o-optimize/<filename>.ralf

The other sample applications are built using a similar procedure.

6.4 Ada Sample Applications

The Ada sample application set primarily includes a a simple Hello World Ada program
which can be used as a starting point for GNAT/RTEMS applications. Use the following
command to unarchive the Ada sample applications:

cd tools
tar xjf ../archive/ada-examples-4.9.<VERSION>.tgz

Create a BSP Specific Makefile

Currently, the procedure for building and linking an Ada application is a bit more difficult
than a C or C++ application. This is certainly an opportunity for a volunteer project.

If your BSP requires special arguments when linking, you may have to augment the file ada-
examples-4.9.<VERSION>/Makefile.shared. Most RTEMS BSPs do not require special
linking arguments so this should not be frequently needed.

Use the <INSTALLATION_POINT> and <BOARD_SUPPORT_PACKAGE> specified
when configuring and installing RTEMS.

6.5 Build the Sample Application
Use the following command to start the build of the sample application:
cd tools/ada-examples-4.9.<VERSION>/ada-examples/hello_world_ada

If no errors are detected during the sample application build, it is reasonable to assume
that the build of the GNAT/RTEMS Cross Compiler Tools for RTEMS and RTEMS itself
for the selected host and target combination was done properly.

6.6 Application Executable

If the sample application has successfully been build, then the application executable is
placed in the following directory:

tools/ada-examples-4.9.<VERSION>/hello_world_ada/o-optimize/<filename>.exel]

How this executable is downloaded to the target board is very dependent on the
BOARD_SUPPORT_PACKAGE selected.

34 Getting Started with RTEMS

6.7 More Information on RTEMS Application Makefiles

These sample applications are examples of simple RTEMS applications that use the RTEMS
Application Makefile system. This Makefile system simplifies building RTEMS applications
by providing Makefile templates and capturing the configuration information used to build
RTEMS specific to your BSP. Building an RTEMS application for different BSPs is as simple
as switching the setting of RTEMS_MAKEFILE_PATH. This Makefile system is described in the
file make/README.

It is very likely in the future that the RTEMS examples built using an installed RTEMS
will be converted to autoconf.

Chapter 7: Where To Go From Here 35

7 Where To Go From Here

At this point, you should have successfully installed a GNU Cross Compilation Tools for
RTEMS on your host system as well as the RTEMS OS for the target host. You should
have successfully linked the "hello world" program. You may even have downloaded the
executable to that target and run it. What do you do next?

The answer is that it depends. You may be interested in writing an application that uses
one of the multiple APIs supported by RTEMS. You may need to investigate the network
or filesystem support in RTEMS. The common thread is that you are largely finished with
this manual and ready to move on to others.

Whether or not you decide to dive in now and write application code or read some docu-
mentation first, this chapter is for you. The first section provides a quick roadmap of some
of the RTEMS documentation. The next section provides a brief overview of the RTEMS
application structure.

7.1 Documentation Overview

When writing RTEMS applications, you should find the following manuals useful because
they define the calling interface to many of the services provided by RTEMS:

e RTEMS Applications C User’s Guide describes the Classic RTEMS API based on
the RTEID specification.

e RTEMS POSIX API User’s Guide describes the RTEMS POSIX API that is based
on the POSIX 1003.1b API. If there is any place where this manual is thin or unclear,
please refer to the OpenGroup Single UNIX Specification. RETEMS tracks that
specification for future POSIX revisions.

e RTEMS Network Supplement provides information on the network services provided
by RTEMS. RTEMS provides a BSD sockets programming interface so any network
programming book should be helpful.

In addition, the following manuals from the GNU Cross Compilation Toolset include infor-
mation on run-time services available.

e Cygnus C Support Library describes the Standard C Library functionality provided
by Newlib’s libc.

e Cygnus C Math Library describes the Standard C Math Library functionality pro-
vided by Newlib’s libm.

Finally, the RTEMS FAQ, Wiki, and mailing list archives are available at
http://www.rtems.org.

There is a wealth of documentation available for RTEMS and the GNU tools supporting it.
If you run into something that is not clear or missing, bring it to our attention.

Also, some of the RTEMS documentation is still under construction. If you would like to
contribute to this effort, please contact the RITEMS Team at rtems-users@rtems.com. If you
are interested in sponsoring the development of a new feature, BSP, device driver, port of
an existing library, etc., please contact sales@oarcorp.com.

http://www.rtems.org
mailto:rtems-users@rtems.com
mailto:sales@oarcorp.com

36 Getting Started with RTEMS

7.2 Writing an Application

From an application author’s perspective, the structure of an RTEMS application is very
familiar. In POSIX language, RTEMS provides a single process, multi-threaded run-time
environment. However there are two important things that are different from a standard
UNIX hosted program.

First, the application developer must provide configuration information for RTEMS. This
configuration information includes limits on the maximum number of various OS resources
available and networking configuration among other things. See the Configuring a System
in the RTEMS Applications C User’s Guide for more details.

Second, RTEMS applications may or may not start at main(). Applications begin execution
at one or more user configurable application initialization tasks or threads. It is possible to
configure an application to start with a single thread that whose entry point is main().

Each API supported by RTEMS (Internal, Classic, and POSIX) allows the user to configure
a set of one or more tasks that are created and started automatically during RTEMS
initialization. The RTEMS Automatic Configuration Generation (confdefs.h) scheme can
be used to easily generate the configuration information for an application that starts with
a single initialization task. By convention, unless overridden, the default name of the
initialization task varies based up APIL.

e Init - single Classic API Initialization Task
e POSIX_Init - single POSIX API Initialization Thread

Regardless of the API used, when the initialization task executes, all non-networking device
drivers are normally initialized, processor interrupts are enabled, and any C++ global con-
structors have been run. The initialization task then goes about its business of performing
application specific initialization which will include initializing the networking subsystem
if it is to be used. The application initialization may also involve creating tasks and other
system resources such as semaphores or message queues and allocating memory. In the
RTEMS examples and tests, the file init.c usually contains the initialization task. Al-
though not required, in most of the examples, the initialization task completes by deleting
itself.

As you begin to write RTEMS application code, you may be confused by the range of
alternatives. Supporting multiple tasking APIs can make the choices confusing. Many
application groups writing new code choose one of the APIs as their primary API and
only use services from the others if nothing comparable is in their preferred one. However,
the support for multiple APIs is a powerful feature when integrating code from multiple
sources. You can write new code using POSIX services and still use services written in terms
of the other APIs. Moreover, by adding support for yet another API, one could provide the
infrastructure required to migrate from a legacy RTOS with a non-standard API to an API
like POSIX.

Appendix A: Using MS-Windows as a Development Host 37

Appendix A Using MS-Windows as a
Development Host

This chapter discusses the installation of the GNU tool chain on a computer running the
Microsoft Windows operating system.

This chapter was originally written by Geoffroy Montel <g_montel@yahoo.com> with input
from David Fiddes <D.Jefiddes.surfaid.org>. It was based upon his successful but unnec-
essarily painful efforts with Cygwin beta versions. Cygwin and this chapter have been
updated multiple times since those early days although their pioneering efforts and input
is still greatly appreciated.

A.1 Microsoft Windows Version Requirements

RTEMS users report fewer problems when using Microsoft Windows XP or newer.

A.2 Cygwin

For RTEMS development, the recommended approach is to use Cygwin. Cygwin is available
from http://www.cygwin.com . The primary issues reported by users of Cygwin is that it
is slower on the same hardware than a native GNU/Linux installation and strange issues
over carriage return/line feed inconsistencies between UNIX and Windows environments.
However, there are a handful of other issues that may turn up when using Cygwin as an
RTEMS development environment.

e There is no cc program by default. The GNU configure scripts used by RTEMS
require this to be present to work properly. The solution is to link gcc.exe to
cc.exe as follows:

1n -s /bin/gcc.exe /bin/cc.exe

e Make sure /bin/sh.exe is GNU Bash. Some Cygwin versions provide a light
Bourne shell which is insufficient to build RTEMS. To see which shell is installed as
/bin/sh.exe, execute the command /bin/sh --version. If it looks similar to the
following, then it is GNU Bash and you are OK:

GNU bash, version 2.04.5(12)-release (i686-pc-cygwin)

Copyright 1999 Free Software Foundation, Inc.
If you get an error or it claims to be any other shell, you need to copy it to a fake
name and copy /bin/bash.exe to /bin/sh.exe:

cd /bin

mv sh.exe old_sh.exe

cp bash.exe sh.exe
The Bourne shell has to be present in /bin directory to run shell scripts properly.

e Make sure you unarchive and build in a binary mounted filesystem (e.g. mounted
with the -b option). Otherwise, many confusing errors will result.

e A user has reported that they needed to set CYGWIN=ntsec for chmod to work
correctly, but had to set CYGWIN=nontsec for compile to work properly (otherwise
there were complaints about permissions on a temporary file).

e If you want to build the tools from source, you have the same options as UNIX
users.

mailto:g_montel@yahoo.com
mailto:<D.J@fiddes.surfaid.org>
http://www.cygwin.com

38 Getting Started with RTEMS

e You may have to uncompress archives during this process. You must NOT use
WinZip or PKZip. Instead the un-archiving process uses the GNU zip and tar
programs as shown below:

tar -xzvf archive.tgz

tar is provided with Cygwin.

A.3 Text Editor

You absolutely have to use a text editor which can save files with Unix format. So do NOT
use Notepad or Wordpad! There are a number of editors freely available that can be used.

e VIM (Vi IMproved) is available from http://www.vim.org/. This editor has the
very handy ability to easily read and write files in either DOS or UNIX style.

e GNU Emacs is available for many platforms including MS-Windows.
The official homepage is http://www.gnu.org/software/emacs/emacs.html.
The GNU Emacs on Windows NT and Windows 95/98 FAQ is at
http://www.gnu.org/software/emacs/windows/ntemacs.html.

If you do accidentally end up with files having MS-DOS style line termination, then you
may have to convert them to Unix format for some Cygwin programs to operate on them
properly. The program dos2unix can be used to put them back into Unix format as shown
below:

$ dos2unix XYZ
Dos2Unix: Cleaning file XYZ ...

A.4 System Requirements

Although the finished cross-compiler is fairly easy on resources, building it can take a
significant amount of processing power and disk space. Luckily, desktop computers have
progressed very far since this guide was originally written so it is unlikely you will have any
problems. Just do not use an old cast-off machine with < 1 GB RAM and a 1 Ghz CPU.
Unless, of course, you enjoy waiting for things to complete.

The more disk space, the better. You need more if you are building the GNU tools and
the amount of disk space for binaries is obviously directly dependent upon the number
of CPUs you have cross toolsets installed for. In addition to the disk space requirements
documented earlier for tool building, you will also have to have enough space to install the
Cygwin environment.

http://www.vim.org/
http://www.gnu.org/software/emacs/emacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html

	Introduction
	Real-Time Embedded Systems
	Cross Development
	Resources on the Internet
	Online Tool Documentation
	RTEMS Mailing List
	GCC Mailing Lists

	Requirements
	Disk Space
	General Host Software Requirements
	GCC
	GNU Make
	GNU makeinfo Version Requirements

	Host Specific Notes
	Solaris 2.x
	Distribution Independent Potential GNU/Linux Issues
	GNU/Linux Distrobutions using Debian Packaging Format

	Prebuilt Toolset Executables
	RPMs
	Locating the RPMs for your GNU/Linux Distribution
	Managing RPMs Using Yum
	Installing RPMs Using Yum
	Removing RPMs Using Yum

	Managing RPMs Without Using Yum
	Installing RPMs Without Yum
	Removing RPMs Without Using Yum

	Determining Which RTEMS RPMs are Installed

	Zipped Tar Files
	Installing Zipped Tar Files
	Removing Zipped Tar Files

	Building the GNU Cross Compiler Toolset
	Preparation
	Determining Tool Version and Patch Revision
	Obtain Source and Patches

	Installing the Tools Without RPM
	Archive and Build Directory Format
	Unarchiving the Tools
	Applying RTEMS Project Tool Patches
	Installing AUTOCONF Without RPM
	Installing AUTOMAKE Without RPM
	Installing BINUTILS Without RPM
	Installing GCC and NEWLIB Without RPM
	Building GCC with Ada Support
	Installing GDB Without RPM

	Using RPM to Build Tools
	Building AUTOCONF using RPM
	Building AUTOMAKE using RPM
	Building BINUTILS using RPM
	Building GCC and NEWLIB using RPM
	Building the GDB using RPM

	Common Problems
	Error Message Indicates Invalid Option to Assembler
	Error Messages Indicating Configuration Problems

	Building RTEMS
	Obtain the RTEMS Source Code
	Unarchive the RTEMS Source
	Add <INSTALL_POINT>/bin to Executable PATH
	Verifying the Operation of the Cross Toolset
	Building RTEMS for a Specific Target and BSP
	Using the RTEMS configure Script Directly

	Building the Sample Applications
	Set the Environment Variable RTEMS_MAKEFILE_PATH
	Executing the Sample Applications
	C/C++ Sample Applications
	Ada Sample Applications
	Build the Sample Application
	Application Executable
	More Information on RTEMS Application Makefiles

	Where To Go From Here
	Documentation Overview
	Writing an Application

	Using MS-Windows as a Development Host
	Microsoft Windows Version Requirements
	Cygwin
	Text Editor
	System Requirements

