
RTEMS CPU Architecture Supplement
Edition 4.7.3, for RTEMS 4.7.3

8 August 2008

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2006-10-04.17

COPYRIGHT c© 1988 - 2006.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

i

Table of Contents

Preface . 1

1 ARM Specific Information . 3
1.1 CPU Model Dependent Features . 3

1.1.1 CPU Model Name . 4
1.1.2 Count Leading Zeroes Instruction . 4
1.1.3 Floating Point Unit . 4

1.2 Calling Conventions . 4
1.2.1 Processor Background . 4
1.2.2 Calling Mechanism . 5
1.2.3 Register Usage . 5
1.2.4 Parameter Passing . 5
1.2.5 User-Provided Routines . 5

1.3 Memory Model . 5
1.3.1 Flat Memory Model . 5

1.4 Interrupt Processing . 6
1.4.1 Vectoring of an Interrupt Handler . 6
1.4.2 Interrupt Levels . 6
1.4.3 Disabling of Interrupts by RTEMS . 7
1.4.4 Interrupt Stack . 7

1.5 Default Fatal Error Processing . 7
1.5.1 Default Fatal Error Handler Operations . 7

1.6 Board Support Packages . 8
1.6.1 System Reset . 8
1.6.2 Processor Initialization . 8

1.7 Processor Dependent Information Table . 9
1.7.1 CPU Dependent Information Table . 9

2 Intel/AMD x86 Specific Information 11
2.1 CPU Model Dependent Features . 11

2.1.1 CPU Model Name . 12
2.1.2 bswap Instruction . 12
2.1.3 Floating Point Unit . 12

2.2 Calling Conventions . 12
2.2.1 Processor Background . 12
2.2.2 Calling Mechanism . 12
2.2.3 Register Usage . 12
2.2.4 Parameter Passing . 13
2.2.5 User-Provided Routines . 13

2.3 Memory Model . 13
2.3.1 Flat Memory Model . 13

2.4 Interrupt Processing . 14

ii RTEMS CPU Architecture Supplement

2.4.1 Vectoring of Interrupt Handler . 14
2.4.2 Interrupt Stack Frame . 15
2.4.3 Interrupt Levels . 15
2.4.4 Disabling of Interrupts by RTEMS . 15
2.4.5 Interrupt Stack . 15

2.5 Default Fatal Error Processing . 16
2.5.1 Default Fatal Error Handler Operations 16

2.6 Board Support Packages . 16
2.6.1 System Reset . 16
2.6.2 Processor Initialization . 17

2.7 Processor Dependent Information Table . 18
2.7.1 CPU Dependent Information Table . 18

3 Motorola M68xxx and Coldfire Specific
Information . 21

3.1 CPU Model Dependent Features . 21
3.1.1 CPU Model Name . 22
3.1.2 Floating Point Unit . 22
3.1.3 BFFFO Instruction . 22
3.1.4 Vector Base Register . 22
3.1.5 Separate Stacks . 22
3.1.6 Pre-Indexing Address Mode . 22
3.1.7 Extend Byte to Long Instruction . 22

3.2 Calling Conventions . 23
3.2.1 Processor Background . 23
3.2.2 Calling Mechanism . 23
3.2.3 Register Usage . 23
3.2.4 Parameter Passing . 23
3.2.5 User-Provided Routines . 24

3.3 Memory Model . 24
3.3.1 Flat Memory Model . 24

3.4 Interrupt Processing . 24
3.4.1 Vectoring of an Interrupt Handler . 24

3.4.1.1 Models Without Separate Interrupt Stacks 24
3.4.1.2 Models With Separate Interrupt Stacks 25

3.4.2 CPU Models Without VBR and RAM at 0 25
3.4.3 Interrupt Levels . 27
3.4.4 Disabling of Interrupts by RTEMS . 27
3.4.5 Interrupt Stack . 27

3.5 Default Fatal Error Processing . 27
3.5.1 Default Fatal Error Handler Operations 28

3.6 Board Support Packages . 28
3.6.1 System Reset . 28
3.6.2 Processor Initialization . 28

3.7 Processor Dependent Information Table . 29
3.7.1 CPU Dependent Information Table . 29

iii

4 MIPS Specific Information 31
4.1 CPU Model Dependent Features . 31

4.1.1 CPU Model Name . 32
4.1.2 Floating Point Unit . 32
4.1.3 Another Optional Feature . 32

4.2 Calling Conventions . 32
4.2.1 Processor Background . 32
4.2.2 Calling Mechanism . 33
4.2.3 Register Usage . 33
4.2.4 Parameter Passing . 33
4.2.5 User-Provided Routines . 33

4.3 Memory Model . 33
4.3.1 Flat Memory Model . 33

4.4 Interrupt Processing . 34
4.4.1 Vectoring of an Interrupt Handler . 34

4.4.1.1 Models Without Separate Interrupt Stacks 34
4.4.1.2 Models With Separate Interrupt Stacks 34

4.4.2 Interrupt Levels . 35
4.4.3 Disabling of Interrupts by RTEMS . 35
4.4.4 Interrupt Stack . 35

4.5 Default Fatal Error Processing . 36
4.5.1 Default Fatal Error Handler Operations 36

4.6 Board Support Packages . 36
4.6.1 System Reset . 36
4.6.2 Processor Initialization . 37

4.7 Processor Dependent Information Table . 37
4.7.1 CPU Dependent Information Table . 37

5 PowerPC Specific Information 41
5.1 CPU Model Dependent Features . 42

5.1.1 CPU Model Feature Flags . 42
5.1.1.1 CPU Model Name . 42
5.1.1.2 Floating Point Unit . 42
5.1.1.3 Alignment . 43
5.1.1.4 Cache Alignment . 43
5.1.1.5 Maximum Interrupts . 43
5.1.1.6 Has Double Precision Floating Point 43
5.1.1.7 Critical Interrupts . 43
5.1.1.8 Use Multiword Load/Store Instructions 43
5.1.1.9 Instruction Cache Size . 43
5.1.1.10 Data Cache Size . 43
5.1.1.11 Debug Model . 43
5.1.1.12 Low Power Model . 44

5.2 Calling Conventions . 44
5.2.1 Programming Model . 44

5.2.1.1 Non-Floating Point Registers . 44
5.2.1.2 Floating Point Registers . 45
5.2.1.3 Special Registers . 45

iv RTEMS CPU Architecture Supplement

5.2.2 Call and Return Mechanism . 45
5.2.3 Calling Mechanism . 46
5.2.4 Register Usage . 46
5.2.5 Parameter Passing . 46
5.2.6 User-Provided Routines . 46

5.3 Memory Model . 46
5.3.1 Flat Memory Model . 46

5.4 Interrupt Processing . 47
5.4.1 Synchronous Versus Asynchronous Exceptions 47
5.4.2 Vectoring of Interrupt Handler . 48
5.4.3 Interrupt Levels . 48
5.4.4 Disabling of Interrupts by RTEMS . 49
5.4.5 Interrupt Stack . 49

5.5 Default Fatal Error Processing . 50
5.5.1 Default Fatal Error Handler Operations 50

5.6 Board Support Packages . 50
5.6.1 System Reset . 50
5.6.2 Processor Initialization . 50

5.7 Processor Dependent Information Table . 51
5.7.1 CPU Dependent Information Table . 51

6 SuperH Specific Information 55
6.1 CPU Model Dependent Features . 55

6.1.1 CPU Model Name . 56
6.1.2 Floating Point Unit . 56
6.1.3 Another Optional Feature . 56

6.2 Calling Conventions . 56
6.2.1 Calling Mechanism . 57
6.2.2 Register Usage . 57
6.2.3 Parameter Passing . 57
6.2.4 User-Provided Routines . 57

6.3 Memory Model . 57
6.3.1 Flat Memory Model . 58

6.4 Interrupt Processing . 58
6.4.1 Vectoring of an Interrupt Handler . 58

6.4.1.1 Models Without Separate Interrupt Stacks 58
6.4.1.2 Models With Separate Interrupt Stacks 58

6.4.2 Interrupt Levels . 59
6.4.3 Disabling of Interrupts by RTEMS . 59
6.4.4 Interrupt Stack . 60

6.5 Default Fatal Error Processing . 60
6.5.1 Default Fatal Error Handler Operations 60

6.6 Board Support Packages . 60
6.6.1 System Reset . 60
6.6.2 Processor Initialization . 61

6.7 Processor Dependent Information Table . 61
6.7.1 CPU Dependent Information Table . 61

v

7 SPARC Specific Information 65
7.1 CPU Model Dependent Features . 66

7.1.1 CPU Model Feature Flags . 66
7.1.1.1 CPU Model Name . 66
7.1.1.2 Floating Point Unit . 66
7.1.1.3 Bitscan Instruction . 67
7.1.1.4 Number of Register Windows . 67
7.1.1.5 Low Power Mode . 67

7.1.2 CPU Model Implementation Notes . 67
7.2 Calling Conventions . 68

7.2.1 Programming Model . 68
7.2.1.1 Non-Floating Point Registers . 68
7.2.1.2 Floating Point Registers . 69
7.2.1.3 Special Registers . 69

7.2.2 Register Windows . 69
7.2.3 Call and Return Mechanism . 71
7.2.4 Calling Mechanism . 71
7.2.5 Register Usage . 71
7.2.6 Parameter Passing . 71
7.2.7 User-Provided Routines . 71

7.3 Memory Model . 71
7.3.1 Flat Memory Model . 72

7.4 Interrupt Processing . 72
7.4.1 Synchronous Versus Asynchronous Traps 73
7.4.2 Vectoring of Interrupt Handler . 73
7.4.3 Traps and Register Windows . 74
7.4.4 Interrupt Levels . 74
7.4.5 Disabling of Interrupts by RTEMS . 74
7.4.6 Interrupt Stack . 75

7.5 Default Fatal Error Processing . 75
7.5.1 Default Fatal Error Handler Operations 75

7.6 Board Support Packages . 75
7.6.1 System Reset . 75
7.6.2 Processor Initialization . 76

7.7 Processor Dependent Information Table . 76
7.7.1 CPU Dependent Information Table . 76

Command and Variable Index. 79

Concept Index . 81

vi RTEMS CPU Architecture Supplement

Preface 1

Preface

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

Each chapter in this document discusses the details of how RTEMS was ported.

2 RTEMS CPU Architecture Supplement

Chapter 1: ARM Specific Information 3

1 ARM Specific Information

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the ARM architecture dependencies in this port of RTEMS. The
ARM family has a wide variety of implementations by a wide range of vendors. Conse-
quently, there are 100’s of CPU models within it.

It is highly recommended that the ARM RTEMS application developer obtain and become
familiar with the documentation for the processor being used as well as the documentation
for the ARM architecture as a whole.

Architecture Documents

For information on the ARM architecture, refer to the following documents available from
Arm, Limited (‘http//www.arm.com/’). There does not appear to be an electronic version
of a manual on the architecture in general on that site. The following book is a good
resource:

• David Seal. "ARM Architecture Reference Manual." Addison-Wesley. ISBN 0-201-
73719-1. 2001.

1.1 CPU Model Dependent Features

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
ARM, SPARC, and PowerPC are based on an architectural specification which is indepen-
dent or any particular CPU model or implementation. Older families such as the M68xxx
and the iX86 evolved as the manufacturer strived to produce higher performance processor
models which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.
Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.

4 RTEMS CPU Architecture Supplement

The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This chapter presents the set of features which vary across ARM implementations and are
of importance to RTEMS. The set of CPU model feature macros are defined in the file
cpukit/score/cpu/arm/rtems/score/arm.h based upon the particular CPU model defined
on the compilation command line.

1.1.1 CPU Model Name

The macro CPU_MODEL_NAME is a string which designates the architectural level of this CPU
model. The following is a list of the settings for this string based upon gcc CPU model
predefines:

__ARM_ARCH4__ "ARMv4"
__ARM_ARCH4T__ "ARMv4T"
__ARM_ARCH5__ "ARMv5"
__ARM_ARCH5T__ "ARMv5T"
__ARM_ARCH5E__ "ARMv5E"
__ARM_ARCH5TE__ "ARMv5TE"

1.1.2 Count Leading Zeroes Instruction

The ARMv5 and later has the count leading zeroes (clz) instruction which could be used to
speed up the find first bit operation. The use of this instruction should significantly speed
up the scheduling associated with a thread blocking.

1.1.3 Floating Point Unit

The macro ARM HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise. It does not matter whether the hardware floating point
support is incorporated on-chip or is an external coprocessor.

1.2 Calling Conventions

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage
• parameter passing
• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

1.2.1 Processor Background

The ARM architecture supports a simple yet effective call and return mechanism. A sub-
routine is invoked via the branch and link (bl) instruction. This instruction saves the

Chapter 1: ARM Specific Information 5

return address in the lr register. Returning from a subroutine only requires that the return
address be moved into the program counter (pc), possibly with an offset. It is is important
to note that the bl instruction does not automatically save or restore any registers. It is
the responsibility of the high-level language compiler to define the register preservation and
usage convention.

1.2.2 Calling Mechanism

All RTEMS directives are invoked using the bl instruction and return to the user application
via the mechanism described above.

1.2.3 Register Usage

As discussed above, the ARM’s call and return mechanism dos not automatically save any
registers. RTEMS uses the registers r0, r1, r2, and r3 as scratch registers and per ARM
calling convention, the lr register is altered as well. These registers are not preserved by
RTEMS directives therefore, the contents of these registers should not be assumed upon
return from any RTEMS directive.

1.2.4 Parameter Passing

RTEMS assumes that ARM calling conventions are followed and that the first four argu-
ments are placed in registers r0 through r3. If there are more arguments, than that, then
they are place on the stack.

1.2.5 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

1.3 Memory Model

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

1.3.1 Flat Memory Model

Members of the ARM family newer than Version 3 support a flat 32-bit address space
with addresses ranging from 0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is
represented by a 32-bit value and is byte addressable. The address may be used to reference
a single byte, word (2-bytes), or long word (4 bytes). Memory accesses within this address
space are performed in the endian mode that the processor is configured for. In general,
ARM processors are used in little endian mode.

Some of the ARM family members such as the 920 and 720 include an MMU and thus
support virtual memory and segmentation. RTEMS does not support virtual memory or
segmentation on any of the ARM family members.

6 RTEMS CPU Architecture Supplement

1.4 Interrupt Processing

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager is
mapped onto the processor’s unique architecture. Discussed in this chapter are the ARM’s
interrupt response and control mechanisms as they pertain to RTEMS.

The ARM has 7 exception types:

• Reset

• Undefined instruction

• Software interrupt (SWI)

• Prefetch Abort

• Data Abort

• Interrupt (IRQ)

• Fast Interrupt (FIQ)

Of these types, only IRQ and FIQ are handled through RTEMS’s interrupt vectoring.

1.4.1 Vectoring of an Interrupt Handler

Unlike many other architectures, the ARM has seperate stacks for each interrupt. When
the CPU receives an interrupt, it:

• switches to the exception mode corresponding to the interrupt,

• saves the Current Processor Status Register (CPSR) to the exception mode’s Saved
Processor Status Register (SPSR),

• masks off the IRQ and if the interrupt source was FIQ, the FIQ is masked off as
well,

• saves the Program Counter (PC) to the exception mode’s Link Register (LR - same
as R14),

• and sets the PC to the exception’s vector address.

The vectors for both IRQ and FIQ point to the ISR Handler function. ISR Handler()
calls the BSP specific handler, ExecuteITHandler(). Before calling ExecuteITHandler(),
registers R0-R3, R12, and R14(LR) are saved so that it is safe to call C functions. Even
ExecuteITHandler() can be written in C.

1.4.2 Interrupt Levels

The ARM architecture supports two external interrupts - IRQ and FIQ. FIQ has a higher
priority than IRQ, and has its own version of register R8 - R14, however RTEMS does not
take advantage of them. Both interrupts are enabled through the CPSR.

Chapter 1: ARM Specific Information 7

The RTEMS interrupt level mapping scheme for the AEM is not a numeric level as on most
RTEMS ports. It is a bit mapping that corresponds the enable bits’s postions in the CPSR:

FIQ Setting bit 6 (0 is least significant bit) disables the FIQ.

IRQ Setting bit 7 (0 is least significant bit) disables the IRQ.

1.4.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed.
When these sections are encountered, RTEMS disables interrupts to level seven
(7) before the execution of this section and restores them to the previous level
upon completion of the section. RTEMS has been optimized to insure that in-
terrupts are disabled for less than RTEMS MAXIMUM DISABLE PERIOD microsec-
onds on a RTEMS MAXIMUM DISABLE PERIOD MHZ Mhz processor with zero
wait states. These numbers will vary based the number of wait states and proces-
sor speed present on the target board. [NOTE: The maximum period with inter-
rupts disabled is hand calculated. This calculation was last performed for Release
RTEMS RELEASE FOR MAXIMUM DISABLE PERIOD.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

1.4.4 Interrupt Stack

RTEMS expects the interrupt stacks to be set up in bsp start(). The memory for the stacks
is reserved in the linker script.

1.5 Default Fatal Error Processing

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

1.5.1 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the rtems_fatal_error_occurred
directive when there is no user handler configured or the user handler returns control to
RTEMS. The default fatal error handler performs the following actions:

• disables processor interrupts,

• places the error code in r0, and

• executes an infinite loop (while(0); to simulate a halt processor instruction.

8 RTEMS CPU Architecture Supplement

1.6 Board Support Packages

An RTEMS Board Support Package (BSP) must be designed to support a particular pro-
cessor and target board combination. This chapter presents a discussion of XXX specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

1.6.1 System Reset

An RTEMS based application is initiated or re-initiated when the XXX processor is reset.
When the XXX is reset, the processor performs the following actions:

• The tracing bits of the status register are cleared to disable tracing.

• The supervisor interrupt state is entered by setting the supervisor (S) bit and clear-
ing the master/interrupt (M) bit of the status register.

• The interrupt mask of the status register is set to level 7 to effectively disable all
maskable interrupts.

• The vector base register (VBR) is set to zero.

• The cache control register (CACR) is set to zero to disable and freeze the processor
cache.

• The interrupt stack pointer (ISP) is set to the value stored at vector 0 (bytes 0-3)
of the exception vector table (EVT).

• The program counter (PC) is set to the value stored at vector 1 (bytes 4-7) of the
EVT.

• The processor begins execution at the address stored in the PC.

1.6.2 Processor Initialization

The address of the application’s initialization code should be stored in the first vector of the
EVT which will allow the immediate vectoring to the application code. If the application
requires that the VBR be some value besides zero, then it should be set to the required value
at this point. All tasks share the same XXX’s VBR value. Because interrupts are enabled
automatically by RTEMS as part of the initialize executive directive, the VBR MUST be
set before this directive is invoked to insure correct interrupt vectoring. If processor caching
is to be utilized, then it should be enabled during the reset application initialization code.

In addition to the requirements described in the Board Support Packages chapter of the
Applications User’s Manual for the reset code which is executed before the call to initialize
executive, the XXX version has the following specific requirements:

• Must leave the S bit of the status register set so that the XXX remains in the
supervisor state.

• Must set the M bit of the status register to remove the XXX from the interrupt
state.

• Must set the master stack pointer (MSP) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the initialize executive directive.

• Must initialize the XXX’s vector table.

Chapter 1: ARM Specific Information 9

Note that the BSP is not responsible for allocating or installing the interrupt stack. RTEMS
does this automatically as part of initialization. If the BSP does not install an interrupt
stack and – for whatever reason – an interrupt occurs before initialize executive is invoked,
then the results are unpredictable.

1.7 Processor Dependent Information Table

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

1.7.1 CPU Dependent Information Table

The XXX version of the RTEMS CPU Dependent Information Table contains the infor-
mation required to interface a Board Support Package and RTEMS on the XXX. This
information is provided to allow RTEMS to interoperate effectively with the BSP. The C
structure definition is given here:

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

/* XXX CPU family dependent stuff */
} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

10 RTEMS CPU Architecture Supplement

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

XXX is where the CPU family dependent stuff goes.

Chapter 2: Intel/AMD x86 Specific Information 11

2 Intel/AMD x86 Specific Information

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

For information on the i386 processor, refer to the following documents:

• 386 Programmer’s Reference Manual, Intel, Order No. 230985-002.

• 386 Microprocessor Hardware Reference Manual, Intel, Order No. 231732-003.

• 80386 System Software Writer’s Guide, Intel, Order No. 231499-001.

• 80387 Programmer’s Reference Manual, Intel, Order No. 231917-001.

It is highly recommended that the i386 RTEMS application developer obtain and become
familiar with Intel’s 386 Programmer’s Reference Manual.

2.1 CPU Model Dependent Features

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.
Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This chapter presents the set of features which vary across i386 implementations and are
of importance to RTEMS. The set of CPU model feature macros are defined in the file
cpukit/score/cpu/i386/i386.h based upon the particular CPU model defined on the compi-
lation command line.

12 RTEMS CPU Architecture Supplement

2.1.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the Intel i386 without an i387 coprocessor, this macro is set to the string
"i386 with i387".

2.1.2 bswap Instruction

The macro I386 HAS BSWAP is set to 1 to indicate that this CPU model has the bswap
instruction which endian swaps a thirty-two bit quantity. This instruction appears to be
present in all CPU models i486’s and above.

2.1.3 Floating Point Unit

The macro I386 HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise. The hardware floating point may be on-chip (as in
the case of an i486DX or Pentium) or as a coprocessor (as in the case of an i386/i387
combination).

2.2 Calling Conventions

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage
• parameter passing
• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

2.2.1 Processor Background

The i386 architecture supports a simple yet effective call and return mechanism. A sub-
routine is invoked via the call (call) instruction. This instruction pushes the return address
on the stack. The return from subroutine (ret) instruction pops the return address off the
current stack and transfers control to that instruction. It is is important to note that the
i386 call and return mechanism does not automatically save or restore any registers. It is
the responsibility of the high-level language compiler to define the register preservation and
usage convention.

2.2.2 Calling Mechanism

All RTEMS directives are invoked using a call instruction and return to the user application
via the ret instruction.

2.2.3 Register Usage

As discussed above, the call instruction does not automatically save any registers. RTEMS
uses the registers EAX, ECX, and EDX as scratch registers. These registers are not pre-

Chapter 2: Intel/AMD x86 Specific Information 13

served by RTEMS directives therefore, the contents of these registers should not be assumed
upon return from any RTEMS directive.

2.2.4 Parameter Passing

RTEMS assumes that arguments are placed on the current stack before the directive is
invoked via the call instruction. The first argument is assumed to be closest to the return
address on the stack. This means that the first argument of the C calling sequence is pushed
last. The following pseudo-code illustrates the typical sequence used to call a RTEMS
directive with three (3) arguments:

push third argument
push second argument
push first argument
invoke directive
remove arguments from the stack

The arguments to RTEMS are typically pushed onto the stack using a push instruction.
These arguments must be removed from the stack after control is returned to the caller.
This removal is typically accomplished by adding the size of the argument list in bytes to
the stack pointer.

2.2.5 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

2.3 Memory Model

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

2.3.1 Flat Memory Model

RTEMS supports the i386 protected mode, flat memory model with paging disabled. In this
mode, the i386 automatically converts every address from a logical to a physical address
each time it is used. The i386 uses information provided in the segment registers and the
Global Descriptor Table to convert these addresses. RTEMS assumes the existence of the
following segments:

• a single code segment at protection level (0) which contains all application and
executive code.

• a single data segment at protection level zero (0) which contains all application and
executive data.

The i386 segment registers and associated selectors must be initialized when the initial-
ize executive directive is invoked. RTEMS treats the segment registers as system registers
and does not modify or context switch them.

14 RTEMS CPU Architecture Supplement

This i386 memory model supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, half-word
(2-bytes), or word (4 bytes).

RTEMS does not require that logical addresses map directly to physical addresses, although
it is desirable in many applications to do so. If logical and physical addresses are not the
same, then an additional selector will be required so RTEMS can access the Interrupt
Descriptor Table to install interrupt service routines. The selector number of this segment
is provided to RTEMS in the CPU Dependent Information Table.

By not requiring that logical addresses map directly to physical addresses, the memory space
of an RTEMS application can be separated from that of a ROM monitor. For example, on
the Force Computers CPU386, the ROM monitor loads application programs into a logical
address space where logical address 0x00000000 corresponds to physical address 0x0002000.
On this board, RTEMS and the application use virtual addresses which do not map to
physical addresses.

RTEMS assumes that the DS and ES registers contain the selector for the single data seg-
ment when a directive is invoked. This assumption is especially important when developing
interrupt service routines.

2.4 Interrupt Processing

Different types of processors respond to the occurrence of an interrupt in their own unique
fashion. In addition, each processor type provides a control mechanism to allow the proper
handling of an interrupt. The processor dependent response to the interrupt modifies the
execution state and results in the modification of the execution stream. This modification
usually requires that an interrupt handler utilize the provided control mechanisms to return
to the normal processing stream. Although RTEMS hides many of the processor dependent
details of interrupt processing, it is important to understand how the RTEMS interrupt
manager is mapped onto the processor’s unique architecture. Discussed in this chapter are
the the processor’s response and control mechanisms as they pertain to RTEMS.

2.4.1 Vectoring of Interrupt Handler

Although the i386 supports multiple privilege levels, RTEMS and all user software executes
at privilege level 0. This decision was made by the RTEMS designers to enhance compat-
ibility with processors which do not provide sophisticated protection facilities like those of
the i386. This decision greatly simplifies the discussion of i386 processing, as one need only
consider interrupts without privilege transitions.

Upon receipt of an interrupt the i386 automatically performs the following actions:

• pushes the EFLAGS register

• pushes the far address of the interrupted instruction

• vectors to the interrupt service routine (ISR).

A nested interrupt is processed similarly by the i386.

Chapter 2: Intel/AMD x86 Specific Information 15

2.4.2 Interrupt Stack Frame

The structure of the Interrupt Stack Frame for the i386 which is placed on the interrupt
stack by the processor in response to an interrupt is as follows:

Old EFLAGS Register ESP+8
UNUSED Old CS ESP+4

Old EIP ESP

2.4.3 Interrupt Levels

Although RTEMS supports 256 interrupt levels, the i386 only supports two – enabled and
disabled. Interrupts are enabled when the interrupt-enable flag (IF) in the extended flags
(EFLAGS) is set. Conversely, interrupt processing is inhibited when the IF is cleared.
During a non-maskable interrupt, all other interrupts, including other non-maskable ones,
are inhibited.

RTEMS interrupt levels 0 and 1 such that level zero (0) indicates that interrupts are fully
enabled and level one that interrupts are disabled. All other RTEMS interrupt levels are
undefined and their behavior is unpredictable.

2.4.4 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be exe-
cuted. When these sections are encountered, RTEMS disables interrupts before
the execution of this section and restores them to the previous level upon com-
pletion of the section. RTEMS has been optimized to insure that interrupts are
disabled for less than RTEMS MAXIMUM DISABLE PERIOD microseconds on a
RTEMS MAXIMUM DISABLE PERIOD MHZ Mhz i386 with zero wait states. These
numbers will vary based the number of wait states and processor speed present on the tar-
get board. [NOTE: The maximum period with interrupts disabled within RTEMS was last
calculated for Release RTEMS RELEASE FOR MAXIMUM DISABLE PERIOD.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

2.4.5 Interrupt Stack

The i386 family does not support a dedicated hardware interrupt stack. On this processor,
RTEMS allocates and manages a dedicated interrupt stack. As part of vectoring a non-
nested interrupt service routine, RTEMS switches from the stack of the interrupted task to
a dedicated interrupt stack. When a non-nested interrupt returns, RTEMS switches back
to the stack of the interrupted stack. The current stack pointer is not altered by RTEMS
on nested interrupt.

Without a dedicated interrupt stack, every task in the system MUST have enough stack
space to accommodate the worst case stack usage of that particular task and the interrupt
service routines COMBINED. By supporting a dedicated interrupt stack, RTEMS signifi-
cantly lowers the stack requirements for each task.

16 RTEMS CPU Architecture Supplement

RTEMS allocates the dedicated interrupt stack from the Workspace Area. The amount of
memory allocated for the interrupt stack is determined by the interrupt stack size field in
the CPU Configuration Table.

2.5 Default Fatal Error Processing

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

2.5.1 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the fatal error occurred directive when
there is no user handler configured or the user handler returns control to RTEMS. The
default fatal error handler disables processor interrupts, places the error code in EAX, and
executes a HLT instruction to halt the processor.

2.6 Board Support Packages

An RTEMS Board Support Package (BSP) must be designed to support a particular pro-
cessor and target board combination. This chapter presents a discussion of i386 specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

2.6.1 System Reset

An RTEMS based application is initiated when the i386 processor is reset. When the i386
is reset,

• The EAX register is set to indicate the results of the processor’s power-up self test.
If the self-test was not executed, the contents of this register are undefined. Other-
wise, a non-zero value indicates the processor is faulty and a zero value indicates a
successful self-test.

• The DX register holds a component identifier and revision level. DH contains 3 to
indicate an i386 component and DL contains a unique revision level indicator.

• Control register zero (CR0) is set such that the processor is in real mode with
paging disabled. Other portions of CR0 are used to indicate the presence of a
numeric coprocessor.

• All bits in the extended flags register (EFLAG) which are not permanently set are
cleared. This inhibits all maskable interrupts.

• The Interrupt Descriptor Register (IDTR) is set to point at address zero.
• All segment registers are set to zero.
• The instruction pointer is set to 0x0000FFF0. The first instruction executed after a

reset is actually at 0xFFFFFFF0 because the i386 asserts the upper twelve address
until the first intersegment (FAR) JMP or CALL instruction. When a JMP or

Chapter 2: Intel/AMD x86 Specific Information 17

CALL is executed, the upper twelve address lines are lowered and the processor
begins executing in the first megabyte of memory.

Typically, an intersegment JMP to the application’s initialization code is placed at address
0xFFFFFFF0.

2.6.2 Processor Initialization

This initialization code is responsible for initializing all data structures required by the i386
in protected mode and for actually entering protected mode. The i386 must be placed in
protected mode and the segment registers and associated selectors must be initialized before
the initialize executive directive is invoked.

The initialization code is responsible for initializing the Global Descriptor Table such that
the i386 is in the thirty-two bit flat memory model with paging disabled. In this mode, the
i386 automatically converts every address from a logical to a physical address each time it
is used. For more information on the memory model used by RTEMS, please refer to the
Memory Model chapter in this document.

Since the processor is in real mode upon reset, the processor must be switched to protected
mode before RTEMS can execute. Before switching to protected mode, at least one descrip-
tor table and two descriptors must be created. Descriptors are needed for a code segment
and a data segment. (This will give you the flat memory model.) The stack can be placed
in a normal read/write data segment, so no descriptor for the stack is needed. Before the
GDT can be used, the base address and limit must be loaded into the GDTR register using
an LGDT instruction.

If the hardware allows an NMI to be generated, you need to create the IDT and a gate for
the NMI interrupt handler. Before the IDT can be used, the base address and limit for the
idt must be loaded into the IDTR register using an LIDT instruction.

Protected mode is entered by setting thye PE bit in the CR0 register. Either a LMSW
or MOV CR0 instruction may be used to set this bit. Because the processor overlaps the
interpretation of several instructions, it is necessary to discard the instructions from the
read-ahead cache. A JMP instruction immediately after the LMSW changes the flow and
empties the processor if intructions which have been pre-fetched and/or decoded. At this
point, the processor is in protected mode and begins to perform protected mode application
initialization.

If the application requires that the IDTR be some value besides zero, then it should set it
to the required value at this point. All tasks share the same i386 IDTR value. Because
interrupts are enabled automatically by RTEMS as part of the initialize executive directive,
the IDTR MUST be set properly before this directive is invoked to insure correct interrupt
vectoring. If processor caching is to be utilized, then it should be enabled during the
reset application initialization code. The reset code which is executed before the call to
initialize executive has the following requirements:

For more information regarding the i386s data structures and their contents, refer to Intel’s
386 Programmer’s Reference Manual.

18 RTEMS CPU Architecture Supplement

2.7 Processor Dependent Information Table

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

2.7.1 CPU Dependent Information Table

The i386 version of the RTEMS CPU Dependent Information Table contains the information
required to interface a Board Support Package and RTEMS on the i386. This information
is provided to allow RTEMS to interoperate effectively with the BSP. The C structure
definition is given here:

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

unsigned32 interrupt_segment;
void *interrupt_vector_table;

} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

Chapter 2: Intel/AMD x86 Specific Information 19

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

interrupt_segment is the value of the selector which should be placed in a segment
register to access the Interrupt Descriptor Table.

interrupt_vector_table
is the base address of the Interrupt Descriptor Table relative to the
interrupt segment.

The contents of the i386 Interrupt Descriptor Table are discussed in Intel’s i386 User’s
Manual. Structure definitions for the i386 IDT is provided by including the file rtems.h.

20 RTEMS CPU Architecture Supplement

Chapter 3: Motorola M68xxx and Coldfire Specific Information 21

3 Motorola M68xxx and Coldfire Specific
Information

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the Motorola MC68xxx architecture dependencies in this port
of RTEMS. The MC68xxx family has a wide variety of CPU models within it. The part
numbers for these models are generally divided into MC680xx and MC683xx. The MC680xx
models are more general purpose processors with no integrated peripherals. The MC683xx
models, on the other hand, are more specialized and have a variety of peripherals on chip
including sophisticated timers and serial communications controllers.

It is highly recommended that the Motorola MC68xxx RTEMS application developer obtain
and become familiar with the documentation for the processor being used as well as the
documentation for the family as a whole.

Architecture Documents

For information on the Motorola MC68xxx architecture, refer to the following documents
available from Motorola (‘http//www.moto.com/’):

• M68000 Family Reference, Motorola, FR68K/D.

MODEL SPECIFIC DOCUMENTS

For information on specific processor models and their associated coprocessors, refer to the
following documents:

• MC68020 User’s Manual, Motorola, MC68020UM/AD.
• MC68881/MC68882 Floating-Point Coprocessor User’s Manual, Motorola,

MC68881UM/AD.

3.1 CPU Model Dependent Features

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.
Each processor family supported by RTEMS has a list of features which vary between

22 RTEMS CPU Architecture Supplement

CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This chapter presents the set of features which vary across SPARC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the
file cpukit/score/cpu/m68k/m68k.h based upon the particular CPU model defined on the
compilation command line.

3.1.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the MC68020 processor, this macro is set to the string "mc68020".

3.1.2 Floating Point Unit

The macro M68K HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise. It does not matter whether the hardware floating point
support is incorporated on-chip or is an external coprocessor.

3.1.3 BFFFO Instruction

The macro M68K HAS BFFFO is set to 1 to indicate that this CPU model has the bfffo
instruction.

3.1.4 Vector Base Register

The macro M68K HAS VBR is set to 1 to indicate that this CPU model has a vector base
register (vbr).

3.1.5 Separate Stacks

The macro M68K HAS SEPARATE STACKS is set to 1 to indicate that this CPU model
has separate interrupt, user, and supervisor mode stacks.

3.1.6 Pre-Indexing Address Mode

The macro M68K HAS PREINDEXING is set to 1 to indicate that this CPU model has
the pre-indexing address mode.

3.1.7 Extend Byte to Long Instruction

The macro M68K HAS EXTB L is set to 1 to indicate that this CPU model has the extb.l
instruction. This instruction is supposed to be available in all models based on the cpu32
core as well as mc68020 and up models.

Chapter 3: Motorola M68xxx and Coldfire Specific Information 23

3.2 Calling Conventions

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage
• parameter passing
• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

3.2.1 Processor Background

The MC68xxx architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the branch to subroutine (bsr) or the jump to subroutine (jsr)
instructions. These instructions push the return address on the current stack. The return
from subroutine (rts) instruction pops the return address off the current stack and transfers
control to that instruction. It is is important to note that the MC68xxx call and return
mechanism does not automatically save or restore any registers. It is the responsibility of
the high-level language compiler to define the register preservation and usage convention.

3.2.2 Calling Mechanism

All RTEMS directives are invoked using either a bsr or jsr instruction and return to the
user application via the rts instruction.

3.2.3 Register Usage

As discussed above, the bsr and jsr instructions do not automatically save any registers.
RTEMS uses the registers D0, D1, A0, and A1 as scratch registers. These registers are
not preserved by RTEMS directives therefore, the contents of these registers should not be
assumed upon return from any RTEMS directive.

3.2.4 Parameter Passing

RTEMS assumes that arguments are placed on the current stack before the directive is
invoked via the bsr or jsr instruction. The first argument is assumed to be closest to the
return address on the stack. This means that the first argument of the C calling sequence
is pushed last. The following pseudo-code illustrates the typical sequence used to call a
RTEMS directive with three (3) arguments:

push third argument
push second argument
push first argument
invoke directive
remove arguments from the stack

The arguments to RTEMS are typically pushed onto the stack using a move instruction with
a pre-decremented stack pointer as the destination. These arguments must be removed from

24 RTEMS CPU Architecture Supplement

the stack after control is returned to the caller. This removal is typically accomplished by
adding the size of the argument list in bytes to the current stack pointer.

3.2.5 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

3.3 Memory Model

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

3.3.1 Flat Memory Model

The MC68xxx family supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, word (2-bytes),
or long word (4 bytes). Memory accesses within this address space are performed in big
endian fashion by the processors in this family.

Some of the MC68xxx family members such as the MC68020, MC68030, and MC68040
support virtual memory and segmentation. The MC68020 requires external hardware sup-
port such as the MC68851 Paged Memory Management Unit coprocessor which is typically
used to perform address translations for these systems. RTEMS does not support virtual
memory or segmentation on any of the MC68xxx family members.

3.4 Interrupt Processing

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager
is mapped onto the processor’s unique architecture. Discussed in this chapter are the
MC68xxx’s interrupt response and control mechanisms as they pertain to RTEMS.

3.4.1 Vectoring of an Interrupt Handler

Depending on whether or not the particular CPU supports a separate interrupt stack, the
MC68xxx family has two different interrupt handling models.

3.4.1.1 Models Without Separate Interrupt Stacks

Upon receipt of an interrupt the MC68xxx family members without separate interrupt
stacks automatically perform the following actions:

Chapter 3: Motorola M68xxx and Coldfire Specific Information 25

• To Be Written

3.4.1.2 Models With Separate Interrupt Stacks

Upon receipt of an interrupt the MC68xxx family members with separate interrupt stacks
automatically perform the following actions:

• saves the current status register (SR),

• clears the master/interrupt (M) bit of the SR to indicate the switch from master
state to interrupt state,

• sets the privilege mode to supervisor,

• suppresses tracing,

• sets the interrupt mask level equal to the level of the interrupt being serviced,

• pushes an interrupt stack frame (ISF), which includes the program counter (PC),
the status register (SR), and the format/exception vector offset (FVO) word, onto
the supervisor and interrupt stacks,

• switches the current stack to the interrupt stack and vectors to an interrupt service
routine (ISR). If the ISR was installed with the interrupt catch directive, then the
RTEMS interrupt handler will begin execution. The RTEMS interrupt handler saves
all registers which are not preserved according to the calling conventions and invokes
the application’s ISR.

A nested interrupt is processed similarly by these CPU models with the exception that only
a single ISF is placed on the interrupt stack and the current stack need not be switched.

The FVO word in the Interrupt Stack Frame is examined by RTEMS to determine when
an outer most interrupt is being exited. Since the FVO is used by RTEMS for this purpose,
the user application code MUST NOT modify this field.

The following shows the Interrupt Stack Frame for MC68xxx CPU models with separate
interrupt stacks:

Status Register 0x0
Program Counter High 0x2
Program Counter Low 0x4
Format/Vector Offset 0x6

3.4.2 CPU Models Without VBR and RAM at 0

This is from a post by Zoltan Kocsi <zoltan@bendor.com.au> and is a nice trick in certain
situations. In his words:

I think somebody on this list asked about the interupt vector handling w/o VBR and RAM
at 0. The usual trick is to initialise the vector table (except the first 2 two entries, of course)
to point to the same location BUT you also add the vector number times 0x1000000 to them.
That is, bits 31-24 contain the vector number and 23-0 the address of the common handler.
Since the PC is 32 bit wide but the actual address bus is only 24, the top byte will be in
the PC but will be ignored when jumping onto your routine.

26 RTEMS CPU Architecture Supplement

Then your common interrupt routine gets this info by loading the PC into some register
and based on that info, you can jump to a vector in a vector table pointed by a virtual
VBR:

//
// Real vector table at 0
//

.long initial_sp

.long initial_pc

.long myhandler+0x02000000

.long myhandler+0x03000000

.long myhandler+0x04000000

...

.long myhandler+0xff000000

//
// This handler will jump to the interrupt routine of which
// the address is stored at VBR[vector_no]
// The registers and stackframe will be intact, the interrupt
// routine will see exactly what it would see if it was called
// directly from the HW vector table at 0.
//

.comm VBR,4,2 // This defines the ’virtual’ VBR
// From C: extern void *VBR;

myhandler: // At entry, PC contains the full vector
move.l %d0,-(%sp) // Save d0
move.l %a0,-(%sp) // Save a0
lea 0(%pc),%a0 // Get the value of the PC
move.l %a0,%d0 // Copy it to a data reg, d0 is VV??????
swap %d0 // Now d0 is ????VV??
and.w #0xff00,%d0 // Now d0 is ????VV00 (1)
lsr.w #6,%d0 // Now d0.w contains the VBR table offset
move.l VBR,%a0 // Get the address from VBR to a0
move.l (%a0,%d0.w),%a0 // Fetch the vector
move.l 4(%sp),%d0 // Restore d0
move.l %a0,4(%sp) // Place target address to the stack
move.l (%sp)+,%a0 // Restore a0, target address is on TOS
ret // This will jump to the handler and

// restore the stack

(1) If ’myhandler’ is guaranteed to be in the first 64K, e.g. just
after the vector table then that insn is not needed.

Chapter 3: Motorola M68xxx and Coldfire Specific Information 27

There are probably shorter ways to do this, but it I believe is enough to illustrate the trick.
Optimisation is left as an exercise to the reader :-)

3.4.3 Interrupt Levels

Eight levels (0-7) of interrupt priorities are supported by MC68xxx family members with
level seven (7) being the highest priority. Level zero (0) indicates that interrupts are fully
enabled. Interrupt requests for interrupts with priorities less than or equal to the current
interrupt mask level are ignored.

Although RTEMS supports 256 interrupt levels, the MC68xxx family only supports eight.
RTEMS interrupt levels 0 through 7 directly correspond to MC68xxx interrupt levels. All
other RTEMS interrupt levels are undefined and their behavior is unpredictable.

3.4.4 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed.
When these sections are encountered, RTEMS disables interrupts to level seven
(7) before the execution of this section and restores them to the previous level
upon completion of the section. RTEMS has been optimized to insure that in-
terrupts are disabled for less than RTEMS MAXIMUM DISABLE PERIOD microsec-
onds on a RTEMS MAXIMUM DISABLE PERIOD MHZ Mhz MC68020 with zero
wait states. These numbers will vary based the number of wait states and proces-
sor speed present on the target board. [NOTE: The maximum period with inter-
rupts disabled is hand calculated. This calculation was last performed for Release
RTEMS RELEASE FOR MAXIMUM DISABLE PERIOD.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

3.4.5 Interrupt Stack

RTEMS allocates the interrupt stack from the Workspace Area. The amount of memory
allocated for the interrupt stack is determined by the interrupt stack size field in the CPU
Configuration Table. During the initialization process, RTEMS will install its interrupt
stack.

The MC68xxx port of RTEMS supports a software managed dedicated interrupt stack on
those CPU models which do not support a separate interrupt stack in hardware.

3.5 Default Fatal Error Processing

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

28 RTEMS CPU Architecture Supplement

3.5.1 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the fatal error occurred directive when
there is no user handler configured or the user handler returns control to RTEMS. The
default fatal error handler disables processor interrupts to level 7, places the error code in
D0, and executes a stop instruction to simulate a halt processor instruction.

3.6 Board Support Packages

An RTEMS Board Support Package (BSP) must be designed to support a particular proces-
sor and target board combination. This chapter presents a discussion of MC68020 specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

3.6.1 System Reset

An RTEMS based application is initiated or re-initiated when the MC68020 processor is
reset. When the MC68020 is reset, the processor performs the following actions:

• The tracing bits of the status register are cleared to disable tracing.
• The supervisor interrupt state is entered by setting the supervisor (S) bit and clear-

ing the master/interrupt (M) bit of the status register.
• The interrupt mask of the status register is set to level 7 to effectively disable all

maskable interrupts.
• The vector base register (VBR) is set to zero.
• The cache control register (CACR) is set to zero to disable and freeze the processor

cache.
• The interrupt stack pointer (ISP) is set to the value stored at vector 0 (bytes 0-3)

of the exception vector table (EVT).
• The program counter (PC) is set to the value stored at vector 1 (bytes 4-7) of the

EVT.
• The processor begins execution at the address stored in the PC.

3.6.2 Processor Initialization

The address of the application’s initialization code should be stored in the first vector of
the EVT which will allow the immediate vectoring to the application code. If the appli-
cation requires that the VBR be some value besides zero, then it should be set to the
required value at this point. All tasks share the same MC68020’s VBR value. Because
interrupts are enabled automatically by RTEMS as part of the initialize executive directive,
the VBR MUST be set before this directive is invoked to insure correct interrupt vectoring.
If processor caching is to be utilized, then it should be enabled during the reset application
initialization code.

In addition to the requirements described in the Board Support Packages chapter of the
Applications User’s Manual for the reset code which is executed before the call to initialize
executive, the MC68020 version has the following specific requirements:

• Must leave the S bit of the status register set so that the MC68020 remains in the
supervisor state.

Chapter 3: Motorola M68xxx and Coldfire Specific Information 29

• Must set the M bit of the status register to remove the MC68020 from the interrupt
state.

• Must set the master stack pointer (MSP) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the initialize executive directive.

• Must initialize the MC68020’s vector table.

Note that the BSP is not responsible for allocating or installing the interrupt stack. RTEMS
does this automatically as part of initialization. If the BSP does not install an interrupt
stack and – for whatever reason – an interrupt occurs before initialize executive is invoked,
then the results are unpredictable.

3.7 Processor Dependent Information Table

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

3.7.1 CPU Dependent Information Table

The MC68xxx version of the RTEMS CPU Dependent Information Table contains the
information required to interface a Board Support Package and RTEMS on the MC68xxx.
This information is provided to allow RTEMS to interoperate effectively with the BSP. The
C structure definition is given here:

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

m68k_isr *interrupt_vector_table;
} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

30 RTEMS CPU Architecture Supplement

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

interrupt_vector_table
is the base address of the CPU’s Exception Vector Table.

Chapter 4: MIPS Specific Information 31

4 MIPS Specific Information

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the VENDOR XXX architecture dependencies in this port of
RTEMS. The XXX family has a wide variety of CPU models within it. The part numbers
...

XXX fill in some things here

It is highly recommended that the XXX RTEMS application developer obtain and become
familiar with the documentation for the processor being used as well as the documentation
for the family as a whole.

Architecture Documents

IDT docs are online at http://www.idt.com/products/risc/Welcome.html

For information on the XXX architecture, refer to the following documents available from
VENDOR (‘http//www.XXX.com/’):

• XXX Family Reference, VENDOR, PART NUMBER.

MODEL SPECIFIC DOCUMENTS

For information on specific processor models and their associated coprocessors, refer to the
following documents:

• XXX MODEL Manual, VENDOR, PART NUMBER.
• XXX MODEL Manual, VENDOR, PART NUMBER.

4.1 CPU Model Dependent Features

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.
Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature

32 RTEMS CPU Architecture Supplement

regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This chapter presents the set of features which vary across SPARC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the
file cpukit/score/cpu/XXX/XXX.h based upon the particular CPU model defined on the
compilation command line.

4.1.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the MODEL processor, this macro is set to the string "XXX".

4.1.2 Floating Point Unit

The macro XXX HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise. It does not matter whether the hardware floating point
support is incorporated on-chip or is an external coprocessor.

4.1.3 Another Optional Feature

The macro XXX

4.2 Calling Conventions

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage
• parameter passing
• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

4.2.1 Processor Background

The MC68xxx architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the branch to subroutine (XXX) or the jump to subroutine (XXX)
instructions. These instructions push the return address on the current stack. The return
from subroutine (XXX) instruction pops the return address off the current stack and trans-
fers control to that instruction. It is is important to note that the XXX call and return

Chapter 4: MIPS Specific Information 33

mechanism does not automatically save or restore any registers. It is the responsibility of
the high-level language compiler to define the register preservation and usage convention.

4.2.2 Calling Mechanism

All RTEMS directives are invoked using either a XXX or XXX instruction and return to the
user application via the XXX instruction.

4.2.3 Register Usage

As discussed above, the XXX and XXX instructions do not automatically save any registers.
RTEMS uses the registers D0, D1, A0, and A1 as scratch registers. These registers are
not preserved by RTEMS directives therefore, the contents of these registers should not be
assumed upon return from any RTEMS directive.

4.2.4 Parameter Passing

RTEMS assumes that arguments are placed on the current stack before the directive is
invoked via the XXX or XXX instruction. The first argument is assumed to be closest to the
return address on the stack. This means that the first argument of the C calling sequence
is pushed last. The following pseudo-code illustrates the typical sequence used to call a
RTEMS directive with three (3) arguments:

push third argument
push second argument
push first argument
invoke directive
remove arguments from the stack

The arguments to RTEMS are typically pushed onto the stack using a move instruction with
a pre-decremented stack pointer as the destination. These arguments must be removed from
the stack after control is returned to the caller. This removal is typically accomplished by
adding the size of the argument list in bytes to the current stack pointer.

4.2.5 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

4.3 Memory Model

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

4.3.1 Flat Memory Model

The XXX family supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, word (2-bytes),

34 RTEMS CPU Architecture Supplement

or long word (4 bytes). Memory accesses within this address space are performed in big
endian fashion by the processors in this family.

Some of the XXX family members such as the XXX, XXX, and XXX support virtual
memory and segmentation. The XXX requires external hardware support such as the XXX
Paged Memory Management Unit coprocessor which is typically used to perform address
translations for these systems. RTEMS does not support virtual memory or segmentation
on any of the XXX family members.

4.4 Interrupt Processing

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager is
mapped onto the processor’s unique architecture. Discussed in this chapter are the XXX’s
interrupt response and control mechanisms as they pertain to RTEMS.

4.4.1 Vectoring of an Interrupt Handler

Depending on whether or not the particular CPU supports a separate interrupt stack, the
XXX family has two different interrupt handling models.

4.4.1.1 Models Without Separate Interrupt Stacks

Upon receipt of an interrupt the XXX family members without separate interrupt stacks
automatically perform the following actions:

• To Be Written

4.4.1.2 Models With Separate Interrupt Stacks

Upon receipt of an interrupt the XXX family members with separate interrupt stacks au-
tomatically perform the following actions:

• saves the current status register (SR),
• clears the master/interrupt (M) bit of the SR to indicate the switch from master

state to interrupt state,
• sets the privilege mode to supervisor,
• suppresses tracing,
• sets the interrupt mask level equal to the level of the interrupt being serviced,
• pushes an interrupt stack frame (ISF), which includes the program counter (PC),

the status register (SR), and the format/exception vector offset (FVO) word, onto
the supervisor and interrupt stacks,

• switches the current stack to the interrupt stack and vectors to an interrupt service
routine (ISR). If the ISR was installed with the interrupt catch directive, then the
RTEMS interrupt handler will begin execution. The RTEMS interrupt handler saves

Chapter 4: MIPS Specific Information 35

all registers which are not preserved according to the calling conventions and invokes
the application’s ISR.

A nested interrupt is processed similarly by these CPU models with the exception that only
a single ISF is placed on the interrupt stack and the current stack need not be switched.

The FVO word in the Interrupt Stack Frame is examined by RTEMS to determine when
an outer most interrupt is being exited. Since the FVO is used by RTEMS for this purpose,
the user application code MUST NOT modify this field.

The following shows the Interrupt Stack Frame for XXX CPU models with separate inter-
rupt stacks:

Status Register 0x0
Program Counter High 0x2
Program Counter Low 0x4
Format/Vector Offset 0x6

4.4.2 Interrupt Levels

Eight levels (0-7) of interrupt priorities are supported by XXX family members with level
seven (7) being the highest priority. Level zero (0) indicates that interrupts are fully enabled.
Interrupt requests for interrupts with priorities less than or equal to the current interrupt
mask level are ignored.

Although RTEMS supports 256 interrupt levels, the XXX family only supports eight.
RTEMS interrupt levels 0 through 7 directly correspond to XXX interrupt levels. All
other RTEMS interrupt levels are undefined and their behavior is unpredictable.

4.4.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed.
When these sections are encountered, RTEMS disables interrupts to level seven
(7) before the execution of this section and restores them to the previous level
upon completion of the section. RTEMS has been optimized to insure that in-
terrupts are disabled for less than RTEMS MAXIMUM DISABLE PERIOD microsec-
onds on a RTEMS MAXIMUM DISABLE PERIOD MHZ Mhz processor with zero
wait states. These numbers will vary based the number of wait states and proces-
sor speed present on the target board. [NOTE: The maximum period with inter-
rupts disabled is hand calculated. This calculation was last performed for Release
RTEMS RELEASE FOR MAXIMUM DISABLE PERIOD.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

4.4.4 Interrupt Stack

RTEMS allocates the interrupt stack from the Workspace Area. The amount of memory
allocated for the interrupt stack is determined by the interrupt stack size field in the CPU

36 RTEMS CPU Architecture Supplement

Configuration Table. During the initialization process, RTEMS will install its interrupt
stack.

The mips port of RTEMS supports a software managed dedicated interrupt stack on those
CPU models which do not support a separate interrupt stack in hardware.

4.5 Default Fatal Error Processing

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

4.5.1 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the rtems_fatal_error_occurred
directive when there is no user handler configured or the user handler returns control to
RTEMS. The default fatal error handler disables processor interrupts, places the error code
in XXX, and executes a XXX instruction to simulate a halt processor instruction.

4.6 Board Support Packages

An RTEMS Board Support Package (BSP) must be designed to support a particular pro-
cessor and target board combination. This chapter presents a discussion of XXX specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

4.6.1 System Reset

An RTEMS based application is initiated or re-initiated when the XXX processor is reset.
When the XXX is reset, the processor performs the following actions:

• The tracing bits of the status register are cleared to disable tracing.

• The supervisor interrupt state is entered by setting the supervisor (S) bit and clear-
ing the master/interrupt (M) bit of the status register.

• The interrupt mask of the status register is set to level 7 to effectively disable all
maskable interrupts.

• The vector base register (VBR) is set to zero.

• The cache control register (CACR) is set to zero to disable and freeze the processor
cache.

• The interrupt stack pointer (ISP) is set to the value stored at vector 0 (bytes 0-3)
of the exception vector table (EVT).

• The program counter (PC) is set to the value stored at vector 1 (bytes 4-7) of the
EVT.

• The processor begins execution at the address stored in the PC.

Chapter 4: MIPS Specific Information 37

4.6.2 Processor Initialization

The address of the application’s initialization code should be stored in the first vector of the
EVT which will allow the immediate vectoring to the application code. If the application
requires that the VBR be some value besides zero, then it should be set to the required value
at this point. All tasks share the same XXX’s VBR value. Because interrupts are enabled
automatically by RTEMS as part of the initialize executive directive, the VBR MUST be
set before this directive is invoked to insure correct interrupt vectoring. If processor caching
is to be utilized, then it should be enabled during the reset application initialization code.

In addition to the requirements described in the Board Support Packages chapter of the
Applications User’s Manual for the reset code which is executed before the call to initialize
executive, the XXX version has the following specific requirements:

• Must leave the S bit of the status register set so that the XXX remains in the
supervisor state.

• Must set the M bit of the status register to remove the XXX from the interrupt
state.

• Must set the master stack pointer (MSP) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the initialize executive directive.

• Must initialize the XXX’s vector table.

Note that the BSP is not responsible for allocating or installing the interrupt stack. RTEMS
does this automatically as part of initialization. If the BSP does not install an interrupt
stack and – for whatever reason – an interrupt occurs before initialize executive is invoked,
then the results are unpredictable.

4.7 Processor Dependent Information Table

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

4.7.1 CPU Dependent Information Table

The XXX version of the RTEMS CPU Dependent Information Table contains the infor-
mation required to interface a Board Support Package and RTEMS on the XXX. This
information is provided to allow RTEMS to interoperate effectively with the BSP. The C
structure definition is given here:

38 RTEMS CPU Architecture Supplement

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

/* XXX CPU family dependent stuff */
} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

Chapter 4: MIPS Specific Information 39

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

XXX is where the CPU family dependent stuff goes.

40 RTEMS CPU Architecture Supplement

Chapter 5: PowerPC Specific Information 41

5 PowerPC Specific Information

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the PowerPC architecture dependencies in this port of RTEMS.

It is highly recommended that the PowerPC RTEMS application developer obtain and
become familiar with the documentation for the processor being used as well as the speci-
fication for the revision of the PowerPC architecture which corresponds to that processor.

PowerPC Architecture Documents

For information on the PowerPC architecture, refer to the following documents available
from Motorola and IBM:

• PowerPC Microprocessor Family: The Programming Environment (Motorola Doc-
ument MPRPPCFPE-01).

• IBM PPC403GB Embedded Controller User’s Manual.
• PoweRisControl MPC500 Family RCPU RISC Central Processing Unit Reference

Manual (Motorola Document RCPUURM/AD).
• PowerPC 601 RISC Microprocessor User’s Manual (Motorola Document

MPR601UM/AD).
• PowerPC 603 RISC Microprocessor User’s Manual (Motorola Document

MPR603UM/AD).
• PowerPC 603e RISC Microprocessor User’s Manual (Motorola Document

MPR603EUM/AD).
• PowerPC 604 RISC Microprocessor User’s Manual (Motorola Document

MPR604UM/AD).
• PowerPC MPC821 Portable Systems Microprocessor User’s Manual (Motorola Doc-

ument MPC821UM/AD).
• PowerQUICC MPC860 User’s Manual (Motorola Document MPC860UM/AD).

Motorola maintains an on-line electronic library for the PowerPC at the following URL:

http://www.mot.com/powerpc/library/library.html

This site has a a wealth of information and examples. Many of the manuals are available
from that site in electronic format.

PowerPC Processor Simulator Information

PSIM is a program which emulates the Instruction Set Architecture of the PowerPC mi-
croprocessor family. It is reely available in source code form under the terms of the GNU
General Public License (version 2 or later). PSIM can be integrated with the GNU De-
bugger (gdb) to execute and debug PowerPC executables on non-PowerPC hosts. PSIM

42 RTEMS CPU Architecture Supplement

supports the addition of user provided device models which can be used to allow one to
develop and debug embedded applications using the simulator.

The latest version of PSIM is made available to the public via anonymous ftp at
ftp://ftp.ci.com.au/pub/psim or ftp://cambridge.cygnus.com/pub/psim. There is also a
mailing list at powerpc-psim@ci.com.au.

5.1 CPU Model Dependent Features

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC, and PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.

5.1.1 CPU Model Feature Flags

Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This section presents the set of features which vary across PowerPC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the file
cpukit/score/cpu/ppc/ppc.h based upon the particular CPU model defined on the compi-
lation command line.

5.1.1.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the PowerPC 603e model, this macro is set to the string "PowerPC 603e".

5.1.1.2 Floating Point Unit

The macro PPC HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise.

Chapter 5: PowerPC Specific Information 43

5.1.1.3 Alignment

The macro PPC ALIGNMENT is set to the PowerPC model’s worst case alignment re-
quirement for data types on a byte boundary. This value is used to derive the alignment
restrictions for memory allocated from regions and partitions.

5.1.1.4 Cache Alignment

The macro PPC CACHE ALIGNMENT is set to the line size of the cache. It is used to
align the entry point of critical routines so that as much code as possible can be retrieved
with the initial read into cache. This is done for the interrupt handler as well as the context
switch routines.

In addition, the "shortcut" data structure used by the PowerPC implementation to ease
access to data elements frequently accessed by RTEMS routines implemented in assembly
language is aligned using this value.

5.1.1.5 Maximum Interrupts

The macro PPC INTERRUPT MAX is set to the number of exception sources supported
by this PowerPC model.

5.1.1.6 Has Double Precision Floating Point

The macro PPC HAS DOUBLE is set to 1 to indicate that the PowerPC model has support
for double precision floating point numbers. This is important because the floating point
registers need only be four bytes wide (not eight) if double precision is not supported.

5.1.1.7 Critical Interrupts

The macro PPC HAS RFCI is set to 1 to indicate that the PowerPC model has the Critical
Interrupt capability as defined by the IBM 403 models.

5.1.1.8 Use Multiword Load/Store Instructions

The macro PPC USE MULTIPLE is set to 1 to indicate that multiword load and store
instructions should be used to perform context switch operations. The relative efficiency of
multiword load and store instructions versus an equivalent set of single word load and store
instructions varies based upon the PowerPC model.

5.1.1.9 Instruction Cache Size

The macro PPC I CACHE is set to the size in bytes of the instruction cache.

5.1.1.10 Data Cache Size

The macro PPC D CACHE is set to the size in bytes of the data cache.

5.1.1.11 Debug Model

The macro PPC DEBUG MODEL is set to indicate the debug support features present in
this CPU model. The following debug support feature sets are currently supported:

PPC_DEBUG_MODEL_STANDARD
indicates that the single-step trace enable (SE) and branch trace
enable (BE) bits in the MSR are supported by this CPU model.

44 RTEMS CPU Architecture Supplement

PPC_DEBUG_MODEL_SINGLE_STEP_ONLY
indicates that only the single-step trace enable (SE) bit in the MSR
is supported by this CPU model.

PPC_DEBUG_MODEL_IBM4xx
indicates that the debug exception enable (DE) bit in the MSR is
supported by this CPU model. At this time, this particular debug
feature set has only been seen in the IBM 4xx series.

5.1.1.12 Low Power Model

The macro PPC LOW POWER MODE is set to indicate the low power model supported
by this CPU model. The following low power modes are currently supported.

PPC_LOW_POWER_MODE_NONE
indicates that this CPU model has no low power mode support.

PPC_LOW_POWER_MODE_STANDARD
indicates that this CPU model follows the low power model defined
for the PPC603e.

5.2 Calling Conventions

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage
• parameter passing
• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

RTEMS supports the Embedded Application Binary Interface (EABI) calling convention.
Documentation for EABI is available by sending a message with a subject line of "EABI"
to eabi@goth.sis.mot.com.

5.2.1 Programming Model

This section discusses the programming model for the PowerPC architecture.

5.2.1.1 Non-Floating Point Registers

The PowerPC architecture defines thirty-two non-floating point registers directly visible to
the programmer. In thirty-two bit implementations, each register is thirty-two bits wide.
In sixty-four bit implementations, each register is sixty-four bits wide.

These registers are referred to as gpr0 to gpr31.

Some of the registers serve defined roles in the EABI programming model. The following
table describes the role of each of these registers:

Chapter 5: PowerPC Specific Information 45

Register Name Alternate Names Description
r1 sp stack pointer
r2 NA global pointer to the Small

Constant Area (SDA2)
r3 - r12 NA parameter and result passing

r13 NA global pointer to the Small
Data Area (SDA2)

5.2.1.2 Floating Point Registers

The PowerPC architecture includes thirty-two, sixty-four bit floating point registers. All
PowerPC floating point instructions interpret these registers as 32 double precision floating
point registers, regardless of whether the processor has 64-bit or 32-bit implementation.

The floating point status and control register (fpscr) records exceptions and the type of
result generated by floating-point operations. Additionally, it controls the rounding mode
of operations and allows the reporting of floating exceptions to be enabled or disabled.

5.2.1.3 Special Registers

The PowerPC architecture includes a number of special registers which are critical to the
programming model:

Machine State Register
The MSR contains the processor mode, power management mode,
endian mode, exception information, privilege level, floating point
available and floating point excepiton mode, address translation in-
formation and the exception prefix.

Link Register

The LR contains the return address after a function call. This regis-
ter must be saved before a subsequent subroutine call can be made.
The use of this register is discussed further in the Call and Return
Mechanism section below.

Count Register

The CTR contains the iteration variable for some loops. It may also
be used for indirect function calls and jumps.

5.2.2 Call and Return Mechanism

The PowerPC architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the "branch and link" (bl) and "brank and link absolute" (bla)
instructions. This instructions place the return address in the Link Register (LR). The
callee returns to the caller by executing a "branch unconditional to the link register" (blr)
instruction. Thus the callee returns to the caller via a jump to the return address which is
stored in the LR.

The previous contents of the LR are not automatically saved by either the bl or bla. It
is the responsibility of the callee to save the contents of the LR before invoking another
subroutine. If the callee invokes another subroutine, it must restore the LR before executing
the blr instruction to return to the caller.

46 RTEMS CPU Architecture Supplement

It is important to note that the PowerPC subroutine call and return mechanism does not
automatically save and restore any registers.

The LR may be accessed as special purpose register 8 (SPR8) using the "move from special
register" (mfspr) and "move to special register" (mtspr) instructions.

5.2.3 Calling Mechanism

All RTEMS directives are invoked using the regular PowerPC EABI calling convention via
the bl or bla instructions.

5.2.4 Register Usage

As discussed above, the call instruction does not automatically save any registers. It is
the responsibility of the callee to save and restore any registers which must be preserved
across subroutine calls. The callee is responsible for saving callee-preserved registers to the
program stack and restoring them before returning to the caller.

5.2.5 Parameter Passing

RTEMS assumes that arguments are placed in the general purpose registers with the first
argument in register 3 (r3), the second argument in general purpose register 4 (r4), and so
forth until the seventh argument is in general purpose register 10 (r10). If there are more
than seven arguments, then subsequent arguments are placed on the program stack. The
following pseudo-code illustrates the typical sequence used to call a RTEMS directive with
three (3) arguments:

load third argument into r5
load second argument into r4
load first argument into r3
invoke directive

5.2.6 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these same calling conventions.

5.3 Memory Model

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

5.3.1 Flat Memory Model

The PowerPC architecture supports a variety of memory models. RTEMS supports the
PowerPC using a flat memory model with paging disabled. In this mode, the PowerPC
automatically converts every address from a logical to a physical address each time it is
used. The PowerPC uses information provided in the Block Address Translation (BAT) to
convert these addresses.

Chapter 5: PowerPC Specific Information 47

Implementations of the PowerPC architecture may be thirty-two or sixty-four bit. The Pow-
erPC architecture supports a flat thirty-two or sixty-four bit address space with addresses
ranging from 0x00000000 to 0xFFFFFFFF (4 gigabytes) in thirty-two bit implementations
or to 0xFFFFFFFFFFFFFFFF in sixty-four bit implementations. Each address is repre-
sented by either a thirty-two bit or sixty-four bit value and is byte addressable. The address
may be used to reference a single byte, half-word (2-bytes), word (4 bytes), or in sixty-four
bit implementations a doubleword (8 bytes). Memory accesses within the address space are
performed in big or little endian fashion by the PowerPC based upon the current setting
of the Little-endian mode enable bit (LE) in the Machine State Register (MSR). While the
processor is in big endian mode, memory accesses which are not properly aligned gener-
ate an "alignment exception" (vector offset 0x00600). In little endian mode, the PowerPC
architecture does not require the processor to generate alignment exceptions.

The following table lists the alignment requirements for a variety of data accesses:

Data Type Alignment Requirement
byte 1

half-word 2
word 4

doubleword 8

Doubleword load and store operations are only available in PowerPC CPU models which
are sixty-four bit implementations.

RTEMS does not directly support any PowerPC Memory Management Units, therefore,
virtual memory or segmentation systems involving the PowerPC are not supported.

5.4 Interrupt Processing

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager
is mapped onto the processor’s unique architecture. Discussed in this chapter are the
PowerPC’s interrupt response and control mechanisms as they pertain to RTEMS.

RTEMS and associated documentation uses the terms interrupt and vector. In the PowerPC
architecture, these terms correspond to exception and exception handler, respectively. The
terms will be used interchangeably in this manual.

5.4.1 Synchronous Versus Asynchronous Exceptions

In the PowerPC architecture exceptions can be either precise or imprecise and either syn-
chronous or asynchronous. Asynchronous exceptions occur when an external event inter-
rupts the processor. Synchronous exceptions are caused by the actions of an instruction.
During an exception SRR0 is used to calculate where instruction processing should resume.

48 RTEMS CPU Architecture Supplement

All instructions prior to the resume instruction will have completed execution. SRR1 is
used to store the machine status.

There are two asynchronous nonmaskable, highest-priority exceptions system reset and
machine check. There are two asynchrononous maskable low-priority exceptions external
interrupt and decrementer. Nonmaskable execptions are never delayed, therefore if two
nonmaskable, asynchronous exceptions occur in immediate succession, the state information
saved by the first exception may be overwritten when the subsequent exception occurs.

The PowerPC arcitecure defines one imprecise exception, the imprecise floating point en-
abled exception. All other synchronous exceptions are precise. The synchronization oc-
curing during asynchronous precise exceptions conforms to the requirements for context
synchronization.

5.4.2 Vectoring of Interrupt Handler

Upon determining that an exception can be taken the PowerPC automatically performs the
following actions:

• an instruction address is loaded into SRR0

• bits 33-36 and 42-47 of SRR1 are loaded with information specific to the exception.

• bits 0-32, 37-41, and 48-63 of SRR1 are loaded with corresponding bits from the
MSR.

• the MSR is set based upon the exception type.

• instruction fetch and execution resumes, using the new MSR value, at a location
specific to the execption type.

If the interrupt handler was installed as an RTEMS interrupt handler, then upon receipt of
the interrupt, the processor passes control to the RTEMS interrupt handler which performs
the following actions:

• saves the state of the interrupted task on it’s stack,

• saves all registers which are not normally preserved by the calling sequence so the
user’s interrupt service routine can be written in a high-level language.

• if this is the outermost (i.e. non-nested) interrupt, then the RTEMS interrupt
handler switches from the current stack to the interrupt stack,

• enables exceptions,

• invokes the vectors to a user interrupt service routine (ISR).

Asynchronous interrupts are ignored while exceptions are disabled. Synchronous interrupts
which occur while are disabled result in the CPU being forced into an error mode.

A nested interrupt is processed similarly with the exception that the current stack need not
be switched to the interrupt stack.

5.4.3 Interrupt Levels

The PowerPC architecture supports only a single external asynchronous interrupt source.
This interrupt source may be enabled and disabled via the External Interrupt Enable (EE)

Chapter 5: PowerPC Specific Information 49

bit in the Machine State Register (MSR). Thus only two level (enabled and disabled) of
external device interrupt priorities are directly supported by the PowerPC architecture.

Some PowerPC implementations include a Critical Interrupt capability which is often used
to receive interrupts from high priority external devices.

The RTEMS interrupt level mapping scheme for the PowerPC is not a numeric level as on
most RTEMS ports. It is a bit mapping in which the least three significiant bits of the
interrupt level are mapped directly to the enabling of specific interrupt sources as follows:

Critical Interrupt Setting bit 0 (the least significant bit) of the interrupt level enables
the Critical Interrupt source, if it is available on this CPU model.

Machine Check Setting bit 1 of the interrupt level enables Machine Check execptions.

External Interrupt Setting bit 2 of the interrupt level enables External Interrupt execp-
tions.

All other bits in the RTEMS task interrupt level are ignored.

5.4.4 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When
these sections are encountered, RTEMS disables Critical Interrupts, External Inter-
rupts and Machine Checks before the execution of this section and restores them to
the previous level upon completion of the section. RTEMS has been optimized to in-
sure that interrupts are disabled for less than RTEMS MAXIMUM DISABLE PERIOD
microseconds on a RTEMS MAXIMUM DISABLE PERIOD MHZ Mhz PowerPC 603e
with zero wait states. These numbers will vary based the number of wait states and
processor speed present on the target board. [NOTE: The maximum period with in-
terrupts disabled is hand calculated. This calculation was last performed for Release
RTEMS RELEASE FOR MAXIMUM DISABLE PERIOD.]

If a PowerPC implementation provides non-maskable interrupts (NMI) which cannot be
disabled, ISRs which process these interrupts MUST NEVER issue RTEMS system calls.
If a directive is invoked, unpredictable results may occur due to the inability of RTEMS to
protect its critical sections. However, ISRs that make no system calls may safely execute
as non-maskable interrupts.

5.4.5 Interrupt Stack

The PowerPC architecture does not provide for a dedicated interrupt stack. Thus by default,
exception handlers would execute on the stack of the RTEMS task which they interrupted.
This artificially inflates the stack requirements for each task since EVERY task stack would
have to include enough space to account for the worst case interrupt stack requirements in
addition to it’s own worst case usage. RTEMS addresses this problem on the PowerPC by
providing a dedicated interrupt stack managed by software.

During system initialization, RTEMS allocates the interrupt stack from the Workspace
Area. The amount of memory allocated for the interrupt stack is determined by the inter-
rupt stack size field in the CPU Configuration Table. As part of processing a non-nested
interrupt, RTEMS will switch to the interrupt stack before invoking the installed handler.

50 RTEMS CPU Architecture Supplement

5.5 Default Fatal Error Processing

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

5.5.1 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the rtems_fatal_error_occurred
directive when there is no user handler configured or the user handler returns control to
RTEMS. The default fatal error handler performs the following actions:

• places the error code in r3, and
• executes a trap instruction which results in a Program Exception.

If the Program Exception returns, then the following actions are performed:

• disables all processor exceptions by loading a 0 into the MSR, and
• goes into an infinite loop to simulate a halt processor instruction.

5.6 Board Support Packages

An RTEMS Board Support Package (BSP) must be designed to support a particular proces-
sor and target board combination. This chapter presents a discussion of PowerPC specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

5.6.1 System Reset

An RTEMS based application is initiated or re-initiated when the PowerPC processor is
reset. The PowerPC architecture defines a Reset Exception, but leaves the details of the
CPU state as implementation specific. Please refer to the User’s Manual for the CPU model
in question.

In general, at power-up the PowerPC begin execution at address 0xFFF00100 in supervisor
mode with all exceptions disabled. For soft resets, the CPU will vector to either 0xFFF00100
or 0x00000100 depending upon the setting of the Exception Prefix bit in the MSR. If during
a soft reset, a Machine Check Exception occurs, then the CPU may execute a hard reset.

5.6.2 Processor Initialization

It is the responsibility of the application’s initialization code to initialize the CPU and
board to a quiescent state before invoking the rtems_initialize_executive directive. It
is recommended that the BSP utilize the predriver_hook to install default handlers for
all exceptions. These default handlers may be overwritten as various device drivers and
subsystems install their own exception handlers. Upon completion of RTEMS executive
initialization, all interrupts are enabled.

If this PowerPC implementation supports on-chip caching and this is to be utilized, then
it should be enabled during the reset application initialization code. On-chip caching has

Chapter 5: PowerPC Specific Information 51

been observed to prevent some emulators from working properly, so it may be necessary to
run with caching disabled to use these emulators.

In addition to the requirements described in the Board Support Packages chapter of the
RTEMS C Applications User’s Manual for the reset code which is executed before the call
to rtems_initialize_executive, the PowrePC version has the following specific require-
ments:

• Must leave the PR bit of the Machine State Register (MSR) set to 0 so the PowerPC
remains in the supervisor state.

• Must set stack pointer (sp or r1) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the rtems_initialize_executive di-
rective.

• Must disable all external interrupts (i.e. clear the EI (EE) bit of the machine state
register).

• Must enable traps so window overflow and underflow conditions can be properly
handled.

• Must initialize the PowerPC’s initial Exception Table with default handlers.

5.7 Processor Dependent Information Table

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

5.7.1 CPU Dependent Information Table

The PowerPC version of the RTEMS CPU Dependent Information Table is given by the C
structure definition is shown below:

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

unsigned32 clicks_per_usec; /* Timer clicks per microsecond */
void (*spurious_handler)(

unsigned32 vector, CPU_Interrupt_frame *);
boolean exceptions_in_RAM; /* TRUE if in RAM */

52 RTEMS CPU Architecture Supplement

#if defined(ppc403)
unsigned32 serial_per_sec; /* Serial clocks per second */
boolean serial_external_clock;
boolean serial_xon_xoff;
boolean serial_cts_rts;
unsigned32 serial_rate;
unsigned32 timer_average_overhead; /* in ticks */
unsigned32 timer_least_valid; /* Least valid number from timer */

#endif
};

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

Chapter 5: PowerPC Specific Information 53

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

clicks_per_usec is the number of decrementer interupts that occur each microsecond.

spurious_handler is the address of the routine which is invoked when a spurious inter-
rupt occurs.

exceptions_in_RAM indicates whether the exception vectors are located in RAM or ROM.
If they are located in RAM dynamic vector installation occurs, oth-
erwise it does not.

serial_per_sec is a PPC403 specific field which specifies the number of clock ticks
per second for the PPC403 serial timer.

serial_rate is a PPC403 specific field which specifies the baud rate for the
PPC403 serial port.

serial_external_clock
is a PPC403 specific field which indicates whether or not to mask in
a 0x2 into the Input/Output Configuration Register (IOCR) during
initialization of the PPC403 console. (NOTE: This bit is defined as
"reserved" 6-12?)

serial_xon_xoff is a PPC403 specific field which indicates whether or not
XON/XOFF flow control is supported for the PPC403 serial port.

serial_cts_rts is a PPC403 specific field which indicates whether or not to set
the least significant bit of the Input/Output Configuration Regis-
ter (IOCR) during initialization of the PPC403 console. (NOTE:
This bit is defined as "reserved" 6-12?)

timer_average_overhead
is a PPC403 specific field which specifies the average number of over-
head ticks that occur on the PPC403 timer.

timer_least_valid is a PPC403 specific field which specifies the maximum valid PPC403
timer value.

54 RTEMS CPU Architecture Supplement

Chapter 6: SuperH Specific Information 55

6 SuperH Specific Information

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the VENDOR XXX architecture dependencies in this port of
RTEMS. The XXX family has a wide variety of CPU models within it. The part numbers
...

XXX fill in some things here

It is highly recommended that the XXX RTEMS application developer obtain and become
familiar with the documentation for the processor being used as well as the documentation
for the family as a whole.

Architecture Documents

For information on the XXX architecture, refer to the following documents available from
VENDOR (‘http//www.XXX.com/’):

• XXX Family Reference, VENDOR, PART NUMBER.

MODEL SPECIFIC DOCUMENTS

For information on specific processor models and their associated coprocessors, refer to the
following documents:

• XXX MODEL Manual, VENDOR, PART NUMBER.
• XXX MODEL Manual, VENDOR, PART NUMBER.

6.1 CPU Model Dependent Features

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.
Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes

56 RTEMS CPU Architecture Supplement

that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This chapter presents the set of features which vary across SPARC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the
file cpukit/score/cpu/XXX/XXX.h based upon the particular CPU model defined on the
compilation command line.

6.1.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the MODEL processor, this macro is set to the string "XXX".

6.1.2 Floating Point Unit

The macro XXX HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise. It does not matter whether the hardware floating point
support is incorporated on-chip or is an external coprocessor.

6.1.3 Another Optional Feature

The macro XXX

6.2 Calling Conventions

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage

• parameter passing

• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

The Hitachi SH architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the branch to subroutine (XXX) or the jump to subroutine (XXX)
instructions. These instructions push the return address on the current stack. The return
from subroutine (rts) instruction pops the return address off the current stack and transfers
control to that instruction. It is is important to note that the MC68xxx call and return
mechanism does not automatically save or restore any registers. It is the responsibility of
the high-level language compiler to define the register preservation and usage convention.

Chapter 6: SuperH Specific Information 57

6.2.1 Calling Mechanism

All RTEMS directives are invoked using either a bsr or jsr instruction and return to the
user application via the rts instruction.

6.2.2 Register Usage

As discussed above, the bsr and jsr instructions do not automatically save any registers.
RTEMS uses the registers D0, D1, A0, and A1 as scratch registers. These registers are
not preserved by RTEMS directives therefore, the contents of these registers should not be
assumed upon return from any RTEMS directive.

> > The SH1 has 16 general registers (r0..r15) > > r0..r3 used as general volatile registers >
> r4..r7 used to pass up to 4 arguments to functions, arguments above 4 are > > passed via
the stack) > > r8..13 caller saved registers (i.e. push them to the stack if you need them >
> inside of a function) > > r14 frame pointer > > r15 stack pointer >

6.2.3 Parameter Passing

RTEMS assumes that arguments are placed on the current stack before the directive is
invoked via the bsr or jsr instruction. The first argument is assumed to be closest to the
return address on the stack. This means that the first argument of the C calling sequence
is pushed last. The following pseudo-code illustrates the typical sequence used to call a
RTEMS directive with three (3) arguments:

push third argument
push second argument
push first argument
invoke directive
remove arguments from the stack

The arguments to RTEMS are typically pushed onto the stack using a move instruction with
a pre-decremented stack pointer as the destination. These arguments must be removed from
the stack after control is returned to the caller. This removal is typically accomplished by
adding the size of the argument list in bytes to the current stack pointer.

6.2.4 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

6.3 Memory Model

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

58 RTEMS CPU Architecture Supplement

6.3.1 Flat Memory Model

The XXX family supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, word (2-bytes),
or long word (4 bytes). Memory accesses within this address space are performed in big
endian fashion by the processors in this family.

Some of the XXX family members such as the XXX, XXX, and XXX support virtual
memory and segmentation. The XXX requires external hardware support such as the XXX
Paged Memory Management Unit coprocessor which is typically used to perform address
translations for these systems. RTEMS does not support virtual memory or segmentation
on any of the XXX family members.

6.4 Interrupt Processing

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager
is mapped onto the processor’s unique architecture. Discussed in this chapter are the SH’s
interrupt response and control mechanisms as they pertain to RTEMS.

6.4.1 Vectoring of an Interrupt Handler

Depending on whether or not the particular CPU supports a separate interrupt stack, the
SH family has two different interrupt handling models.

6.4.1.1 Models Without Separate Interrupt Stacks

Upon receipt of an interrupt the SH family members without separate interrupt stacks
automatically perform the following actions:

• To Be Written

6.4.1.2 Models With Separate Interrupt Stacks

Upon receipt of an interrupt the SH family members with separate interrupt stacks auto-
matically perform the following actions:

• saves the current status register (SR),
• clears the master/interrupt (M) bit of the SR to indicate the switch from master

state to interrupt state,
• sets the privilege mode to supervisor,
• suppresses tracing,
• sets the interrupt mask level equal to the level of the interrupt being serviced,
• pushes an interrupt stack frame (ISF), which includes the program counter (PC),

the status register (SR), and the format/exception vector offset (FVO) word, onto
the supervisor and interrupt stacks,

Chapter 6: SuperH Specific Information 59

• switches the current stack to the interrupt stack and vectors to an interrupt service
routine (ISR). If the ISR was installed with the interrupt catch directive, then the
RTEMS interrupt handler will begin execution. The RTEMS interrupt handler saves
all registers which are not preserved according to the calling conventions and invokes
the application’s ISR.

A nested interrupt is processed similarly by these CPU models with the exception that only
a single ISF is placed on the interrupt stack and the current stack need not be switched.

The FVO word in the Interrupt Stack Frame is examined by RTEMS to determine when
an outer most interrupt is being exited. Since the FVO is used by RTEMS for this purpose,
the user application code MUST NOT modify this field.

The following shows the Interrupt Stack Frame for XXX CPU models with separate inter-
rupt stacks:

Status Register 0x0
Program Counter High 0x2
Program Counter Low 0x4
Format/Vector Offset 0x6

6.4.2 Interrupt Levels

Eight levels (0-7) of interrupt priorities are supported by XXX family members with level
seven (7) being the highest priority. Level zero (0) indicates that interrupts are fully enabled.
Interrupt requests for interrupts with priorities less than or equal to the current interrupt
mask level are ignored.

Although RTEMS supports 256 interrupt levels, the XXX family only supports eight.
RTEMS interrupt levels 0 through 7 directly correspond to XXX interrupt levels. All
other RTEMS interrupt levels are undefined and their behavior is unpredictable.

6.4.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed.
When these sections are encountered, RTEMS disables interrupts to level seven
(7) before the execution of this section and restores them to the previous level
upon completion of the section. RTEMS has been optimized to insure that in-
terrupts are disabled for less than RTEMS MAXIMUM DISABLE PERIOD microsec-
onds on a RTEMS MAXIMUM DISABLE PERIOD MHZ Mhz XXX with zero wait
states. These numbers will vary based the number of wait states and proces-
sor speed present on the target board. [NOTE: The maximum period with inter-
rupts disabled is hand calculated. This calculation was last performed for Release
RTEMS RELEASE FOR MAXIMUM DISABLE PERIOD.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

60 RTEMS CPU Architecture Supplement

6.4.4 Interrupt Stack

RTEMS allocates the interrupt stack from the Workspace Area. The amount of memory
allocated for the interrupt stack is determined by the interrupt stack size field in the CPU
Configuration Table. During the initialization process, RTEMS will install its interrupt
stack.

The XXX port of RTEMS supports a software managed dedicated interrupt stack on those
CPU models which do not support a separate interrupt stack in hardware.

6.5 Default Fatal Error Processing

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

6.5.1 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the rtems_fatal_error_occurred
directive when there is no user handler configured or the user handler returns control to
RTEMS. The default fatal error handler disables processor interrupts, places the error code
in XXX, and executes a XXX instruction to simulate a halt processor instruction.

6.6 Board Support Packages

An RTEMS Board Support Package (BSP) must be designed to support a particular pro-
cessor and target board combination. This chapter presents a discussion of XXX specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

6.6.1 System Reset

An RTEMS based application is initiated or re-initiated when the XXX processor is reset.
When the XXX is reset, the processor performs the following actions:

• The tracing bits of the status register are cleared to disable tracing.
• The supervisor interrupt state is entered by setting the supervisor (S) bit and clear-

ing the master/interrupt (M) bit of the status register.
• The interrupt mask of the status register is set to level 7 to effectively disable all

maskable interrupts.
• The vector base register (VBR) is set to zero.
• The cache control register (CACR) is set to zero to disable and freeze the processor

cache.
• The interrupt stack pointer (ISP) is set to the value stored at vector 0 (bytes 0-3)

of the exception vector table (EVT).
• The program counter (PC) is set to the value stored at vector 1 (bytes 4-7) of the

EVT.

Chapter 6: SuperH Specific Information 61

• The processor begins execution at the address stored in the PC.

6.6.2 Processor Initialization

The address of the application’s initialization code should be stored in the first vector of the
EVT which will allow the immediate vectoring to the application code. If the application
requires that the VBR be some value besides zero, then it should be set to the required value
at this point. All tasks share the same XXX’s VBR value. Because interrupts are enabled
automatically by RTEMS as part of the initialize executive directive, the VBR MUST be
set before this directive is invoked to insure correct interrupt vectoring. If processor caching
is to be utilized, then it should be enabled during the reset application initialization code.

In addition to the requirements described in the Board Support Packages chapter of the
Applications User’s Manual for the reset code which is executed before the call to initialize
executive, the XXX version has the following specific requirements:

• Must leave the S bit of the status register set so that the XXX remains in the
supervisor state.

• Must set the M bit of the status register to remove the XXX from the interrupt
state.

• Must set the master stack pointer (MSP) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the initialize executive directive.

• Must initialize the XXX’s vector table.

Note that the BSP is not responsible for allocating or installing the interrupt stack. RTEMS
does this automatically as part of initialization. If the BSP does not install an interrupt
stack and – for whatever reason – an interrupt occurs before initialize executive is invoked,
then the results are unpredictable.

6.7 Processor Dependent Information Table

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

6.7.1 CPU Dependent Information Table

The XXX version of the RTEMS CPU Dependent Information Table contains the infor-
mation required to interface a Board Support Package and RTEMS on the XXX. This
information is provided to allow RTEMS to interoperate effectively with the BSP. The C
structure definition is given here:

62 RTEMS CPU Architecture Supplement

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

/* XXX CPU family dependent stuff */
} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

Chapter 6: SuperH Specific Information 63

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

XXX is where the CPU family dependent stuff goes.

64 RTEMS CPU Architecture Supplement

Chapter 7: SPARC Specific Information 65

7 SPARC Specific Information

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the SPARC architecture dependencies in this port of RTEMS.
Currently, only implementations of SPARC Version 7 are supported by RTEMS.

It is highly recommended that the SPARC RTEMS application developer obtain and become
familiar with the documentation for the processor being used as well as the specification for
the revision of the SPARC architecture which corresponds to that processor.

SPARC Architecture Documents

For information on the SPARC architecture, refer to the following documents available from
SPARC International, Inc. (http://www.sparc.com):

• SPARC Standard Version 7.
• SPARC Standard Version 8.
• SPARC Standard Version 9.

ERC32 Specific Information

The European Space Agency’s ERC32 is a three chip computing core implementing a
SPARC V7 processor and associated support circuitry for embedded space applications.
The integer and floating-point units (90C601E & 90C602E) are based on the Cypress 7C601
and 7C602, with additional error-detection and recovery functions. The memory controller
(MEC) implements system support functions such as address decoding, memory interface,
DMA interface, UARTs, timers, interrupt control, write-protection, memory reconfigura-
tion and error-detection. The core is designed to work at 25MHz, but using space qualified
memories limits the system frequency to around 15 MHz, resulting in a performance of 10
MIPS and 2 MFLOPS.

Information on the ERC32 and a number of development support tools, such as the
SPARC Instruction Simulator (SIS), are freely available on the Internet. The following
documents and SIS are available via anonymous ftp or pointing your web browser at
ftp://ftp.estec.esa.nl/pub/ws/wsd/erc32.

• ERC32 System Design Document
• MEC Device Specification

Additionally, the SPARC RISC User’s Guide from Matra MHS documents the functionality
of the integer and floating point units including the instruction set information. To obtain
this document as well as ERC32 components and VHDL models contact:

Matra MHS SA
3 Avenue du Centre, BP 309,

66 RTEMS CPU Architecture Supplement

78054 St-Quentin-en-Yvelines,
Cedex, France
VOICE: +31-1-30607087
FAX: +31-1-30640693

Amar Guennon (amar.guennon@matramhs.fr) is familiar with the ERC32.

7.1 CPU Model Dependent Features

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.

7.1.1 CPU Model Feature Flags

Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This section presents the set of features which vary across SPARC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the
file cpukit/score/cpu/sparc/sparc.h based upon the particular CPU model defined on the
compilation command line.

7.1.1.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the European Space Agency’s ERC32 SPARC model, this macro is set to
the string "erc32".

7.1.1.2 Floating Point Unit

The macro SPARC HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise.

Chapter 7: SPARC Specific Information 67

7.1.1.3 Bitscan Instruction

The macro SPARC HAS BITSCAN is set to 1 to indicate that this CPU model has the
bitscan instruction. For example, this instruction is supported by the Fujitsu SPARClite
family.

7.1.1.4 Number of Register Windows

The macro SPARC NUMBER OF REGISTER WINDOWS is set to indicate the number
of register window sets implemented by this CPU model. The SPARC architecture allows
a for a maximum of thirty-two register window sets although most implementations only
include eight.

7.1.1.5 Low Power Mode

The macro SPARC HAS LOW POWER MODE is set to one to indicate that this CPU
model has a low power mode. If low power is enabled, then there must be CPU model
specific implementation of the IDLE task in cpukit/score/cpu/sparc/cpu.c. The low power
mode IDLE task should be of the form:

while (TRUE) {
enter low power mode

}

The code required to enter low power mode is CPU model specific.

7.1.2 CPU Model Implementation Notes

The ERC32 is a custom SPARC V7 implementation based on the Cypress 601/602 chipset.
This CPU has a number of on-board peripherals and was developed by the European Space
Agency to target space applications. RTEMS currently provides support for the following
peripherals:

• UART Channels A and B
• General Purpose Timer
• Real Time Clock
• Watchdog Timer (so it can be disabled)
• Control Register (so powerdown mode can be enabled)
• Memory Control Register
• Interrupt Control

The General Purpose Timer and Real Time Clock Timer provided with the ERC32 share
the Timer Control Register. Because the Timer Control Register is write only, we must
mirror it in software and insure that writes to one timer do not alter the current settings
and status of the other timer. Routines are provided in erc32.h which promote the view
that the two timers are completely independent. By exclusively using these routines to
access the Timer Control Register, the application can view the system as having a General
Purpose Timer Control Register and a Real Time Clock Timer Control Register rather than
the single shared value.

The RTEMS Idle thread take advantage of the low power mode provided by the ERC32.
Low power mode is entered during idle loops and is enabled at initialization time.

68 RTEMS CPU Architecture Supplement

7.2 Calling Conventions

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage

• parameter passing

• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

7.2.1 Programming Model

This section discusses the programming model for the SPARC architecture.

7.2.1.1 Non-Floating Point Registers

The SPARC architecture defines thirty-two non-floating point registers directly visible to
the programmer. These are divided into four sets:

• input registers

• local registers

• output registers

• global registers

Each register is referred to by either two or three names in the SPARC reference manuals.
First, the registers are referred to as r0 through r31 or with the alternate notation r[0]
through r[31]. Second, each register is a member of one of the four sets listed above. Finally,
some registers have an architecturally defined role in the programming model which provides
an alternate name. The following table describes the mapping between the 32 registers and
the register sets:

Register Number Register Names Description
0 - 7 g0 - g7 Global Registers
8 - 15 o0 - o7 Output Registers
16 - 23 l0 - l7 Local Registers
24 - 31 i0 - i7 Input Registers

As mentioned above, some of the registers serve defined roles in the programming model.
The following table describes the role of each of these registers:

Chapter 7: SPARC Specific Information 69

Register Name Alternate Names Description
g0 NA reads return 0;

writes are ignored
o6 sp stack pointer
i6 fp frame pointer
i7 NA return address

7.2.1.2 Floating Point Registers

The SPARC V7 architecture includes thirty-two, thirty-two bit registers. These registers
may be viewed as follows:

• 32 single precision floating point or integer registers (f0, f1, ... f31)

• 16 double precision floating point registers (f0, f2, f4, ... f30)

• 8 extended precision floating point registers (f0, f4, f8, ... f28)

The floating point status register (fpsr) specifies the behavior of the floating point unit for
rounding, contains its condition codes, version specification, and trap information.

A queue of the floating point instructions which have started execution but not yet com-
pleted is maintained. This queue is needed to support the multiple cycle nature of floating
point operations and to aid floating point exception trap handlers. Once a floating point
exception has been encountered, the queue is frozen until it is emptied by the trap handler.
The floating point queue is loaded by launching instructions. It is emptied normally when
the floating point completes all outstanding instructions and by floating point exception
handlers with the store double floating point queue (stdfq) instruction.

7.2.1.3 Special Registers

The SPARC architecture includes two special registers which are critical to the programming
model: the Processor State Register (psr) and the Window Invalid Mask (wim). The psr
contains the condition codes, processor interrupt level, trap enable bit, supervisor mode
and previous supervisor mode bits, version information, floating point unit and coprocessor
enable bits, and the current window pointer (cwp). The cwp field of the psr and wim
register are used to manage the register windows in the SPARC architecture. The register
windows are discussed in more detail below.

7.2.2 Register Windows

The SPARC architecture includes the concept of register windows. An overly simplistic way
to think of these windows is to imagine them as being an infinite supply of "fresh" register
sets available for each subroutine to use. In reality, they are much more complicated.

The save instruction is used to obtain a new register window. This instruction decrements
the current window pointer, thus providing a new set of registers for use. This register set
includes eight fresh local registers for use exclusively by this subroutine. When done with a
register set, the restore instruction increments the current window pointer and the previous
register set is once again available.

The two primary issues complicating the use of register windows are that (1) the set of
register windows is finite, and (2) some registers are shared between adjacent registers
windows.

70 RTEMS CPU Architecture Supplement

Because the set of register windows is finite, it is possible to execute enough save instructions
without corresponding restore’s to consume all of the register windows. This is easily
accomplished in a high level language because each subroutine typically performs a save
instruction upon entry. Thus having a subroutine call depth greater than the number of
register windows will result in a window overflow condition. The window overflow condition
generates a trap which must be handled in software. The window overflow trap handler is
responsible for saving the contents of the oldest register window on the program stack.

Similarly, the subroutines will eventually complete and begin to perform restore’s. If the
restore results in the need for a register window which has previously been written to
memory as part of an overflow, then a window underflow condition results. Just like the
window overflow, the window underflow condition must be handled in software by a trap
handler. The window underflow trap handler is responsible for reloading the contents of
the register window requested by the restore instruction from the program stack.

The Window Invalid Mask (wim) and the Current Window Pointer (cwp) field in the psr
are used in conjunction to manage the finite set of register windows and detect the window
overflow and underflow conditions. The cwp contains the index of the register window
currently in use. The save instruction decrements the cwp modulo the number of register
windows. Similarly, the restore instruction increments the cwp modulo the number of
register windows. Each bit in the wim represents represents whether a register window
contains valid information. The value of 0 indicates the register window is valid and 1
indicates it is invalid. When a save instruction causes the cwp to point to a register window
which is marked as invalid, a window overflow condition results. Conversely, the restore
instruction may result in a window underflow condition.

Other than the assumption that a register window is always available for trap (i.e. inter-
rupt) handlers, the SPARC architecture places no limits on the number of register windows
simultaneously marked as invalid (i.e. number of bits set in the wim). However, RTEMS
assumes that only one register window is marked invalid at a time (i.e. only one bit set in
the wim). This makes the maximum possible number of register windows available to the
user while still meeting the requirement that window overflow and underflow conditions can
be detected.

The window overflow and window underflow trap handlers are a critical part of the run-time
environment for a SPARC application. The SPARC architectural specification allows for
the number of register windows to be any power of two less than or equal to 32. The most
common choice for SPARC implementations appears to be 8 register windows. This results
in the cwp ranging in value from 0 to 7 on most implementations.

The second complicating factor is the sharing of registers between adjacent register windows.
While each register window has its own set of local registers, the input and output registers
are shared between adjacent windows. The output registers for register window N are
the same as the input registers for register window ((N - 1) modulo RW) where RW is
the number of register windows. An alternative way to think of this is to remember how
parameters are passed to a subroutine on the SPARC. The caller loads values into what are
its output registers. Then after the callee executes a save instruction, those parameters are
available in its input registers. This is a very efficient way to pass parameters as no data is
actually moved by the save or restore instructions.

Chapter 7: SPARC Specific Information 71

7.2.3 Call and Return Mechanism

The SPARC architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the call (call) instruction. This instruction places the return
address in the caller’s output register 7 (o7). After the callee executes a save instruction,
this value is available in input register 7 (i7) until the corresponding restore instruction is
executed.

The callee returns to the caller via a jmp to the return address. There is a delay slot
following this instruction which is commonly used to execute a restore instruction – if a
register window was allocated by this subroutine.

It is important to note that the SPARC subroutine call and return mechanism does not
automatically save and restore any registers. This is accomplished via the save and restore
instructions which manage the set of registers windows.

7.2.4 Calling Mechanism

All RTEMS directives are invoked using the regular SPARC calling convention via the call
instruction.

7.2.5 Register Usage

As discussed above, the call instruction does not automatically save any registers. The
save and restore instructions are used to allocate and deallocate register windows. When
a register window is allocated, the new set of local registers are available for the exclusive
use of the subroutine which allocated this register set.

7.2.6 Parameter Passing

RTEMS assumes that arguments are placed in the caller’s output registers with the first
argument in output register 0 (o0), the second argument in output register 1 (o1), and so
forth. Until the callee executes a save instruction, the parameters are still visible in the
output registers. After the callee executes a save instruction, the parameters are visible in
the corresponding input registers. The following pseudo-code illustrates the typical sequence
used to call a RTEMS directive with three (3) arguments:

load third argument into o2
load second argument into o1
load first argument into o0
invoke directive

7.2.7 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

7.3 Memory Model

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate

72 RTEMS CPU Architecture Supplement

memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

7.3.1 Flat Memory Model

The SPARC architecture supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, half-word
(2-bytes), word (4 bytes), or doubleword (8 bytes). Memory accesses within this address
space are performed in big endian fashion by the SPARC. Memory accesses which are not
properly aligned generate a "memory address not aligned" trap (type number 7). The
following table lists the alignment requirements for a variety of data accesses:

Data Type Alignment Requirement
byte 1

half-word 2
word 4

doubleword 8

Doubleword load and store operations must use a pair of registers as their source or des-
tination. This pair of registers must be an adjacent pair of registers with the first of the
pair being even numbered. For example, a valid destination for a doubleword load might
be input registers 0 and 1 (i0 and i1). The pair i1 and i2 would be invalid. [NOTE: Some
assemblers for the SPARC do not generate an error if an odd numbered register is specified
as the beginning register of the pair. In this case, the assembler assumes that what the
programmer meant was to use the even-odd pair which ends at the specified register. This
may or may not have been a correct assumption.]

RTEMS does not support any SPARC Memory Management Units, therefore, virtual mem-
ory or segmentation systems involving the SPARC are not supported.

7.4 Interrupt Processing

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager is
mapped onto the processor’s unique architecture. Discussed in this chapter are the SPARC’s
interrupt response and control mechanisms as they pertain to RTEMS.

RTEMS and associated documentation uses the terms interrupt and vector. In the SPARC
architecture, these terms correspond to traps and trap type, respectively. The terms will
be used interchangeably in this manual.

Chapter 7: SPARC Specific Information 73

7.4.1 Synchronous Versus Asynchronous Traps

The SPARC architecture includes two classes of traps: synchronous and asynchronous.
Asynchronous traps occur when an external event interrupts the processor. These traps are
not associated with any instruction executed by the processor and logically occur between
instructions. The instruction currently in the execute stage of the processor is allowed
to complete although subsequent instructions are annulled. The return address reported
by the processor for asynchronous traps is the pair of instructions following the current
instruction.

Synchronous traps are caused by the actions of an instruction. The trap stimulus in this
case either occurs internally to the processor or is from an external signal that was provoked
by the instruction. These traps are taken immediately and the instruction that caused the
trap is aborted before any state changes occur in the processor itself. The return address
reported by the processor for synchronous traps is the instruction which caused the trap
and the following instruction.

7.4.2 Vectoring of Interrupt Handler

Upon receipt of an interrupt the SPARC automatically performs the following actions:

• disables traps (sets the ET bit of the psr to 0),
• the S bit of the psr is copied into the Previous Supervisor Mode (PS) bit of the psr,
• the cwp is decremented by one (modulo the number of register windows) to activate

a trap window,
• the PC and nPC are loaded into local register 1 and 2 (l0 and l1),
• the trap type (tt) field of the Trap Base Register (TBR) is set to the appropriate

value, and
• if the trap is not a reset, then the PC is written with the contents of the TBR and

the nPC is written with TBR + 4. If the trap is a reset, then the PC is set to zero
and the nPC is set to 4.

Trap processing on the SPARC has two features which are noticeably different than interrupt
processing on other architectures. First, the value of psr register in effect immediately before
the trap occurred is not explicitly saved. Instead only reversible alterations are made to it.
Second, the Processor Interrupt Level (pil) is not set to correspond to that of the interrupt
being processed. When a trap occurs, ALL subsequent traps are disabled. In order to safely
invoke a subroutine during trap handling, traps must be enabled to allow for the possibility
of register window overflow and underflow traps.

If the interrupt handler was installed as an RTEMS interrupt handler, then upon receipt of
the interrupt, the processor passes control to the RTEMS interrupt handler which performs
the following actions:

• saves the state of the interrupted task on it’s stack,
• insures that a register window is available for subsequent traps,
• if this is the outermost (i.e. non-nested) interrupt, then the RTEMS interrupt

handler switches from the current stack to the interrupt stack,
• enables traps,

74 RTEMS CPU Architecture Supplement

• invokes the vectors to a user interrupt service routine (ISR).

Asynchronous interrupts are ignored while traps are disabled. Synchronous traps which
occur while traps are disabled result in the CPU being forced into an error mode.

A nested interrupt is processed similarly with the exception that the current stack need not
be switched to the interrupt stack.

7.4.3 Traps and Register Windows

One of the register windows must be reserved at all times for trap processing. This is
critical to the proper operation of the trap mechanism in the SPARC architecture. It is the
responsibility of the trap handler to insure that there is a register window available for a
subsequent trap before re-enabling traps. It is likely that any high level language routines
invoked by the trap handler (such as a user-provided RTEMS interrupt handler) will allocate
a new register window. The save operation could result in a window overflow trap. This
trap cannot be correctly processed unless (1) traps are enabled and (2) a register window
is reserved for traps. Thus, the RTEMS interrupt handler insures that a register window
is available for subsequent traps before enabling traps and invoking the user’s interrupt
handler.

7.4.4 Interrupt Levels

Sixteen levels (0-15) of interrupt priorities are supported by the SPARC architecture with
level fifteen (15) being the highest priority. Level zero (0) indicates that interrupts are fully
enabled. Interrupt requests for interrupts with priorities less than or equal to the current
interrupt mask level are ignored.

Although RTEMS supports 256 interrupt levels, the SPARC only supports sixteen. RTEMS
interrupt levels 0 through 15 directly correspond to SPARC processor interrupt levels. All
other RTEMS interrupt levels are undefined and their behavior is unpredictable.

7.4.5 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed.
When these sections are encountered, RTEMS disables interrupts to level seven
(15) before the execution of this section and restores them to the previous level
upon completion of the section. RTEMS has been optimized to insure that in-
terrupts are disabled for less than RTEMS MAXIMUM DISABLE PERIOD microsec-
onds on a RTEMS MAXIMUM DISABLE PERIOD MHZ Mhz ERC32 with zero wait
states. These numbers will vary based the number of wait states and proces-
sor speed present on the target board. [NOTE: The maximum period with inter-
rupts disabled is hand calculated. This calculation was last performed for Release
RTEMS RELEASE FOR MAXIMUM DISABLE PERIOD.]

[NOTE: It is thought that the length of time at which the processor interrupt level is
elevated to fifteen by RTEMS is not anywhere near as long as the length of time ALL traps
are disabled as part of the "flush all register windows" operation.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results

Chapter 7: SPARC Specific Information 75

may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

7.4.6 Interrupt Stack

The SPARC architecture does not provide for a dedicated interrupt stack. Thus by default,
trap handlers would execute on the stack of the RTEMS task which they interrupted. This
artificially inflates the stack requirements for each task since EVERY task stack would
have to include enough space to account for the worst case interrupt stack requirements in
addition to it’s own worst case usage. RTEMS addresses this problem on the SPARC by
providing a dedicated interrupt stack managed by software.

During system initialization, RTEMS allocates the interrupt stack from the Workspace
Area. The amount of memory allocated for the interrupt stack is determined by the inter-
rupt stack size field in the CPU Configuration Table. As part of processing a non-nested
interrupt, RTEMS will switch to the interrupt stack before invoking the installed handler.

7.5 Default Fatal Error Processing

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

7.5.1 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the fatal error occurred directive when
there is no user handler configured or the user handler returns control to RTEMS. The
default fatal error handler disables processor interrupts to level 15, places the error code in
g1, and goes into an infinite loop to simulate a halt processor instruction.

7.6 Board Support Packages

An RTEMS Board Support Package (BSP) must be designed to support a particular pro-
cessor and target board combination. This chapter presents a discussion of SPARC specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

7.6.1 System Reset

An RTEMS based application is initiated or re-initiated when the SPARC processor is reset.
When the SPARC is reset, the processor performs the following actions:

• the enable trap (ET) of the psr is set to 0 to disable traps,
• the supervisor bit (S) of the psr is set to 1 to enter supervisor mode, and
• the PC is set 0 and the nPC is set to 4.

The processor then begins to execute the code at location 0. It is important to note that
all fields in the psr are not explicitly set by the above steps and all other registers retain

76 RTEMS CPU Architecture Supplement

their value from the previous execution mode. This is true even of the Trap Base Register
(TBR) whose contents reflect the last trap which occurred before the reset.

7.6.2 Processor Initialization

It is the responsibility of the application’s initialization code to initialize the TBR and
install trap handlers for at least the register window overflow and register window underflow
conditions. Traps should be enabled before invoking any subroutines to allow for register
window management. However, interrupts should be disabled by setting the Processor
Interrupt Level (pil) field of the psr to 15. RTEMS installs it’s own Trap Table as part
of initialization which is initialized with the contents of the Trap Table in place when
the rtems_initialize_executive directive was invoked. Upon completion of executive
initialization, interrupts are enabled.

If this SPARC implementation supports on-chip caching and this is to be utilized, then it
should be enabled during the reset application initialization code.

In addition to the requirements described in the Board Support Packages chapter of the [No
value for “LANGUAGE”] Applications User’s Manual for the reset code which is executed
before the call to rtems_initialize_executive, the SPARC version has the following
specific requirements:

• Must leave the S bit of the status register set so that the SPARC remains in the
supervisor state.

• Must set stack pointer (sp) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the rtems_initialize_executive di-
rective.

• Must disable all external interrupts (i.e. set the pil to 15).

• Must enable traps so window overflow and underflow conditions can be properly
handled.

• Must initialize the SPARC’s initial trap table with at least trap handlers for register
window overflow and register window underflow.

7.7 Processor Dependent Information Table

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

7.7.1 CPU Dependent Information Table

The SPARC version of the RTEMS CPU Dependent Information Table is given by the C
structure definition is shown below:

Chapter 7: SPARC Specific Information 77

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

78 RTEMS CPU Architecture Supplement

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

Command and Variable Index 79

Command and Variable Index

There are currently no Command and Variable Index entries.

80 RTEMS CPU Architecture Supplement

Concept Index 81

Concept Index

There are currently no Concept Index entries.

82 RTEMS CPU Architecture Supplement

	Preface
	ARM Specific Information
	CPU Model Dependent Features
	CPU Model Name
	Count Leading Zeroes Instruction
	Floating Point Unit

	Calling Conventions
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of an Interrupt Handler
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Board Support Packages
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	CPU Dependent Information Table

	Intel/AMD x86 Specific Information
	CPU Model Dependent Features
	CPU Model Name
	bswap Instruction
	Floating Point Unit

	Calling Conventions
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of Interrupt Handler
	Interrupt Stack Frame
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Board Support Packages
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	CPU Dependent Information Table

	Motorola M68xxx and Coldfire Specific Information
	CPU Model Dependent Features
	CPU Model Name
	Floating Point Unit
	BFFFO Instruction
	Vector Base Register
	Separate Stacks
	Pre-Indexing Address Mode
	Extend Byte to Long Instruction

	Calling Conventions
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of an Interrupt Handler
	Models Without Separate Interrupt Stacks
	Models With Separate Interrupt Stacks

	CPU Models Without VBR and RAM at 0
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Board Support Packages
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	CPU Dependent Information Table

	MIPS Specific Information
	CPU Model Dependent Features
	CPU Model Name
	Floating Point Unit
	Another Optional Feature

	Calling Conventions
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of an Interrupt Handler
	Models Without Separate Interrupt Stacks
	Models With Separate Interrupt Stacks

	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Board Support Packages
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	CPU Dependent Information Table

	PowerPC Specific Information
	CPU Model Dependent Features
	CPU Model Feature Flags
	CPU Model Name
	Floating Point Unit
	Alignment
	Cache Alignment
	Maximum Interrupts
	Has Double Precision Floating Point
	Critical Interrupts
	Use Multiword Load/Store Instructions
	Instruction Cache Size
	Data Cache Size
	Debug Model
	Low Power Model

	Calling Conventions
	Programming Model
	Non-Floating Point Registers
	Floating Point Registers
	Special Registers

	Call and Return Mechanism
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Synchronous Versus Asynchronous Exceptions
	Vectoring of Interrupt Handler
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Board Support Packages
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	CPU Dependent Information Table

	SuperH Specific Information
	CPU Model Dependent Features
	CPU Model Name
	Floating Point Unit
	Another Optional Feature

	Calling Conventions
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of an Interrupt Handler
	Models Without Separate Interrupt Stacks
	Models With Separate Interrupt Stacks

	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Board Support Packages
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	CPU Dependent Information Table

	SPARC Specific Information
	CPU Model Dependent Features
	CPU Model Feature Flags
	CPU Model Name
	Floating Point Unit
	Bitscan Instruction
	Number of Register Windows
	Low Power Mode

	CPU Model Implementation Notes

	Calling Conventions
	Programming Model
	Non-Floating Point Registers
	Floating Point Registers
	Special Registers

	Register Windows
	Call and Return Mechanism
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Synchronous Versus Asynchronous Traps
	Vectoring of Interrupt Handler
	Traps and Register Windows
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Board Support Packages
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	CPU Dependent Information Table

	Command and Variable Index
	Concept Index

