
RTEMS Intel i386 Applications Supplement
Edition 4.6.99.3, for RTEMS 4.6.99.3

19 September 2003

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2005-07-05.19

COPYRIGHT c© 1988 - 2003.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

i

Table of Contents

Preface . 1

1 CPU Model Dependent Features. 3
1.1 Introduction . 3
1.2 CPU Model Name . 3
1.3 bswap Instruction . 3
1.4 Floating Point Unit. 3

2 Calling Conventions . 5
2.1 Introduction . 5
2.2 Processor Background . 5
2.3 Calling Mechanism . 5
2.4 Register Usage . 5
2.5 Parameter Passing. 5
2.6 User-Provided Routines . 6

3 Memory Model . 7
3.1 Introduction . 7
3.2 Flat Memory Model . 7

4 Interrupt Processing . 9
4.1 Introduction . 9
4.2 Vectoring of Interrupt Handler . 9
4.3 Interrupt Stack Frame . 9
4.4 Interrupt Levels . 9
4.5 Disabling of Interrupts by RTEMS. 10
4.6 Interrupt Stack . 10

5 Default Fatal Error Processing 11
5.1 Introduction . 11
5.2 Default Fatal Error Handler Operations . 11

6 Board Support Packages 13
6.1 Introduction . 13
6.2 System Reset . 13
6.3 Processor Initialization . 13

7 Processor Dependent Information Table 15
7.1 Introduction . 15
7.2 CPU Dependent Information Table . 15

ii RTEMS Intel i386 Applications Supplement

8 Memory Requirements . 17
8.1 Introduction . 17
8.2 Data Space Requirements . 17
8.3 Minimum and Maximum Code Space Requirements 17
8.4 RTEMS Code Space Worksheet . 17
8.5 RTEMS RAM Workspace Worksheet . 19

9 Timing Specification . 21
9.1 Introduction . 21
9.2 Philosophy . 21

9.2.1 Determinancy . 21
9.2.2 Interrupt Latency . 22
9.2.3 Context Switch Time . 23
9.2.4 Directive Times . 23

9.3 Methodology . 23
9.3.1 Software Platform . 24
9.3.2 Hardware Platform . 24
9.3.3 What is measured? . 24
9.3.4 What is not measured? . 24
9.3.5 Terminology . 25

10 CPU386 Timing Data . 27
10.1 Introduction . 27
10.2 Hardware Platform . 27
10.3 Interrupt Latency . 27
10.4 Context Switch . 27
10.5 Directive Times . 28
10.6 Task Manager. 29
10.7 Interrupt Manager . 30
10.8 Clock Manager . 30
10.9 Timer Manager . 30
10.10 Semaphore Manager . 31
10.11 Message Manager . 31
10.12 Event Manager . 32
10.13 Signal Manager . 32
10.14 Partition Manager. 32
10.15 Region Manager . 33
10.16 Dual-Ported Memory Manager . 33
10.17 I/O Manager . 33
10.18 Rate Monotonic Manager . 33

Command and Variable Index 35

Concept Index . 37

Preface 1

Preface

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

For information on the i386 processor, refer to the following documents:

• 386 Programmer’s Reference Manual, Intel, Order No. 230985-002.
• 386 Microprocessor Hardware Reference Manual, Intel, Order No. 231732-003.
• 80386 System Software Writer’s Guide, Intel, Order No. 231499-001.
• 80387 Programmer’s Reference Manual, Intel, Order No. 231917-001.

It is highly recommended that the i386 RTEMS application developer obtain and become
familiar with Intel’s 386 Programmer’s Reference Manual.

2 RTEMS Intel i386 Applications Supplement

Chapter 1: CPU Model Dependent Features 3

1 CPU Model Dependent Features

1.1 Introduction

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.
Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This chapter presents the set of features which vary across i386 implementations and are
of importance to RTEMS. The set of CPU model feature macros are defined in the file
cpukit/score/cpu/i386/i386.h based upon the particular CPU model defined on the compi-
lation command line.

1.2 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the Intel i386 without an i387 coprocessor, this macro is set to the string
"i386 with i387".

1.3 bswap Instruction

The macro I386 HAS BSWAP is set to 1 to indicate that this CPU model has the bswap
instruction which endian swaps a thirty-two bit quantity. This instruction appears to be
present in all CPU models i486’s and above.

1.4 Floating Point Unit

The macro I386 HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise. The hardware floating point may be on-chip (as in

4 RTEMS Intel i386 Applications Supplement

the case of an i486DX or Pentium) or as a coprocessor (as in the case of an i386/i387
combination).

Chapter 2: Calling Conventions 5

2 Calling Conventions

2.1 Introduction

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage
• parameter passing
• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

2.2 Processor Background

The i386 architecture supports a simple yet effective call and return mechanism. A sub-
routine is invoked via the call (call) instruction. This instruction pushes the return address
on the stack. The return from subroutine (ret) instruction pops the return address off the
current stack and transfers control to that instruction. It is is important to note that the
i386 call and return mechanism does not automatically save or restore any registers. It is
the responsibility of the high-level language compiler to define the register preservation and
usage convention.

2.3 Calling Mechanism

All RTEMS directives are invoked using a call instruction and return to the user application
via the ret instruction.

2.4 Register Usage

As discussed above, the call instruction does not automatically save any registers. RTEMS
uses the registers EAX, ECX, and EDX as scratch registers. These registers are not pre-
served by RTEMS directives therefore, the contents of these registers should not be assumed
upon return from any RTEMS directive.

2.5 Parameter Passing

RTEMS assumes that arguments are placed on the current stack before the directive is
invoked via the call instruction. The first argument is assumed to be closest to the return
address on the stack. This means that the first argument of the C calling sequence is pushed
last. The following pseudo-code illustrates the typical sequence used to call a RTEMS
directive with three (3) arguments:

push third argument
push second argument

6 RTEMS Intel i386 Applications Supplement

push first argument
invoke directive
remove arguments from the stack

The arguments to RTEMS are typically pushed onto the stack using a push instruction.
These arguments must be removed from the stack after control is returned to the caller.
This removal is typically accomplished by adding the size of the argument list in bytes to
the stack pointer.

2.6 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

Chapter 3: Memory Model 7

3 Memory Model

3.1 Introduction

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

3.2 Flat Memory Model

RTEMS supports the i386 protected mode, flat memory model with paging disabled. In this
mode, the i386 automatically converts every address from a logical to a physical address
each time it is used. The i386 uses information provided in the segment registers and the
Global Descriptor Table to convert these addresses. RTEMS assumes the existence of the
following segments:

• a single code segment at protection level (0) which contains all application and
executive code.

• a single data segment at protection level zero (0) which contains all application and
executive data.

The i386 segment registers and associated selectors must be initialized when the initial-
ize executive directive is invoked. RTEMS treats the segment registers as system registers
and does not modify or context switch them.

This i386 memory model supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, half-word
(2-bytes), or word (4 bytes).

RTEMS does not require that logical addresses map directly to physical addresses, although
it is desirable in many applications to do so. If logical and physical addresses are not the
same, then an additional selector will be required so RTEMS can access the Interrupt
Descriptor Table to install interrupt service routines. The selector number of this segment
is provided to RTEMS in the CPU Dependent Information Table.

By not requiring that logical addresses map directly to physical addresses, the memory space
of an RTEMS application can be separated from that of a ROM monitor. For example, on
the Force Computers CPU386, the ROM monitor loads application programs into a logical
address space where logical address 0x00000000 corresponds to physical address 0x0002000.
On this board, RTEMS and the application use virtual addresses which do not map to
physical addresses.

RTEMS assumes that the DS and ES registers contain the selector for the single data seg-
ment when a directive is invoked. This assumption is especially important when developing
interrupt service routines.

8 RTEMS Intel i386 Applications Supplement

Chapter 4: Interrupt Processing 9

4 Interrupt Processing

4.1 Introduction

Different types of processors respond to the occurrence of an interrupt in their own unique
fashion. In addition, each processor type provides a control mechanism to allow the proper
handling of an interrupt. The processor dependent response to the interrupt modifies the
execution state and results in the modification of the execution stream. This modification
usually requires that an interrupt handler utilize the provided control mechanisms to return
to the normal processing stream. Although RTEMS hides many of the processor dependent
details of interrupt processing, it is important to understand how the RTEMS interrupt
manager is mapped onto the processor’s unique architecture. Discussed in this chapter are
the the processor’s response and control mechanisms as they pertain to RTEMS.

4.2 Vectoring of Interrupt Handler

Although the i386 supports multiple privilege levels, RTEMS and all user software executes
at privilege level 0. This decision was made by the RTEMS designers to enhance compat-
ibility with processors which do not provide sophisticated protection facilities like those of
the i386. This decision greatly simplifies the discussion of i386 processing, as one need only
consider interrupts without privilege transitions.

Upon receipt of an interrupt the i386 automatically performs the following actions:

• pushes the EFLAGS register
• pushes the far address of the interrupted instruction
• vectors to the interrupt service routine (ISR).

A nested interrupt is processed similarly by the i386.

4.3 Interrupt Stack Frame

The structure of the Interrupt Stack Frame for the i386 which is placed on the interrupt
stack by the processor in response to an interrupt is as follows:

Old EFLAGS Register ESP+8
UNUSED Old CS ESP+4

Old EIP ESP

4.4 Interrupt Levels

Although RTEMS supports 256 interrupt levels, the i386 only supports two – enabled and
disabled. Interrupts are enabled when the interrupt-enable flag (IF) in the extended flags
(EFLAGS) is set. Conversely, interrupt processing is inhibited when the IF is cleared.
During a non-maskable interrupt, all other interrupts, including other non-maskable ones,
are inhibited.

RTEMS interrupt levels 0 and 1 such that level zero (0) indicates that interrupts are fully
enabled and level one that interrupts are disabled. All other RTEMS interrupt levels are
undefined and their behavior is unpredictable.

10 RTEMS Intel i386 Applications Supplement

4.5 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When
these sections are encountered, RTEMS disables interrupts before the execution of this
section and restores them to the previous level upon completion of the section. RTEMS
has been optimized to insure that interrupts are disabled for less than 13.0 microseconds
on a 16 Mhz i386 with zero wait states. These numbers will vary based the number of wait
states and processor speed present on the target board. [NOTE: The maximum period with
interrupts disabled within RTEMS was last calculated for Release 3.1.0.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

4.6 Interrupt Stack

The i386 family does not support a dedicated hardware interrupt stack. On this processor,
RTEMS allocates and manages a dedicated interrupt stack. As part of vectoring a non-
nested interrupt service routine, RTEMS switches from the stack of the interrupted task to
a dedicated interrupt stack. When a non-nested interrupt returns, RTEMS switches back
to the stack of the interrupted stack. The current stack pointer is not altered by RTEMS
on nested interrupt.

Without a dedicated interrupt stack, every task in the system MUST have enough stack
space to accommodate the worst case stack usage of that particular task and the interrupt
service routines COMBINED. By supporting a dedicated interrupt stack, RTEMS signifi-
cantly lowers the stack requirements for each task.

RTEMS allocates the dedicated interrupt stack from the Workspace Area. The amount of
memory allocated for the interrupt stack is determined by the interrupt stack size field in
the CPU Configuration Table.

Chapter 5: Default Fatal Error Processing 11

5 Default Fatal Error Processing

5.1 Introduction

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

5.2 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the fatal error occurred directive when
there is no user handler configured or the user handler returns control to RTEMS. The
default fatal error handler disables processor interrupts, places the error code in EAX, and
executes a HLT instruction to halt the processor.

12 RTEMS Intel i386 Applications Supplement

Chapter 6: Board Support Packages 13

6 Board Support Packages

6.1 Introduction

An RTEMS Board Support Package (BSP) must be designed to support a particular pro-
cessor and target board combination. This chapter presents a discussion of i386 specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

6.2 System Reset

An RTEMS based application is initiated when the i386 processor is reset. When the i386
is reset,

• The EAX register is set to indicate the results of the processor’s power-up self test.
If the self-test was not executed, the contents of this register are undefined. Other-
wise, a non-zero value indicates the processor is faulty and a zero value indicates a
successful self-test.

• The DX register holds a component identifier and revision level. DH contains 3 to
indicate an i386 component and DL contains a unique revision level indicator.

• Control register zero (CR0) is set such that the processor is in real mode with
paging disabled. Other portions of CR0 are used to indicate the presence of a
numeric coprocessor.

• All bits in the extended flags register (EFLAG) which are not permanently set are
cleared. This inhibits all maskable interrupts.

• The Interrupt Descriptor Register (IDTR) is set to point at address zero.
• All segment registers are set to zero.
• The instruction pointer is set to 0x0000FFF0. The first instruction executed after a

reset is actually at 0xFFFFFFF0 because the i386 asserts the upper twelve address
until the first intersegment (FAR) JMP or CALL instruction. When a JMP or
CALL is executed, the upper twelve address lines are lowered and the processor
begins executing in the first megabyte of memory.

Typically, an intersegment JMP to the application’s initialization code is placed at address
0xFFFFFFF0.

6.3 Processor Initialization

This initialization code is responsible for initializing all data structures required by the i386
in protected mode and for actually entering protected mode. The i386 must be placed in
protected mode and the segment registers and associated selectors must be initialized before
the initialize executive directive is invoked.

The initialization code is responsible for initializing the Global Descriptor Table such that
the i386 is in the thirty-two bit flat memory model with paging disabled. In this mode, the
i386 automatically converts every address from a logical to a physical address each time it
is used. For more information on the memory model used by RTEMS, please refer to the
Memory Model chapter in this document.

14 RTEMS Intel i386 Applications Supplement

Since the processor is in real mode upon reset, the processor must be switched to protected
mode before RTEMS can execute. Before switching to protected mode, at least one descrip-
tor table and two descriptors must be created. Descriptors are needed for a code segment
and a data segment. (This will give you the flat memory model.) The stack can be placed
in a normal read/write data segment, so no descriptor for the stack is needed. Before the
GDT can be used, the base address and limit must be loaded into the GDTR register using
an LGDT instruction.

If the hardware allows an NMI to be generated, you need to create the IDT and a gate for
the NMI interrupt handler. Before the IDT can be used, the base address and limit for the
idt must be loaded into the IDTR register using an LIDT instruction.

Protected mode is entered by setting thye PE bit in the CR0 register. Either a LMSW
or MOV CR0 instruction may be used to set this bit. Because the processor overlaps the
interpretation of several instructions, it is necessary to discard the instructions from the
read-ahead cache. A JMP instruction immediately after the LMSW changes the flow and
empties the processor if intructions which have been pre-fetched and/or decoded. At this
point, the processor is in protected mode and begins to perform protected mode application
initialization.

If the application requires that the IDTR be some value besides zero, then it should set it
to the required value at this point. All tasks share the same i386 IDTR value. Because
interrupts are enabled automatically by RTEMS as part of the initialize executive directive,
the IDTR MUST be set properly before this directive is invoked to insure correct interrupt
vectoring. If processor caching is to be utilized, then it should be enabled during the
reset application initialization code. The reset code which is executed before the call to
initialize executive has the following requirements:

For more information regarding the i386s data structures and their contents, refer to Intel’s
386 Programmer’s Reference Manual.

Chapter 7: Processor Dependent Information Table 15

7 Processor Dependent Information Table

7.1 Introduction

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

7.2 CPU Dependent Information Table

The i386 version of the RTEMS CPU Dependent Information Table contains the information
required to interface a Board Support Package and RTEMS on the i386. This information
is provided to allow RTEMS to interoperate effectively with the BSP. The C structure
definition is given here:

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

unsigned32 interrupt_segment;
void *interrupt_vector_table;

} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS

16 RTEMS Intel i386 Applications Supplement

default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

interrupt_segment is the value of the selector which should be placed in a segment
register to access the Interrupt Descriptor Table.

interrupt_vector_table
is the base address of the Interrupt Descriptor Table relative to the
interrupt segment.

The contents of the i386 Interrupt Descriptor Table are discussed in Intel’s i386 User’s
Manual. Structure definitions for the i386 IDT is provided by including the file rtems.h.

Chapter 8: Memory Requirements 17

8 Memory Requirements

8.1 Introduction

Memory is typically a limited resource in real-time embedded systems, therefore, RTEMS
can be configured to utilize the minimum amount of memory while meeting all of the
applications requirements. Worksheets are provided which allow the RTEMS application
developer to determine the amount of RTEMS code and RAM workspace which is required
by the particular configuration. Also provided are the minimum code space, maximum code
space, and the constant data space required by RTEMS.

8.2 Data Space Requirements

RTEMS requires a small amount of memory for its private variables. This data area must
be in RAM and is separate from the RTEMS RAM Workspace. The following illustrates
the data space required for all configurations of RTEMS:

• Data Space: 833

8.3 Minimum and Maximum Code Space Requirements

A maximum configuration of RTEMS includes the core and all managers, including the
multiprocessing manager. Conversely, a minimum configuration of RTEMS includes only
the core and the following managers: initialization, task, interrupt and fatal error. The
following illustrates the code space required by these configurations of RTEMS:

• Minimum Configuration: 22,660
• Maximum Configuration: 39,592

8.4 RTEMS Code Space Worksheet

The RTEMS Code Space Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the memory required by the RTEMS run-time environment.
RTEMS allows the custom configuration of the executive by optionally excluding managers
which are not required by a particular application. This worksheet provides the included
and excluded size of each manager in tabular form allowing for the quick calculation of any
custom configuration of RTEMS. The RTEMS Code Space Worksheet is below:

18 RTEMS Intel i386 Applications Supplement

RTEMS Code Space Worksheet

Component Included Not Included Size
Core 16,948 NA

Initialization 916 NA
Task 3,436 NA

Interrupt 52 NA
Clock 296 NA
Timer 1,084 144

Semaphore 1,500 136
Message 1,596 224
Event 1,036 44
Signal 396 44

Partition 1,052 104
Region 1,392 124

Dual Ported Memory 664 104
I/O 676 00

Fatal Error 20 NA
Rate Monotonic 1,132 136
Multiprocessing 6,840 228

Total Code Space Requirements

Chapter 8: Memory Requirements 19

8.5 RTEMS RAM Workspace Worksheet

The RTEMS RAM Workspace Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the minimum memory block to be reserved for RTEMS
use. This worksheet provides equations for calculating the amount of memory required
based upon the number of objects configured, whether for single or multiple processor
versions of the executive. This information is presented in tabular form, along with the fixed
system requirements, allowing for quick calculation of any application defined configuration
of RTEMS. The RTEMS RAM Workspace Worksheet is provided below:

RTEMS RAM Workspace Worksheet

Description Equation Bytes Required
maximum tasks * 372 =
maximum timers * 68 =

maximum semaphores * 124 =
maximum message queues * 148 =

maximum regions * 144 =
maximum partitions * 56 =

maximum ports * 36 =
maximum periods * 36 =

maximum extensions * 64 =
Floating Point Tasks * 108 =

Task Stacks =
Total Single Processor Requirements

Description Equation Bytes Required
maximum nodes * 48 =

maximum global objects * 20 =
maximum proxies * 124 =

Total Multiprocessing Requirements
Fixed System Requirements 6,768

Total Single Processor Requirements
Total Multiprocessing Requirements

Minimum Bytes for RTEMS Workspace

20 RTEMS Intel i386 Applications Supplement

Chapter 9: Timing Specification 21

9 Timing Specification

9.1 Introduction

This chapter provides information pertaining to the measurement of the performance of
RTEMS, the methods of gathering the timing data, and the usefulness of the data. Also
discussed are other time critical aspects of RTEMS that affect an applications design and
ultimate throughput. These aspects include determinancy, interrupt latency and context
switch times.

9.2 Philosophy

Benchmarks are commonly used to evaluate the performance of software and hardware.
Benchmarks can be an effective tool when comparing systems. Unfortunately, benchmarks
can also be manipulated to justify virtually any claim. Benchmarks of real-time executives
are difficult to evaluate for a variety of reasons. Executives vary in the robustness of features
and options provided. Even when executives compare favorably in functionality, it is quite
likely that different methodologies were used to obtain the timing data. Another problem
is that some executives provide times for only a small subset of directives, This is typically
justified by claiming that these are the only time-critical directives. The performance of
some executives is also very sensitive to the number of objects in the system. To obtain
any measure of usefulness, the performance information provided for an executive should
address each of these issues.

When evaluating the performance of a real-time executive, one typically considers the fol-
lowing areas: determinancy, directive times, worst case interrupt latency, and context switch
time. Unfortunately, these areas do not have standard measurement methodologies. This
allows vendors to manipulate the results such that their product is favorably represented.
We have attempted to provide useful and meaningful timing information for RTEMS. To in-
sure the usefulness of our data, the methodology and definitions used to obtain and describe
the data are also documented.

9.2.1 Determinancy

The correctness of data in a real-time system must always be judged by its timeliness. In
many real-time systems, obtaining the correct answer does not necessarily solve the problem.
For example, in a nuclear reactor it is not enough to determine that the core is overheating.
This situation must be detected and acknowledged early enough that corrective action can
be taken and a meltdown avoided.

Consequently, a system designer must be able to predict the worst-case behavior of the
application running under the selected executive. In this light, it is important that a real-
time system perform consistently regardless of the number of tasks, semaphores, or other
resources allocated. An important design goal of a real-time executive is that all internal
algorithms be fixed-cost. Unfortunately, this goal is difficult to completely meet without
sacrificing the robustness of the executive’s feature set.

Many executives use the term deterministic to mean that the execution times of their
services can be predicted. However, they often provide formulas to modify execution times

22 RTEMS Intel i386 Applications Supplement

based upon the number of objects in the system. This usage is in sharp contrast to the
notion of deterministic meaning fixed cost.

Almost all RTEMS directives execute in a fixed amount of time regardless of the number
of objects present in the system. The primary exception occurs when a task blocks while
acquiring a resource and specifies a non-zero timeout interval.

Other exceptions are message queue broadcast, obtaining a variable length memory block,
object name to ID translation, and deleting a resource upon which tasks are waiting. In
addition, the time required to service a clock tick interrupt is based upon the number of
timeouts and other "events" which must be processed at that tick. This second group is
composed primarily of capabilities which are inherently non-deterministic but are infre-
quently used in time critical situations. The major exception is that of servicing a clock
tick. However, most applications have a very small number of timeouts which expire at
exactly the same millisecond (usually none, but occasionally two or three).

9.2.2 Interrupt Latency

Interrupt latency is the delay between the CPU’s receipt of an interrupt request and the
execution of the first application-specific instruction in an interrupt service routine. Inter-
rupts are a critical component of most real-time applications and it is critical that they be
acted upon as quickly as possible.

Knowledge of the worst case interrupt latency of an executive aids the application designer
in determining the maximum period of time between the generation of an interrupt and
an interrupt handler responding to that interrupt. The interrupt latency of an system is
the greater of the executive’s and the applications’s interrupt latency. If the application
disables interrupts longer than the executive, then the application’s interrupt latency is the
system’s worst case interrupt disable period.

The worst case interrupt latency for a real-time executive is based upon the following
components:

• the longest period of time interrupts are disabled by the executive,
• the overhead required by the executive at the beginning of each ISR,
• the time required for the CPU to vector the interrupt, and
• for some microprocessors, the length of the longest instruction.

The first component is irrelevant if an interrupt occurs when interrupts are enabled, al-
though it must be included in a worst case analysis. The third and fourth components are
particular to a CPU implementation and are not dependent on the executive. The fourth
component is ignored by this document because most applications use only a subset of a
microprocessor’s instruction set. Because of this the longest instruction actually executed is
application dependent. The worst case interrupt latency of an executive is typically defined
as the sum of components (1) and (2). The second component includes the time necessry
for RTEMS to save registers and vector to the user-defined handler. RTEMS includes the
third component, the time required for the CPU to vector the interrupt, because it is a
required part of any interrupt.

Many executives report the maximum interrupt disable period as their interrupt latency
and ignore the other components. This results in very low worst-case interrupt latency

Chapter 9: Timing Specification 23

times which are not indicative of actual application performance. The definition used by
RTEMS results in a higher interrupt latency being reported, but accurately reflects the
longest delay between the CPU’s receipt of an interrupt request and the execution of the
first application-specific instruction in an interrupt service routine.

The actual interrupt latency times are reported in the Timing Data chapter of this supple-
ment.

9.2.3 Context Switch Time

An RTEMS context switch is defined as the act of taking the CPU from the currently
executing task and giving it to another task. This process involves the following components:

• Saving the hardware state of the current task.
• Optionally, invoking the TASK SWITCH user extension.
• Restoring the hardware state of the new task.

RTEMS defines the hardware state of a task to include the CPU’s data registers, address
registers, and, optionally, floating point registers.

Context switch time is often touted as a performance measure of real-time executives.
However, a context switch is performed as part of a directive’s actions and should be viewed
as such when designing an application. For example, if a task is unable to acquire a
semaphore and blocks, a context switch is required to transfer control from the blocking
task to a new task. From the application’s perspective, the context switch is a direct result
of not acquiring the semaphore. In this light, the context switch time is no more relevant
than the performance of any other of the executive’s subroutines which are not directly
accessible by the application.

In spite of the inappropriateness of using the context switch time as a performance metric,
RTEMS context switch times for floating point and non-floating points tasks are provided
for comparison purposes. Of the executives which actually support floating point operations,
many do not report context switch times for floating point context switch time. This results
in a reported context switch time which is meaningless for an application with floating point
tasks.

The actual context switch times are reported in the Timing Data chapter of this supplement.

9.2.4 Directive Times

Directives are the application’s interface to the executive, and as such their execution times
are critical in determining the performance of the application. For example, an applica-
tion using a semaphore to protect a critical data structure should be aware of the time
required to acquire and release a semaphore. In addition, the application designer can uti-
lize the directive execution times to evaluate the performance of different synchronization
and communication mechanisms.

The actual directive execution times are reported in the Timing Data chapter of this sup-
plement.

9.3 Methodology

24 RTEMS Intel i386 Applications Supplement

9.3.1 Software Platform

The RTEMS timing suite is written in C. The overhead of passing arguments to RTEMS by
C is not timed. The times reported represent the amount of time from entering to exiting
RTEMS.

The tests are based upon one of two execution models: (1) single invocation times, and (2)
average times of repeated invocations. Single invocation times are provided for directives
which cannot easily be invoked multiple times in the same scenario. For example, the
times reported for entering and exiting an interrupt service routine are single invocation
times. The second model is used for directives which can easily be invoked multiple times
in the same scenario. For example, the times reported for semaphore obtain and semaphore
release are averages of multiple invocations. At least 100 invocations are used to obtain the
average.

9.3.2 Hardware Platform

Since RTEMS supports a variety of processors, the hardware platform used to gather the
benchmark times must also vary. Therefore, for each processor supported the hardware
platform must be defined. Each definition will include a brief description of the target
hardware platform including the clock speed, memory wait states encountered, and any
other pertinent information. This definition may be found in the processor dependent
timing data chapter within this supplement.

9.3.3 What is measured?

An effort was made to provide execution times for a large portion of RTEMS. Times were
provided for most directives regardless of whether or not they are typically used in time
critical code. For example, execution times are provided for all object create and delete
directives, even though these are typically part of application initialization.

The times include all RTEMS actions necessary in a particular scenario. For example, all
times for blocking directives include the context switch necessary to transfer control to a
new task. Under no circumstances is it necessary to add context switch time to the reported
times.

The following list describes the objects created by the timing suite:

• All tasks are non-floating point.

• All tasks are created as local objects.

• No timeouts are used on blocking directives.

• All tasks wait for objects in FIFO order.

In addition, no user extensions are configured.

9.3.4 What is not measured?

The times presented in this document are not intended to represent best or worst case
times, nor are all directives included. For example, no times are provided for the initialize
executive and fatal error occurred directives. Other than the exceptions detailed in the
Determinancy section, all directives will execute in the fixed length of time given.

Chapter 9: Timing Specification 25

Other than entering and exiting an interrupt service routine, all directives were executed
from tasks and not from interrupt service routines. Directives invoked from ISRs, when al-
lowable, will execute in slightly less time than when invoked from a task because rescheduling
is delayed until the interrupt exits.

9.3.5 Terminology

The following is a list of phrases which are used to distinguish individual execution paths
of the directives taken during the RTEMS performance analysis:

another task The directive was performed on a task other than the calling task.

available A task attempted to obtain a resource and immediately acquired it.

blocked task The task operated upon by the directive was blocked waiting for a
resource.

caller blocks The requested resoure was not immediately available and the calling
task chose to wait.

calling task The task invoking the directive.

messages flushed One or more messages was flushed from the message queue.

no messages flushed No messages were flushed from the message queue.

not available A task attempted to obtain a resource and could not immediately
acquire it.

no reschedule The directive did not require a rescheduling operation.

NO WAIT A resource was not available and the calling task chose to return
immediately via the NO WAIT option with an error.

obtain current The current value of something was requested by the calling task.

preempts caller The release of a resource caused a task of higher priority than the
calling to be readied and it became the executing task.

ready task The task operated upon by the directive was in the ready state.

reschedule The actions of the directive necessitated a rescheduling operation.

returns to caller The directive succeeded and immediately returned to the calling task.

returns to interrupted task
The instructions executed immediately following this interrupt will
be in the interrupted task.

returns to nested interrupt
The instructions executed immediately following this interrupt will
be in a previously interrupted ISR.

returns to preempting task
The instructions executed immediately following this interrupt or
signal handler will be in a task other than the interrupted task.

signal to self The signal set was sent to the calling task and signal processing was
enabled.

26 RTEMS Intel i386 Applications Supplement

suspended task The task operated upon by the directive was in the suspended state.

task readied The release of a resource caused a task of lower or equal priority to
be readied and the calling task remained the executing task.

yield The act of attempting to voluntarily release the CPU.

Chapter 10: CPU386 Timing Data 27

10 CPU386 Timing Data

10.1 Introduction

The timing data for the i386 version of RTEMS is provided along with the target dependent
aspects concerning the gathering of the timing data. The hardware platform used to gather
the times is described to give the reader a better understanding of each directive time
provided. Also, provided is a description of the interrupt latency and the context switch
times as they pertain to the i386 version of RTEMS.

10.2 Hardware Platform

All times reported except for the maximum period interrupts are disabled by RTEMS were
measured using a Force Computers CPU386 board. The CPU386 is a 16 Mhz board with
zero wait state dynamic memory and an i80387 numeric coprocessor. One of the count-
down timers provided by a Motorola MC68901 was used to measure elapsed time with
one microsecond resolution. All sources of hardware interrupts are disabled, although the
interrupt level of the i386 allows all interrupts.

The maximum period interrupts are disabled was measured by summing the number of
CPU cycles required by each assembly language instruction executed while interrupts were
disabled. Zero wait state memory was assumed. The total CPU cycles executed with
interrupts disabled, including the instructions to disable and enable interrupts, was divided
by 16 to simulate a i386 executing at 16 Mhz.

10.3 Interrupt Latency

The maximum period with interrupts disabled within RTEMS is less than 13.0 microseconds
including the instructions which disable and re-enable interrupts. The time required for the
i386 to generate an interrupt using the int instruction, vectoring to an interrupt handler,
and for the RTEMS entry overhead before invoking the user’s interrupt handler are a total
of 12 microseconds. These combine to yield a worst case interrupt latency of less 13.0 + 12
microseconds. [NOTE: The maximum period with interrupts disabled within RTEMS was
last calculated for Release 3.1.0.]

It should be noted again that the maximum period with interrupts disabled within RTEMS
is hand-timed. The interrupt vector and entry overhead time was generated on the Force
Computers CPU386 benchmark platform using the int instruction as the interrupt source.

10.4 Context Switch

The RTEMS processor context switch time is 34 microseconds on the Force Computers
CPU386 benchmark platform. This time represents the raw context switch time with no user
extensions configured. Additional execution time is required when a TASK SWITCH user
extension is configured. The use of the TASK SWITCH extension is application dependent.
Thus, its execution time is not considered part of the base context switch time.

Since RTEMS was designed specifically for embedded missile applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the

28 RTEMS Intel i386 Applications Supplement

state of the numeric coprocessor. The state of the numeric coprocessor is only saved when
a FLOATING POINT task is dispatched and that task was not the last task to utilize the
coprocessor. In a system with only one FLOATING POINT task, the state of the numeric
coprocessor will never be saved or restored. When the first FLOATING POINT task is
dispatched, RTEMS does not need to save the current state of the numeric coprocessor.

The exact amount of time required to save and restore floating point context is dependent
on the state of the numeric coprocessor. RTEMS places the coprocessor in the initialized
state when a task is started or restarted. Once the task has utilized the coprocessor, it is in
the idle state when floating point instructions are not executing and the busy state when
floating point instructions are executing. The state of the coprocessor is task specific.

The following table summarizes the context switch times for the Force Computers CPU386
benchmark platform:

No Floating Point Contexts 34
Floating Point Contexts

restore first FP task 57
save initialized, restore initialized 59
save idle, restore initialized 59
save idle, restore idle 83

10.5 Directive Times

This sections is divided into a number of subsections, each of which contains a table listing
the execution times of that manager’s directives.

Chapter 10: CPU386 Timing Data 29

10.6 Task Manager
TASK CREATE 157
TASK IDENT 748
TASK START 86
TASK RESTART

calling task 118
suspended task – returns to caller 45
blocked task – returns to caller 138
ready task – returns to caller 105
suspended task – preempts caller 149
blocked task – preempts caller 162
ready task – preempts caller 156

TASK DELETE
calling task 187
suspended task 147
blocked task 153
ready task 157

TASK SUSPEND
calling task 81
returns to caller 45

TASK RESUME
task readied – returns to caller 46
task readied – preempts caller 71

TASK SET PRIORITY
obtain current priority 30
returns to caller 67
preempts caller 115

TASK MODE
obtain current mode 19
no reschedule 21
reschedule – returns to caller 27
reschedule – preempts caller 66

TASK GET NOTE 32
TASK SET NOTE 32
TASK WAKE AFTER

yield – returns to caller 18
yield – preempts caller 63

TASK WAKE WHEN 128

30 RTEMS Intel i386 Applications Supplement

10.7 Interrupt Manager

It should be noted that the interrupt entry times include vectoring the interrupt handler.

Interrupt Entry Overhead
returns to nested interrupt 12
returns to interrupted task 13
returns to preempting task 12

Interrupt Exit Overhead
returns to nested interrupt 10
returns to interrupted task 13
returns to preempting task 58

10.8 Clock Manager
CLOCK SET 85
CLOCK GET 2
CLOCK TICK 16

10.9 Timer Manager
TIMER CREATE 34
TIMER IDENT 729
TIMER DELETE

inactive 48
active 52

TIMER FIRE AFTER
inactive 65
active 69

TIMER FIRE WHEN
inactive 92
active 92

TIMER RESET
inactive 58
active 63

TIMER CANCEL
inactive 32
active 37

Chapter 10: CPU386 Timing Data 31

10.10 Semaphore Manager
SEMAPHORE CREATE 64
SEMAPHORE IDENT 787
SEMAPHORE DELETE 60
SEMAPHORE OBTAIN

available 41
not available – NO WAIT 40
not available – caller blocks 123

SEMAPHORE RELEASE
no waiting tasks 47
task readied – returns to caller 70
task readied – preempts caller 95

10.11 Message Manager
MESSAGE QUEUE CREATE 294
MESSAGE QUEUE IDENT 730
MESSAGE QUEUE DELETE 81
MESSAGE QUEUE SEND

no waiting tasks 117
task readied – returns to caller 118
task readied – preempts caller 144

MESSAGE QUEUE URGENT
no waiting tasks 117
task readied – returns to caller 116
task readied – preempts caller 144

MESSAGE QUEUE BROADCAST
no waiting tasks 53
task readied – returns to caller 122
task readied – preempts caller 146

MESSAGE QUEUE RECEIVE
available 93
not available – NO WAIT 45
not available – caller blocks 127

MESSAGE QUEUE FLUSH
no messages flushed 29
messages flushed 41

32 RTEMS Intel i386 Applications Supplement

10.12 Event Manager
EVENT SEND

no task readied 26
task readied – returns to caller 60
task readied – preempts caller 89

EVENT RECEIVE
obtain current events ¡1
available 27
not available – NO WAIT 25
not available – caller blocks 94

10.13 Signal Manager
SIGNAL CATCH 13
SIGNAL SEND

returns to caller 34
signal to self 59

EXIT ASR OVERHEAD
returns to calling task 39
returns to preempting task 60

10.14 Partition Manager
PARTITION CREATE 83
PARTITION IDENT 730
PARTITION DELETE 40
PARTITION GET BUFFER

available 34
not available 33

PARTITION RETURN BUFFER 33

Chapter 10: CPU386 Timing Data 33

10.15 Region Manager
REGION CREATE 68
REGION IDENT 739
REGION DELETE 39
REGION GET SEGMENT

available 49
not available – NO WAIT 45
not available – caller blocks 127

REGION RETURN SEGMENT
no waiting tasks 52
task readied – returns to caller 113
task readied – preempts caller 138

10.16 Dual-Ported Memory Manager
PORT CREATE 39
PORT IDENT 728
PORT DELETE 39
PORT INTERNAL TO EXTERNAL 26
PORT EXTERNAL TO INTERNAL 26

10.17 I/O Manager
IO INITIALIZE 4
IO OPEN 1
IO CLOSE 1
IO READ ¡1
IO WRITE 1
IO CONTROL 1

10.18 Rate Monotonic Manager
RATE MONOTONIC CREATE 36
RATE MONOTONIC IDENT 725
RATE MONOTONIC CANCEL 39
RATE MONOTONIC DELETE

active 53
inactive 49

RATE MONOTONIC PERIOD
initiate period – returns to caller 53
conclude period – caller blocks 82
obtain status 30

34 RTEMS Intel i386 Applications Supplement

Command and Variable Index 35

Command and Variable Index

There are currently no Command and Variable Index entries.

36 RTEMS Intel i386 Applications Supplement

Concept Index 37

Concept Index

There are currently no Concept Index entries.

38 RTEMS Intel i386 Applications Supplement

	Preface
	CPU Model Dependent Features
	Introduction
	CPU Model Name
	bswap Instruction
	Floating Point Unit

	Calling Conventions
	Introduction
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Introduction
	Flat Memory Model

	Interrupt Processing
	Introduction
	Vectoring of Interrupt Handler
	Interrupt Stack Frame
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Introduction
	Default Fatal Error Handler Operations

	Board Support Packages
	Introduction
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	Introduction
	CPU Dependent Information Table

	Memory Requirements
	Introduction
	Data Space Requirements
	Minimum and Maximum Code Space Requirements
	RTEMS Code Space Worksheet
	RTEMS RAM Workspace Worksheet

	Timing Specification
	Introduction
	Philosophy
	Determinancy
	Interrupt Latency
	Context Switch Time
	Directive Times

	Methodology
	Software Platform
	Hardware Platform
	What is measured?
	What is not measured?
	Terminology

	CPU386 Timing Data
	Introduction
	Hardware Platform
	Interrupt Latency
	Context Switch
	Directive Times
	Task Manager
	Interrupt Manager
	Clock Manager
	Timer Manager
	Semaphore Manager
	Message Manager
	Event Manager
	Signal Manager
	Partition Manager
	Region Manager
	Dual-Ported Memory Manager
	I/O Manager
	Rate Monotonic Manager

	Command and Variable Index
	Concept Index

