RTEMS C User’s Guide

Edition 4.6.6, for RTEMS 4.6.6

30 August 2003

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TrXinfo 2002-11-25.11

COPYRIGHT (© 1988 - 2003.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

Preface 1

Preface

In recent years, the cost required to develop a software product has increased significantly
while the target hardware costs have decreased. Now a larger portion of money is expended
in developing, using, and maintaining software. The trend in computing costs is the com-
plete dominance of software over hardware costs. Because of this, it is necessary that formal
disciplines be established to increase the probability that software is characterized by a high
degree of correctness, maintainability, and portability. In addition, these disciplines must
promote practices that aid in the consistent and orderly development of a software system
within schedule and budgetary constraints. To be effective, these disciplines must adopt
standards which channel individual software efforts toward a common goal.

The push for standards in the software development field has been met with various degrees
of success. The Microprocessor Operating Systems Interfaces (MOSI) effort has experienced
only limited success. As popular as the UNIX operating system has grown, the attempt to
develop a standard interface definition to allow portable application development has only
recently begun to produce the results needed in this area. Unfortunately, very little effort
has been expended to provide standards addressing the needs of the real-time community.
Several organizations have addressed this need during recent years.

The Real Time Executive Interface Definition (RTEID) was developed by Motorola with
technical input from Software Components Group. RTEID was adopted by the VMEbus
International Trade Association (VITA) as a baseline draft for their proposed standard
multiprocessor, real-time executive interface, Open Real-Time Kernel Interface Definition
(ORKID). These two groups are currently working together with the IEEE P1003.4 commit-
tee to insure that the functionality of their proposed standards is adopted as the real-time
extensions to POSIX.

This emerging standard defines an interface for the development of real-time software to
ease the writing of real-time application programs that are directly portable across multiple
real-time executive implementations. This interface includes both the source code interfaces
and run-time behavior as seen by a real-time application. It does not include the details
of how a kernel implements these functions. The standard’s goal is to serve as a complete
definition of external interfaces so that application code that conforms to these interfaces
will execute properly in all real-time executive environments. With the use of a standards
compliant executive, routines that acquire memory blocks, create and manage message
queues, establish and use semaphores, and send and receive signals need not be redeveloped
for a different real-time environment as long as the new environment is compliant with the
standard. Software developers need only concentrate on the hardware dependencies of the
real-time system. Furthermore, most hardware dependencies for real-time applications can
be localized to the device drivers.

A compliant executive provides simple and flexible real-time multiprocessing. It easily lends
itself to both tightly-coupled and loosely-coupled configurations (depending on the system
hardware configuration). Objects such as tasks, queues, events, signals, semaphores, and
memory blocks can be designated as global objects and accessed by any task regardless of
which processor the object and the accessing task reside.

2 RTEMS C User’s Guide

The acceptance of a standard for real-time executives will produce the same advantages
enjoyed from the push for UNIX standardization by AT&T’s System V Interface Definition
and IEEE’s POSIX efforts. A compliant multiprocessing executive will allow close coupling
between UNIX systems and real-time executives to provide the many benefits of the UNIX
development environment to be applied to real-time software development. Together they
provide the necessary laboratory environment to implement real-time, distributed, embed-
ded systems using a wide variety of computer architectures.

A study was completed in 1988, within the Research, Development, and Engineering Center,
U.S. Army Missile Command, which compared the various aspects of the Ada programming
language as they related to the application of Ada code in distributed and/or multiple pro-
cessing systems. Several critical conclusions were derived from the study. These conclusions
have a major impact on the way the Army develops application software for embedded ap-
plications. These impacts apply to both in-house software development and contractor
developed software.

A conclusion of the analysis, which has been previously recognized by other agencies at-
tempting to utilize Ada in a distributed or multiprocessing environment, is that the Ada
programming language does not adequately support multiprocessing. Ada does provide a
mechanism for multi-tasking, however, this capability exists only for a single processor sys-
tem. The language also does not have inherent capabilities to access global named variables,
flags or program code. These critical features are essential in order for data to be shared
between processors. However, these drawbacks do have workarounds which are sometimes
awkward and defeat the intent of software maintainability and portability goals.

Another conclusion drawn from the analysis, was that the run time executives being de-
livered with the Ada compilers were too slow and inefficient to be used in modern missile
systems. A run time executive is the core part of the run time system code, or operat-
ing system code, that controls task scheduling, input/output management and memory
management. Traditionally, whenever efficient executive (also known as kernel) code was
required by the application, the user developed in-house software. This software was usually
written in assembly language for optimization.

Because of this shortcoming in the Ada programming language, software developers in
research and development and contractors for project managed systems, are mandated by
technology to purchase and utilize off-the-shelf third party kernel code. The contractor,
and eventually the Government, must pay a licensing fee for every copy of the kernel code
used in an embedded system.

The main drawback to this development environment is that the Government does not
own, nor has the right to modify code contained within the kernel. V&V techniques in this
situation are more difficult than if the complete source code were available. Responsibility
for system failures due to faulty software is yet another area to be resolved under this
environment.

The Guidance and Control Directorate began a software development effort to address
these problems. A project to develop an experimental run time kernel was begun that
will eliminate the major drawbacks of the Ada programming language mentioned above.
The Real Time Executive for Multiprocessor Systems (RTEMS) provides full capabilities for
management of tasks, interrupts, time, and multiple processors in addition to those features

Preface 3

typical of generic operating systems. The code is Government owned, so no licensing fees are
necessary. RTEMS has been implemented in both the Ada and C programming languages.
It has been ported to the following processor families:

e Intel i386 and above

e Intel 1960

e Motorola MC68xxx

e Motorola MC683xx

e Motorola ColdFire

e ARM

e MIPS

e PowerPC

e SPARC

e Hewlett Packard PA-RISC

e Hitachi SH

e Hitachi H8/300

o Texas Instruments C3x/C4x

e OpenCores OR32

e UNIX

Support for other processor families, including RISC, CISC, and DSP, is planned. Since
almost all of RTEMS is written in a high level language, ports to additional processor
families require minimal effort.

RTEMS multiprocessor support is capable of handling either homogeneous or heterogeneous
systems. The kernel automatically compensates for architectural differences (byte swapping,
etc.) between processors. This allows a much easier transition from one processor family
to another without a major system redesign.

Since the proposed standards are still in draft form, RTTEMS cannot and does not claim
compliance. However, the status of the standard is being carefully monitored to guarantee
that RTEMS provides the functionality specified in the standard. Once approved, RTEMS
will be made compliant.

This document is a detailed users guide for a functionally compliant real-time multiprocessor
executive. It describes the user interface and run-time behavior of Release 4.6.6 of the C
interface to RTEMS.

RTEMS C User’s Guide

Chapter 1: Overview 5

1 Overview

1.1 Introduction

RTEMS, Real-Time Executive for Multiprocessor Systems, is a real-time executive (ker-
nel) which provides a high performance environment for embedded military applications
including the following features:

e multitasking capabilities

e homogeneous and heterogeneous multiprocessor systems
e ecvent-driven, priority-based, preemptive scheduling

e optional rate monotonic scheduling

e intertask communication and synchronization

e priority inheritance

e responsive interrupt management

e dynamic memory allocation

e high level of user configurability

This manual describes the usage of RI'EMS for applications written in the C programming
language. Those implementation details that are processor dependent are provided in the
Applications Supplement documents. A supplement document which addresses specific
architectural issues that affect RTEMS is provided for each processor type that is supported.

1.2 Real-time Application Systems

Real-time application systems are a special class of computer applications. They have a
complex set of characteristics that distinguish them from other software problems. Gen-
erally, they must adhere to more rigorous requirements. The correctness of the system
depends not only on the results of computations, but also on the time at which the results
are produced. The most important and complex characteristic of real-time application sys-
tems is that they must receive and respond to a set of external stimuli within rigid and
critical time constraints referred to as deadlines. Systems can be buried by an avalanche of
interdependent, asynchronous or cyclical event streams.

Deadlines can be further characterized as either hard or soft based upon the value of the
results when produced after the deadline has passed. A deadline is hard if the results have
no value or if their use will result in a catastrophic event. In contrast, results which are
produced after a soft deadline may have some value.

Another distinguishing requirement of real-time application systems is the ability to coor-
dinate or manage a large number of concurrent activities. Since software is a synchronous
entity, this presents special problems. One instruction follows another in a repeating syn-
chronous cycle. Even though mechanisms have been developed to allow for the processing

6 RTEMS C User’s Guide

of external asynchronous events, the software design efforts required to process and manage
these events and tasks are growing more complicated.

The design process is complicated further by spreading this activity over a set of processors
instead of a single processor. The challenges associated with designing and building real-
time application systems become very complex when multiple processors are involved. New
requirements such as interprocessor communication channels and global resources that must
be shared between competing processors are introduced. The ramifications of multiple
processors complicate each and every characteristic of a real-time system.

1.3 Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a cornerstone on
which to build the application system. A real-time multitasking executive allows an appli-
cation to be cast into a set of logical, autonomous processes or tasks which become quite
manageable. Each task is internally synchronous, but different tasks execute independently,
resulting in an asynchronous processing stream. Tasks can be dynamically paused for many
reasons resulting in a different task being allowed to execute for a period of time. The exec-
utive also provides an interface to other system components such as interrupt handlers and
device drivers. System components may request the executive to allocate and coordinate
resources, and to wait for and trigger synchronizing conditions. The executive system calls
effectively extend the CPU instruction set to support efficient multitasking. By causing
tasks to travel through well-defined state transitions, system calls permit an application to
demand-switch between tasks in response to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now asyn-
chronously switch between independent streams of execution, directly responding to ex-
ternal stimuli as they occur. This allows the system design to meet critical performance
specifications which are typically measured by guaranteed response time and transaction
throughput. The multiprocessor extensions of RTEMS provide the features necessary to
manage the extra requirements introduced by a system distributed across several proces-
sors. It removes the physical barriers of processor boundaries from the world of the system
designer, enabling more critical aspects of the system to receive the required attention.
Such a system, based on an efficient real-time, multiprocessor executive, is a more realistic
model of the outside world or environment for which it is designed. As a result, the system
will always be more logical, efficient, and reliable.

By using the directives provided by RTEMS, the real-time applications developer is freed
from the problem of controlling and synchronizing multiple tasks and processors. In addi-
tion, one need not develop, test, debug, and document routines to manage memory, pass
messages, or provide mutual exclusion. The developer is then able to concentrate solely
on the application. By using standard software components, the time and cost required to
develop sophisticated real-time applications is significantly reduced.

Chapter 1: Overview 7

1.4 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two critical layers
of typical real-time systems. As shown in the following figure, RTEMS serves as a buffer
between the project dependent application code and the target hardware. Most hardware
dependencies for real-time applications can be localized to the low level device drivers.

Application Dependent Software

Standard Application Components

evice RTEMS

rivers

Target Hardware

The RTEMS I/0 interface manager provides an efficient tool for incorporating these hard-
ware dependencies into the system while simultaneously providing a general mechanism to
the application code that accesses them. A well designed real-time system can benefit from
this architecture by building a rich library of standard application components which can
be used repeatedly in other real-time projects.

1.5 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered components that work in harmony to provide
a set of services to a real-time application system. The executive interface presented to
the application is formed by grouping directives into logical sets called resource managers.
Functions utilized by multiple managers such as scheduling, dispatching, and object man-
agement are provided in the executive core. The executive core depends on a small set
of CPU dependent routines. Together these components provide a powerful run time en-

RTEMS C User’s Guide

vironment that promotes the development of efficient real-time application systems. The

following figure illustrates this organization:

Event

Message

Semaphore .

" Initialization

Fatal Brror)

Rate

Monotonic

Task

Interrupt

.. Dual Ported Memory

T _ Partition

Subsequent chapters present a detailed description of the capabilities provided by each of

the following RTEMS managers:

initialization
task

interrupt

clock

timer
semaphore
message

event

signal
partition
region

dual ported memory
I/0

fatal error

rate monotonic
user extensions

multiprocessing

Chapter 1: Overview 9

1.6 User Customization and Extensibility

As thirty-two bit microprocessors have decreased in cost, they have become increasingly
common in a variety of embedded systems. A wide range of custom and general-purpose
processor boards are based on various thirty-two bit processors. RTEMS was designed to
make no assumptions concerning the characteristics of individual microprocessor families
or of specific support hardware. In addition, RTEMS allows the system developer a high
degree of freedom in customizing and extending its features.

RTEMS assumes the existence of a supported microprocessor and sufficient memory for
both RTEMS and the real-time application. Board dependent components such as clocks,
interrupt controllers, or I/O devices can be easily integrated with RTEMS. The customiza-
tion and extensibility features allow RTEMS to efficiently support as many environments
as possible.

1.7 Portability

The issue of portability was the major factor in the creation of RTEMS. Since RTEMS is
designed to isolate the hardware dependencies in the specific board support packages, the
real-time application should be easily ported to any other processor. The use of RTEMS
allows the development of real-time applications which can be completely independent of a
particular microprocessor architecture.

1.8 Memory Requirements

Since memory is a critical resource in many real-time embedded systems, RTEMS was specif-
ically designed to allow unused managers to be excluded from the run-time environment.
This allows the application designer the flexibility to tailor RTEMS to most efficiently meet
system requirements while still satisfying even the most stringent memory constraints. As
a result, the size of the RTEMS executive is application dependent. A worksheet is pro-
vided in the Memory Requirements chapter of the Applications Supplement document for
a specific target processor. The worksheet is used to calculate the memory requirements
of a custom RTEMS run-time environment. The following managers may be optionally
excluded:

e clock

e timer

e semaphore

e message

e ecvent

e signal

e partition

e region

e dual ported memory

10 RTEMS C User’s Guide

e I/O
e rate monotonic
e fatal error

e multiprocessing

RTEMS utilizes memory for both code and data space. Although RTEMS’ data space must
be in RAM, its code space can be located in either ROM or RAM.

1.9 Audience

This manual was written for experienced real-time software developers. Although some
background is provided, it is assumed that the reader is familiar with the concepts of task
management as well as intertask communication and synchronization. Since directives, user
related data structures, and examples are presented in C, a basic understanding of the C
programming language is required to fully understand the material presented. However,
because of the similarity of the Ada and C RTEMS implementations, users will find that
the use and behavior of the two implementations is very similar. A working knowledge
of the target processor is helpful in understanding some of RTEMS’ features. A thorough
understanding of the executive cannot be obtained without studying the entire manual
because many of RTEMS’ concepts and features are interrelated. Experienced RTEMS
users will find that the manual organization facilitates its use as a reference document.

1.10 Conventions

The following conventions are used in this manual:

e Significant words or phrases as well as all directive names are printed in bold type.

e Items in bold capital letters are constants defined by RTEMS. Each language inter-
face provided by RTEMS includes a file containing the standard set of constants,
data types, and structure definitions which can be incorporated into the user appli-
cation.

e A number of type definitions are provided by RTEMS and can be found in rtems.h.

e The characters "0x" preceding a number indicates that the number is in hexadecimal
format. Any other numbers are assumed to be in decimal format.

1.11 Manual Organization

This first chapter has presented the introductory and background material for the RTEMS
executive. The remaining chapters of this manual present a detailed description of RTEMS
and the environment, including run time behavior, it creates for the user.

A chapter is dedicated to each manager and provides a detailed discussion of each RTEMS
manager and the directives which it provides. The presentation format for each directive
includes the following sections:

Chapter 1: Overview

11

Calling sequence

e Directive status codes

e Notes

Description

The following provides an overview of the remainder of this manual:

Chapter 2

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter T7:

Chapter 8:

Chapter 9:

Chapter 10:

Chapter 11:

Chapter 12:

Chapter 13:

Chapter 14:

Chapter 15:

Chapter 16:

Chapter 17:

Key Concepts: presents an introduction to the ideas which are com-
mon across multiple RTEMS managers.

RTEMS Data Types: describes the fundamental data types shared
by the services in the RTEMS Classic API.

Initialization Manager: describes the functionality and directives pro-
vided by the Initialization Manager.

Task Manager: describes the functionality and directives provided
by the Task Manager.

Interrupt Manager: describes the functionality and directives pro-
vided by the Interrupt Manager.

Clock Manager: describes the functionality and directives provided
by the Clock Manager.

Timer Manager: describes the functionality and directives provided
by the Timer Manager.

Semaphore Manager: describes the functionality and directives pro-
vided by the Semaphore Manager.

Message Manager: describes the functionality and directives provided
by the Message Manager.

Event Manager: describes the functionality and directives provided
by the Event Manager.

Signal Manager: describes the functionality and directives provided
by the Signal Manager.

Partition Manager: describes the functionality and directives pro-
vided by the Partition Manager.

Region Manager: describes the functionality and directives provided
by the Region Manager.

Dual-Ported Memory Manager: describes the functionality and di-
rectives provided by the Dual-Ported Memory Manager.

I/O Manager: describes the functionality and directives provided by
the I/O Manager.

Fatal Error Manager: describes the functionality and directives pro-
vided by the Fatal Error Manager.

12

Chapter 18:

Chapter 19:

Chapter 20:

Chapter 21:

Chapter 22:

Chapter 23:

Chapter 24:

Chapter 25:

Chapter 26:

RTEMS C User’s Guide

Scheduling Concepts: details the RTEMS scheduling algorithm and
task state transitions.

Rate Monotonic Manager: describes the functionality and directives
provided by the Rate Monotonic Manager.

Board Support Packages: defines the functionality required of user-
supplied board support packages.

User Extensions: shows the user how to extend RTEMS to incorpo-
rate custom features.

Configuring a System: details the process by which one tailors
RTEMS for a particular single-processor or multiprocessor applica-
tion.

Multiprocessing Manager: presents a conceptual overview of the mul-
tiprocessing capabilities provided by RTEMS as well as describing
the Multiprocessing Communications Interface Layer and Multipro-
cessing Manager directives.

Directive Status Codes: provides a definition of each of the directive
status codes referenced in this manual.

Example Application: provides a template for simple RTEMS appli-
cations.

Glossary: defines terms used throughout this manual.

Chapter 2: Key Concepts 13

2 Key Concepts

2.1 Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful concepts.
These concepts must be understood before the application developer can efficiently utilize
RTEMS. The purpose of this chapter is to familiarize one with these concepts.

2.2 Objects

RTEMS provides directives which can be used to dynamically create, delete, and manipulate
a set of predefined object types. These types include tasks, message queues, semaphores,
memory regions, memory partitions, timers, ports, and rate monotonic periods. The object-
oriented nature of RTEMS encourages the creation of modular applications built upon re-
usable "building block" routines.

All objects are created on the local node as required by the application and have an RTEMS
assigned ID. All objects have a user-assigned name. Although a relationship exists between
an object’s name and its RTEMS assigned ID, the name and ID are not identical. Object
names are completely arbitrary and selected by the user as a meaningful "tag" which may
commonly reflect the object’s use in the application. Conversely, object IDs are designed
to facilitate efficient object manipulation by the executive.

2.2.1 Object Names

An object name is an unsigned thirty-two bit entity associated with the object by the user.
The data type rtems_name is used to store object names.

Although not required by RTEMS, object names are often composed of four ASCII char-
acters which help identify that object. For example, a task which causes a light to blink
might be called "LITE". The rtems_build_name routine is provided to build an object
name from four ASCII characters. The following example illustrates this:

rtems_object_name my_name;

my_name = rtems_build_name(°L’, ’I’, °T’, ’E’);

However, it is not required that the application use ASCII characters to build object names.
For example, if an application requires one-hundred tasks, it would be difficult to assign
meaningful ASCII names to each task. A more convenient approach would be to name them
the binary values one through one-hundred, respectively.

14 RTEMS C User’s Guide

2.2.2 Object IDs

An object ID is a unique unsigned thirty-two bit entity composed of three parts: object
class, node, and index. The data type rtems_id is used to store object IDs.

31 26 25 16 15 0

Class Node Index

The most significant six bits are the object class. The next ten bits are the number of
the node on which this object was created. The node number is always one (1) in a single
processor system. The least significant sixteen bits form an identifier within a particular
object type. This identifier, called the object index, ranges in value from 1 to the maximum
number of objects configured for this object type.

The three components of an object ID make it possible to quickly locate any object in even
the most complicated multiprocessor system. Object ID’s are associated with an object by
RTEMS when the object is created and the corresponding ID is returned by the appropriate
object create directive. The object ID is required as input to all directives involving objects,
except those which create an object or obtain the ID of an object.

The object identification directives can be used to dynamically obtain a particular object’s
ID given its name. This mapping is accomplished by searching the name table associated
with this object type. If the name is non-unique, then the ID associated with the first
occurrence of the name will be returned to the application. Since object IDs are returned
when the object is created, the object identification directives are not necessary in a properly
designed single processor application.

In addition, services are provided to portably examine the three subcomponents of an
RTEMS ID. These services are prototyped as follows:

rtems_unsigned32 rtems_get_class(rtems_id);
rtems_unsigned32 rtems_get_node(rtems_id);
rtems_unsigned32 rtems_get_index(rtems_id);

An object control block is a data structure defined by RTEMS which contains the infor-
mation necessary to manage a particular object type. For efficiency reasons, the format of
each object type’s control block is different. However, many of the fields are similar in func-
tion. The number of each type of control block is application dependent and determined by
the values specified in the user’s Configuration Table. An object control block is allocated
at object create time and freed when the object is deleted. With the exception of user
extension routines, object control blocks are not directly manipulated by user applications.

Chapter 2: Key Concepts 15

2.3 Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution threads to com-
municate and synchronize with each other is imperative. A real-time executive should
provide an application with the following capabilities:

e Data transfer between cooperating tasks
e Data transfer between tasks and ISRs
e Synchronization of cooperating tasks

e Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication and/or syn-
chronization. However, managers dedicated specifically to communication and synchroniza-
tion provide well established mechanisms which directly map to the application’s varying
needs. This level of flexibility allows the application designer to match the features of a
particular manager with the complexity of communication and synchronization required.
The following managers were specifically designed for communication and synchronization:

e Semaphore
o Message Queue
e Event

e Signal

The semaphore manager supports mutual exclusion involving the synchronization of access
to one or more shared user resources. Binary semaphores may utilize the optional priority
inheritance algorithm to avoid the problem of priority inversion. The message manager
supports both communication and synchronization, while the event manager primarily pro-
vides a high performance synchronization mechanism. The signal manager supports only
asynchronous communication and is typically used for exception handling.

2.4 Time

The development of responsive real-time applications requires an understanding of how
RTEMS maintains and supports time-related operations. The basic unit of time in RTEMS
is known as a tick. The frequency of clock ticks is completely application dependent and
determines the granularity and accuracy of all interval and calendar time operations.

By tracking time in units of ticks, RT'EMS is capable of supporting interval timing functions
such as task delays, timeouts, timeslicing, the delayed execution of timer service routines,
and the rate monotonic scheduling of tasks. An interval is defined as a number of ticks
relative to the current time. For example, when a task delays for an interval of ten ticks,
it is implied that the task will not execute until ten clock ticks have occurred. All intervals
are specified using data type rtems_interval.

A characteristic of interval timing is that the actual interval period may be a fraction of a
tick less than the interval requested. This occurs because the time at which the delay timer
is set up occurs at some time between two clock ticks. Therefore, the first countdown tick

16 RTEMS C User’s Guide

occurs in less than the complete time interval for a tick. This can be a problem if the clock
granularity is large.

The rate monotonic scheduling algorithm is a hard real-time scheduling methodology. This
methodology provides rules which allows one to guarantee that a set of independent periodic
tasks will always meet their deadlines — even under transient overload conditions. The
rate monotonic manager provides directives built upon the Clock Manager’s interval timer
support routines.

Interval timing is not sufficient for the many applications which require that time be kept
in wall time or true calendar form. Consequently, RTEMS maintains the current date and
time. This allows selected time operations to be scheduled at an actual calendar date and
time. For example, a task could request to delay until midnight on New Year’s Eve before
lowering the ball at Times Square. The data type rtems_time_of _day is used to specify
calendar time in RTEMS services. See Section 7.2.2 [Time and Date Data Structures],
page 67.

Obviously, the directives which use intervals or wall time cannot operate without some ex-
ternal mechanism which provides a periodic clock tick. This clock tick is typically provided
by a real time clock or counter/timer device.

2.5 Memory Management

RTEMS memory management facilities can be grouped into two classes: dynamic memory
allocation and address translation. Dynamic memory allocation is required by applications
whose memory requirements vary through the application’s course of execution. Address
translation is needed by applications which share memory with another CPU or an intelli-
gent Input/Output processor. The following RTEMS managers provide facilities to manage
memory:

e Region
e Partition

e Dual Ported Memory

RTEMS memory management features allow an application to create simple memory pools
of fixed size buffers and/or more complex memory pools of variable size segments. The
partition manager provides directives to manage and maintain pools of fixed size entities
such as resource control blocks. Alternatively, the region manager provides a more general
purpose memory allocation scheme that supports variable size blocks of memory which
are dynamically obtained and freed by the application. The dual-ported memory manager
provides executive support for address translation between internal and external dual-ported
RAM address space.

Chapter 3: RTEMS Data Types 17

3 RTEMS Data Types

3.1 Introduction

This chapter contains a complete list of the RTEMS primitive data types in alphabetical
order. This is intended to be an overview and the user is encouraged to look at the ap-
propriate chapters in the manual for more information about the usage of the various data

types.

3.2 List of Data Types

The following is a complete list of the RTEMS primitive data types in alphabetical order:

e rtems_address is the data type used to manage addresses. It is equivalent to a
"void *" pointer.

e rtems_asr is the return type for an RTEMS ASR.
e rtems_asr_entry is the address of the entry point to an RTEMS ASR.

e rtems_attribute is the data type used to manage the attributes for RTEMS ob-
jects. It is primarily used as an argument to object create routines to specify char-
acteristics of the new object.

e rtems_boolean may only take on the values of TRUE and FALSE.

e rtems_context is the CPU dependent data structure used to manage the integer
and system register portion of each task’s context.

e rtems_context_fpisthe CPU dependent data structure used to manage the floating
point portion of each task’s context.

e rtems_device_driver is the return type for a RTEMS device driver routine.
e rtems_device_driver_entry is the entry point to a RTEMS device driver routine.

e rtems_device_major_number is the data type used to manage device major num-
bers.

e rtems_device_minor_number is the data type used to manage device minor num-
bers.

e rtems_double is the RTEMS data type that corresponds to double precision floating
point on the target hardware.

e rtems_event_set is the data type used to manage and manipulate RTEMS event
sets with the Event Manager.

e rtems_extension is the return type for RTTEMS user extension routines.

e rtems_fatal_extension is the entry point for a fatal error user extension handler
routine.

e rtems_id is the data type used to manage and manipulate RTEMS object IDs.

18

RTEMS C User’s Guide

rtems_interrupt_frame is the data structure that defines the format of the inter-
rupt stack frame as it appears to a user ISR. This data structure may not be defined
on all ports.

rtems_interrupt_level is the data structure used with the rtems_interrupt_
disable, rtems_interrupt_enable, and rtems_interrupt_flash routines. This
data type is CPU dependent and usually corresponds to the contents of the processor
register containing the interrupt mask level.

rtems_interval is the data type used to manage and manipulate time intervals.
Intervals are non-negative integers used to measure the length of time in clock ticks.

rtems_isr is the return type of a function implementing an RTEMS ISR.

rtems_isr_entry is the address of the entry point to an RTTEMS ISR. It is equivalent
to the entry point of the function implementing the ISR.

rtems_mp_packet_classes is the enumerated type which specifies the categories of
multiprocessing messages. For example, one of the classes is for messages that must
be processed by the Task Manager.

rtems_mode is the data type used to manage and dynamically manipulate the exe-
cution mode of an RTEMS task.

rtems_mpci_entry is the return type of an RTEMS MPCI routine.

rtems_mpci_get_packet_entry is the address of the entry point to the get packet
routine for an MPCI implementation.

rtems_mpci_initialization_entry is the address of the entry point to the initial-
ization routine for an MPCI implementation.

rtems_mpci_receive_packet_entry is the address of the entry point to the receive
packet routine for an MPCI implementation.

rtems_mpci_return_packet_entry is the address of the entry point to the return
packet routine for an MPCI implementation.

rtems_mpci_send_packet_entry is the address of the entry point to the send packet
routine for an MPCI implementation.

rtems_mpci_table is the data structure containing the configuration information
for an MPCI.

rtems_option is the data type used to specify which behavioral options the caller
desires. It is commonly used with potentially blocking directives to specify whether
the caller is willing to block or return immediately with an error indicating that the
resource was not available.

rtems_packet_prefix is the data structure that defines the first bytes in every
packet sent between nodes in an RTEMS multiprocessor system. It contains routing
information that is expected to be used by the MPCI layer.

rtems_signal_set is the data type used to manage and manipulate RTEMS signal
sets with the Signal Manager.

rtems_signed8 is the data type that corresponds to signed eight bit integers. This
data type is defined by RTEMS in a manner that ensures it is portable across
different target processors.

Chapter 3: RTEMS Data Types 19

e rtems_signedl16 is the data type that corresponds to signed sixteen bit integers.
This data type is defined by RTEMS in a manner that ensures it is portable across
different target processors.

e rtems_signed32 is the data type that corresponds to signed thirty-two bit integers.
This data type is defined by RTEMS in a manner that ensures it is portable across
different target processors.

e rtems_signed64 is the data type that corresponds to signed sixty-four bit integers.
This data type is defined by RTEMS in a manner that ensures it is portable across
different target processors.

e rtems_single is the RTEMS data type that corresponds to single precision floating
point on the target hardware.

e rtems_status_codes is the
e rtems_task is the return type for an RTEMS Task.

e rtems_task_argument is the data type for the argument passed to each RTEMS
task.

e rtems_task_begin_extension is the entry point for a task beginning execution
user extension handler routine.

e rtems_task_create_extension is the entry point for a task creation execution user
extension handler routine.

e rtems_task_delete_extension is the entry point for a task deletion user extension
handler routine.

e rtems_task_entry is the address of the entry point to an RTEMS ASR. It is equiv-
alent to the entry point of the function implementing the ASR.

e rtems_task_exitted_extension is the entry point for a task exitted user extension
handler routine.

e rtems_task_priority is the data type used to manage and manipulate task prior-
ities.
e rtems_task_restart_extension is the entry point for a task restart user extension

handler routine.

e rtems_task_start_extension is the entry point for a task start user extension
handler routine.

e rtems_task_switch_extension is the entry point for a task context switch user
extension handler routine.

e rtems_tcb is the data structure associated with each task in an RTEMS system.

e rtems_time_of_day is the data structure used to manage and manipulate calendar
time in RTEMS.

e rtems_timer_service_routine is the return type for an RTEMS Timer Service
Routine.

e rtems_timer_service_routine_entry is the address of the entry point to an
RTEMS TSR. It is equivalent to the entry point of the function implementing the
TSR.

20

RTEMS C User’s Guide

rtems_unsigned8 is the data type that corresponds to unsigned eight bit integers.
This data type is defined by RTEMS in a manner that ensures it is portable across
different target processors.

rtems_unsigned16 is the data type that corresponds to unsigned sixteen bit inte-
gers. This data type is defined by RTEMS in a manner that ensures it is portable
across different target processors.
rtems_unsigned32 is the data type that corresponds to unsigned thirty-two bit
integers. This data type is defined by RTEMS in a manner that ensures it is portable
across different target processors.
rtems_unsigned64 is the data type that corresponds to unsigned sixty-four bit
integers. This data type is defined by RTEMS in a manner that ensures it is portable
across different target processors.

rtems_vector_number is the data type used to manage and manipulate interrupt
vector numbers.

Chapter 4: Initialization Manager 21

4 Initialization Manager

4.1 Introduction

The initialization manager is responsible for initiating and shutting down RTEMS. Ini-
tiating RTEMS involves creating and starting all configured initialization tasks, and for
invoking the initialization routine for each user-supplied device driver. In a multiprocessor
configuration, this manager also initializes the interprocessor communications layer. The
directives provided by the initialization manager are:

e rtems_initialize_executive - Initialize RTEMS

e rtems_initialize_executive_early - Initialize RTEMS and do NOT Start Mul-
titasking

e rtems_initialize_executive_late - Complete Initialization and Start Multitask-
ing

e rtems_shutdown_executive - Shutdown RTEMS

4.2 Background

4.2.1 Initialization Tasks

Initialization task(s) are the mechanism by which RTEMS transfers initial control to the
user’s application. Initialization tasks differ from other application tasks in that they are
defined in the User Initialization Tasks Table and automatically created and started by
RTEMS as part of its initialization sequence. Since the initialization tasks are scheduled
using the same algorithm as all other RTEMS tasks, they must be configured at a priority
and mode which will insure that they will complete execution before other application
tasks execute. Although there is no upper limit on the number of initialization tasks, an
application is required to define at least one.

A typical initialization task will create and start the static set of application tasks. It
may also create any other objects used by the application. Initialization tasks which only
perform initialization should delete themselves upon completion to free resources for other
tasks. Initialization tasks may transform themselves into a "normal" application task. This
transformation typically involves changing priority and execution mode. RTEMS does not
automatically delete the initialization tasks.

4.2.2 The System Initialization Task

The System Initialization Task is responsible for initializing all device drivers. As a result,
this task has a higher priority than all other tasks to insure that no application tasks executes
until all device drivers are initialized. After device initialization in a single processor system,
this task will delete itself.

22 RTEMS C User’s Guide

The System Initialization Task must have enough stack space to successfully execute the
initialization routines for all device drivers and, in multiprocessor configurations, the Mul-
tiprocessor Communications Interface Layer initialization routine. The CPU Configuration
Table contains a field which allows the application or BSP to increase the default amount
of stack space allocated for this task.

In multiprocessor configurations, the System Initialization Task does not delete itself after
initializing the device drivers. Instead it transforms itself into the Multiprocessing Server
which initializes the Multiprocessor Communications Interface Layer, verifies multiprocessor
system consistency, and processes all requests from remote nodes.

4.2.3 The Idle Task

The Idle Task is the lowest priority task in a system and executes only when no other task
is ready to execute. This task consists of an infinite loop and will be preempted when any
other task is made ready to execute.

4.2.4 Initialization Manager Failure

The rtems_ifatal_error_occurred directive will be called from rtems_initialize_
executive for any of the following reasons:

e If either the Configuration Table or the CPU Dependent Information Table is not
provided.

e If the starting address of the RTEMS RAM Workspace, supplied by the application
in the Configuration Table, is NULL or is not aligned on a four-byte boundary.

e If the size of the RTEMS RAM Workspace is not large enough to initialize and
configure the system.

e If the interrupt stack size specified is too small.

e If multiprocessing is configured and the node entry in the Multiprocessor Configu-
ration Table is not between one and the maximum_nodes entry.

e If a multiprocessor system is being configured and no Multiprocessor Communica-
tions Interface is specified.

e If no user initialization tasks are configured. At least one initialization task must
be configured to allow RTEMS to pass control to the application at the end of the
executive initialization sequence.

e If any of the user initialization tasks cannot be created or started successfully.

4.3 Operations

Chapter 4: Initialization Manager 23

4.3.1 Initializing RTEMS

The rtems_initialize_executive directive is called by the board support package at the
completion of its initialization sequence. RTEMS assumes that the board support pack-
age successfully completed its initialization activities. The rtems_initialize_executive
directive completes the initialization sequence by performing the following actions:

e Initializing internal RTEMS variables;

e Allocating system resources;

e Creating and starting the System Initialization Task;

e Creating and starting the Idle Task;

e Creating and starting the user initialization task(s); and

e Initiating multitasking.

This directive MUST be called before any other RTEMS directives. The effect of calling
any RTEMS directives before rtems_initialize_executive is unpredictable. Many of
RTEMS actions during initialization are based upon the contents of the Configuration
Table and CPU Dependent Information Table. For more information regarding the format
and contents of these tables, please refer to the chapter Configuring a System.

The final step in the initialization sequence is the initiation of multitasking. When the
scheduler and dispatcher are enabled, the highest priority, ready task will be dispatched
to run. Control will not be returned to the board support package after multitasking is
enabled until rtems_shutdown_executive the directive is called.

The rtems_initialize_executive directive provides a conceptually simple way to ini-
tialize RTEMS. However, in certain cases, this mechanism cannot be used. The
rtems_initialize_executive_early and rtems_initialize_executive_late directives
are provided as an alternative mechanism for initializing RTEMS. The rtems_initialize_
executive_early directive returns to the caller BEFORE initiating multitasking. The
rtems_initialize_executive_late directive is invoked to start multitasking. It is criti-
cal that only one of the RTEMS initialization sequences be used in an application.

4.3.2 Shutting Down RTEMS

The rtems_shutdown_executive directive is invoked by the application to end multitasking
and return control to the board support package. The board support package resumes
execution at the code immediately following the invocation of the rtems_initialize_
executive directive.

4.4 Directives

This section details the initialization manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

24 RTEMS C User’s Guide

4.4.1 INITTALIZE_EXECUTIVE - Initialize RTEMS

CALLING SEQUENCE:

void rtems_initialize_executive(
rtems_configuration_table *configuration_table,
rtems_cpu_table *cpu_table

)
DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called when the board support package has completed its initialization to
allow RTEMS to initialize the application environment based upon the information in the
Configuration Table, CPU Dependent Information Table, User Initialization Tasks Table,
Device Driver Table, User Extension Table, Multiprocessor Configuration Table, and the
Multiprocessor Communications Interface (MPCI) Table. This directive starts multitasking
and does not return to the caller until the rtems_shutdown_executive directive is invoked.

NOTES:

This directive MUST be the first RTEMS directive called and it DOES NOT RETURN to

the caller until the rtems_shutdown_executive is invoked.

This directive causes all nodes in the system to verify that certain configuration parameters
are the same as those of the local node. If an inconsistency is detected, then a fatal error
is generated.

The application must use only one of the two initialization sequences: rtems_initialize_
executive or rtems_initialize_executive_early and rtems_initialize_executive_
late. The rtems_initialize_executive directive is logically equivalent to invoking
rtems_initialize_executive_early and rtems_initialize_executive_late with no
intervening actions.

Chapter 4: Initialization Manager 25

4.4.2 INITIALIZE_EXECUTIVE_EARLY - Initialize RTEMS and
do NOT Start Multitasking

CALLING SEQUENCE:

rtems_interrupt_level rtems_initialize_executive_early(
rtems_configuration_table *configuration_table,
rtems_cpu_table *cpu_table

)
DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called when the board support package has completed its initialization to
allow RTEMS to initialize the application environment based upon the information in the
Configuration Table, CPU Dependent Information Table, User Initialization Tasks Table,
Device Driver Table, User Extension Table, Multiprocessor Configuration Table, and the
Multiprocessor Communications Interface (MPCI) Table. This directive returns to the
caller after completing the basic RTEMS initialization but before multitasking is initiated.
The interrupt level in place when the directive is invoked is returned to the caller. This
interrupt level should be the same one passed to rtems_initialize_executive_late.

NOTES:

The application must use only one of the two initialization sequences: rtems_initialize_
executive or rtems_initialize_executive_early and rtems_initialize_executive_
late.

26 RTEMS C User’s Guide

4.4.3 INITTIALIZE_EXECUTIVE_LATE - Complete Initialization
and Start Multitasking

CALLING SEQUENCE:

void rtems_initialize_executive_late(
rtems_interrupt_level bsp_level

)
DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called after the rtems_initialize_executive_early directive has been
called to complete the RTTEMS initialization sequence and initiate multitasking. The in-
terrupt level returned by the rtems_initialize_executive_early directive should be in
bsp_level and this value is restored as part of this directive returning to the caller after the
rtems_shutdown_executive directive is invoked.

NOTES:

This directive MUST be the second RTEMS directive called and it DOES NOT RETURN

to the caller until the rtems_shutdown_executive is invoked.

This directive causes all nodes in the system to verify that certain configuration parameters
are the same as those of the local node. If an inconsistency is detected, then a fatal error
is generated.

The application must use only one of the two initialization sequences: rtems_initialize_
executive or rtems_initialize_executive_early and rtems_initialize_executive_
late.

Chapter 4: Initialization Manager 27

4.4.4 SHUTDOWN_EXECUTIVE - Shutdown RTEMS

CALLING SEQUENCE:

void rtems_shutdown_executive(
rtems_unsigned32 result

)
DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called when the application wishes to shutdown RTEMS and return control
to the board support package. The board support package resumes execution at the code
immediately following the invocation of the rtems_initialize_executive directive.

NOTES:

This directive MUST be the last RTEMS directive invoked by an application and it DOES
NOT RETURN to the caller.

This directive should not be invoked until the executive has successfully completed initial-
ization.

28

RTEMS C User’s Guide

Chapter 5: Task Manager

5 Task Manager

5.1 Introduction

29

The task manager provides a comprehensive set of directives to create, delete, and admin-
ister tasks. The directives provided by the task manager are:

rtems_task_create - Create a task

rtems_task_ident - Get ID of a task

rtems_task_start - Start a task

rtems_task_restart - Restart a task

rtems_task_delete - Delete a task

rtems_task_suspend - Suspend a task

rtems_task_resume - Resume a task
rtems_task_is_suspended - Determine if a task is suspended
rtems_task_set_priority - Set task priority
rtems_task_mode - Change current task’s mode
rtems_task_get_note - Get task notepad entry
rtems_task_set_note - Set task notepad entry
rtems_task_wake_after - Wake up after interval
rtems_task_wake_when - Wake up when specified
rtems_task_variable_add - Associate per task variable
rtems_task_variable_get - Obtain value of a a per task variable

rtems_task_variable_delete - Remove per task variable

5.2 Background

5.2.1 Task Definition

Many definitions of a task have been proposed in computer literature. Unfortunately, none
of these definitions encompasses all facets of the concept in a manner which is operating
system independent. Several of the more common definitions are provided to enable each
user to select a definition which best matches their own experience and understanding of
the task concept:

a "dispatchable" unit.
an entity to which the processor is allocated.

an atomic unit of a real-time, multiprocessor system.

single threads of execution which concurrently compete for resources.

30 RTEMS C User’s Guide

e a sequence of closely related computations which can execute concurrently with
other computational sequences.

From RTEMS’ perspective, a task is the smallest thread of execution which can compete on
its own for system resources. A task is manifested by the existence of a task control block
(TCB).

5.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS defined data structure which contains all
the information that is pertinent to the execution of a task. During system initialization,
RTEMS reserves a TCB for each task configured. A TCB is allocated upon creation of the
task and is returned to the TCB free list upon deletion of the task.

The TCB’s elements are modified as a result of system calls made by the application in
response to external and internal stimuli. TCBs are the only RTEMS internal data structure
that can be accessed by an application via user extension routines. The TCB contains a
task’s name, 1D, current priority, current and starting states, execution mode, set of notepad
locations, TCB user extension pointer, scheduling control structures, as well as data required
by a blocked task.

A task’s context is stored in the TCB when a task switch occurs. When the task regains
control of the processor, its context is restored from the TCB. When a task is restarted,
the initial state of the task is restored from the starting context area in the task’s TCB.

5.2.3 Task States

A task may exist in one of the following five states:

e executing - Currently scheduled to the CPU
e ready - May be scheduled to the CPU

e blocked - Unable to be scheduled to the CPU
e dormant - Created task that is not started

e non-existent - Uncreated or deleted task

An active task may occupy the executing, ready, blocked or dormant state, otherwise the
task is considered non-existent. One or more tasks may be active in the system simulta-
neously. Multiple tasks communicate, synchronize, and compete for system resources with
each other via system calls. The multiple tasks appear to execute in parallel, but actually
each is dispatched to the CPU for periods of time determined by the RTEMS scheduling
algorithm. The scheduling of a task is based on its current state and priority.

5.2.4 Task Priority

A task’s priority determines its importance in relation to the other tasks executing on the
same processor. RTEMS supports 255 levels of priority ranging from 1 to 255. The data
type rtems_task_priority is used to store task priorities.

Chapter 5: Task Manager 31

Tasks of numerically smaller priority values are more important tasks than tasks of numer-
ically larger priority values. For example, a task at priority level 5 is of higher privilege
than a task at priority level 10. There is no limit to the number of tasks assigned to the
same priority.

Each task has a priority associated with it at all times. The initial value of this priority is
assigned at task creation time. The priority of a task may be changed at any subsequent
time.

Priorities are used by the scheduler to determine which ready task will be allowed to execute.
In general, the higher the logical priority of a task, the more likely it is to receive processor
execution time.

5.2.5 Task Mode

A task’s execution mode is a combination of the following four components:

e preemption
e ASR processing
e timeslicing

e interrupt level

It is used to modify RTEMS’ scheduling process and to alter the execution environment of
the task. The data type rtems_task_mode is used to manage the task execution mode.

The preemption component allows a task to determine when control of the processor is
relinquished. If preemption is disabled (RTEMS_NO_PREEMPT), the task will retain control of
the processor as long as it is in the executing state — even if a higher priority task is made
ready. If preemption is enabled (RTEMS_PREEMPT) and a higher priority task is made ready,
then the processor will be taken away from the current task immediately and given to the
higher priority task.

The timeslicing component is used by the RTEMS scheduler to determine how the processor
is allocated to tasks of equal priority. If timeslicing is enabled (RTEMS_TIMESLICE), then
RTEMS will limit the amount of time the task can execute before the processor is allocated
to another ready task of equal priority. The length of the timeslice is application dependent
and specified in the Configuration Table. If timeslicing is disabled (RTEMS_NO_TIMESLICE),
then the task will be allowed to execute until a task of higher priority is made ready. If
RTEMS_NO_PREEMPT is selected, then the timeslicing component is ignored by the scheduler.

The asynchronous signal processing component is used to determine when received signals
are to be processed by the task. If signal processing is enabled (RTEMS_ASR), then signals
sent to the task will be processed the next time the task executes. If signal processing
is disabled (RTEMS_NO_ASR), then all signals received by the task will remain posted until
signal processing is enabled. This component affects only tasks which have established a
routine to process asynchronous signals.

The interrupt level component is used to determine which interrupts will be enabled when
the task is executing. RTEMS_INTERRUPT_LEVEL(n) specifies that the task will execute at
interrupt level n.

32 RTEMS C User’s Guide

e RTEMS_PREEMPT - enable preemption (default)

e RTEMS_NO_PREEMPT - disable preemption

e RTEMS_NO_TIMESLICE - disable timeslicing (default)

e RTEMS_TIMESLICE - enable timeslicing

e RTEMS_ASR - enable ASR processing (default)

e RTEMS_NO_ASR - disable ASR processing

e RTEMS_INTERRUPT_LEVEL(O) - enable all interrupts (default)
e RTEMS_INTERRUPT_LEVEL(n) - execute at interrupt level n

The set of default modes may be selected by specifying the RTEMS_DEFAULT_MODES constant.

5.2.6 Accessing Task Arguments

All RTEMS tasks are invoked with a single argument which is specified when they are
started or restarted. The argument is commonly used to communicate startup information
to the task. The simplest manner in which to define a task which accesses it argument is:

rtems_task user_task(
rtems_task_argument argument

)

Application tasks requiring more information may view this single argument as an index
into an array of parameter blocks.

5.2.7 Floating Point Considerations

Creating a task with the RTEMS_FLOATING_POINT attribute flag results in additional memory
being allocated for the TCB to store the state of the numeric coprocessor during task
switches. This additional memory is NOT allocated for RTEMS_NO_FLOATING_POINT tasks.
Saving and restoring the context of a RTEMS_FLOATING_POINT task takes longer than that of
a RTEMS_NO_FLOATING_POINT task because of the relatively large amount of time required
for the numeric coprocessor to save or restore its computational state.

Since RTEMS was designed specifically for embedded military applications which are float-
ing point intensive, the executive is optimized to avoid unnecessarily saving and restoring
the state of the numeric coprocessor. The state of the numeric coprocessor is only saved
when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last task to
utilize the coprocessor. In a system with only one RTEMS_FLOATING_POINT task, the state
of the numeric coprocessor will never be saved or restored.

Although the overhead imposed by RTEMS_FLOATING_POINT tasks is minimal, some applica-
tions may wish to completely avoid the overhead associated with RTEMS_FLOATING_POINT
tasks and still utilize a numeric coprocessor. By preventing a task from being preempted
while performing a sequence of floating point operations, a RTEMS_NO_FLOATING_POINT task
can utilize the numeric coprocessor without incurring the overhead of a RTEMS_FLOATING_
POINT context switch. This approach also avoids the allocation of a floating point context

Chapter 5: Task Manager 33

area. However, if this approach is taken by the application designer, NO tasks should be
created as RTEMS_FLOATING_POINT tasks. Otherwise, the floating point context will not be
correctly maintained because RTEMS assumes that the state of the numeric coprocessor
will not be altered by RTEMS_NO_FLOATING_POINT tasks.

If the supported processor type does not have hardware floating capabili