Getting Started with RTEMS

Edition 4.6.0, for 4.6.0

22 October 2003

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TrXinfo 2002-11-25.11

COPYRIGHT (© 1988 - 2003.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

Table of Contents

1 Introduction............................... 1
1.1 Real-Time Embedded Systems 1
1.2 Cross Development 2
1.3 Resources on the Internet 3
1.3.1 Online Tool Documentation 3
1.3.2 RTEMS Mailing List............................ 3
1.3.3 CrossGCC Mailing List 3
1.3.4 GCC Mailing Lists......... i 4
2 Requirements................. . .. 5
2.1 DIiSK SPacCe. .. oo 5
2.2 General Host Software Requirements...................... 5
221 GCO .. 6
222 GNUMake.ooi 6
2.2.3 GNU makeinfo Version Requirements 6
2.3 Host Specific Notes. ... 6
2.3.1 Solaris 2.X. ... 6
2.3.2 LANUX . ..ot 7
2.4 Archive and Build Directories 7
2.4.1 RPM Archive and Build Directory Format........ 7
2.4.2 Archive and Build Directory Format 7
3 Prebuilt Toolset Executables 9
3.1 RPMS .o 9
3.1.1 Inmstalling RPMs........., 9

3.1.2 Determining Which RTEMS RPMs are Installed
.. 10
3.1.3 Removing RPMs 10
3.2 Zipped Tar Files i 10
3.2.1 Installing Zipped Tar Files 10
3.2.2 Removing Zipped Tar Files..................... 11

4 Building the GNU Cross Compiler Toolset

.. 13
4.1 Building BINUTILS GCC and NEWLIB................. 13
4.1.1 Obtain Source and Patches for BINUTILS GCC and
NEWLIB. ... e 13
4.1.2 Unarchiving the Tools.......................... 14
4.1.3 Applying RTEMS Patches...................... 15

4.1.4 Compiling and Installing BINUTILS GCC and
NEWLIB. ... 16

il Getting Started with RTEMS

4.1.4.1 Using RPM to Build BINUTILS GCC and

NEWLIB.........oo . 16
4.1.4.2 Using configure and make.............. 18
4.2 Building the GNU Debugger GDB....................... 20
4.2.1 Obtain Source and Patches for GDB 21
4.2.2 Unarchiving the GDB Distribution.............. 21
4.2.3 Applying RTEMS Patchto GDB 21

4.2.4 Compiling and Installing the GNU Debugger GDB
.. 22
4.2.4.1 Using RPM to Build GDB............. 22

4.2.4.2 Using the GDB configure Script Directly
... 23
4.3 Common Problems........... 24
4.3.1 Error Message Indicates Invalid Option to Assembler
.. 24

4.3.2 Error Messages Indicating Configuration Problems
.. 24
5 Building RTEMS 27
5.1 Obtain the RTEMS Source Code 27
5.2 Unarchive the RTEMS Source........................... 27
5.3 Add <INSTALL_POINT>/bin to Executable PATH 27
5.4 Verifying the Operation of the Cross Toolset 28
5.5 Building RTEMS for a Specific Target and BSP 28
5.5.1 Using the RTEMS configure Script Directly. 28
6 Building the Sample Applications.......... 31

6.1 Set the Environment Variable RTEMS_MAKEFILE_PATH
... 31
6.2 Executing the Sample Applications 31
6.3 C/C++ Sample Applications.......................o.. .. 32
6.4 Ada Sample Applications 33
6.5 Build the Sample Application 34
6.6 Application Executable............, 34
6.7 More Information on RTEMS Application Makefiles 34
7 Where To Go From Here.................. 35
7.1 Documentation Overviewc.ooviiiiinao.... 35
7.2 Writing an Application, 36

Appendix A Using MS-Windows as a

Development Host 37
A.1 Microsoft Windows Version Requirements 37
A2 CygwWin ... 37
A3 Text Editor 38

A4 System Requirements 38

Chapter 1: Introduction 1

1 Introduction

The purpose of this document is to guide you through the process of installing a GNU cross
development environment to use with RTEMS.

If you are already familiar with the concepts behind a cross compiler and have a background
in Unix, these instructions should provide the bare essentials for performing a setup of the
following items:

e GNU Cross Compilation Tools for RTEMS on your build-host system
e RTEMS OS for the target
e GDB Debugger

The remainder of this chapter provides background information on real-time embedded
systems and cross development and an overview of other resources of interest on the Internet.
If you are not familiar with real-time embedded systems or the other areas, please read
those sections. These sections will help familiarize you with the types of systems RTEMS
is designed to be used in and the cross development process used when developing RTTEMS
applications.

1.1 Real-Time Embedded Systems

Real-time embedded systems are found in practically every facet of our everyday lives.
Today’s systems range from the common telephone, automobile control systems, and kitchen
appliances to complex air traffic control systems, military weapon systems, and production
line control including robotics and automation. However, in the current climate of rapidly
changing technology, it is difficult to reach a consensus on the definition of a real-time
embedded system. Hardware costs are continuing to rapidly decline while at the same
time the hardware is increasing in power and functionality. As a result, embedded systems
that were not considered viable two years ago are suddenly a cost effective solution. In
this domain, it is not uncommon for a single hardware configuration to employ a variety
of architectures and technologies. Therefore, we shall define an embedded system as any
computer system that is built into a larger system consisting of multiple technologies such
as digital and analog electronics, mechanical devices, and sensors.

Even as hardware platforms become more powerful, most embedded systems are critically
dependent on the real-time software embedded in the systems themselves. Regardless of
how efficiently the hardware operates, the performance of the embedded real-time software
determines the success of the system. As the complexity of the embedded hardware platform
grows, so does the size and complexity of the embedded software. Software systems must
routinely perform activities which were only dreamed of a short time ago. These large,
complex, real-time embedded applications now commonly contain one million lines of code
or more.

Real-time embedded systems have a complex set of characteristics that distinguish them
from other software applications. Real-time embedded systems are driven by and must
respond to real world events while adhering to rigorous requirements imposed by the envi-
ronment with which they interact. The correctness of the system depends not only on the

2 Getting Started with RTEMS

results of computations, but also on the time at which the results are produced. The most
important and complex characteristic of real-time application systems is that they must
receive and respond to a set of external stimuli within rigid and critical time constraints.

A single real-time application can be composed of both soft and hard real-time components.
A typical example of a hard real-time system is a nuclear reactor control system that must
not only detect failures, but must also respond quickly enough to prevent a meltdown.
This application also has soft real-time requirements because it may involve a man-machine
interface. Providing an interactive input to the control system is not as critical as setting
off an alarm to indicate a failure condition. However, the interactive system component
must respond within an acceptable time limit to allow the operator to interact efficiently
with the control system.

1.2 Cross Development

Today almost all real-time embedded software systems are developed in a cross development
environment using cross development tools. In the cross development environment, software
development activities are typically performed on one computer system, the build-host
system, while the result of the development effort (produced by the cross tools) is a software
system that executes on the target platform. The requirements for the target platform are
usually incompatible and quite often in direct conflict with the requirements for the build-
host. Moreover, the target hardware is often custom designed for a particular project.
This means that the cross development toolset must allow the developer to customize the
tools to address target specific run-time issues. The toolset must have provisions for board
dependent initialization code, device drivers, and error handling code.

The build-host computer is optimized to support the code development cycle with sup-
port for code editors, compilers, and linkers requiring large disk drives, user development
windows, and multiple developer connections. Thus the build-host computer is typically
a traditional UNIX workstation such as those available from SUN or Silicon Graphics, or
a PC running either a version of MS-Windows or UNIX. The build-host system may also
be required to execute office productivity applications to allow the software developer to
write documentation, make presentations, or track the project’s progress using a project
management tool. This necessitates that the build-host computer be general purpose with
resources such as a thirty-two or sixty-four bit processor, large amounts of RAM, a monitor,
mouse, keyboard, hard and floppy disk drives, CD-ROM drive, and a graphics card. It is
likely that the system will be multimedia capable and have some networking capability.

Conversely, the target platform generally has limited traditional computer resources. The
hardware is designed for the particular functionality and requirements of the embedded sys-
tem and optimized to perform those tasks effectively. Instead of hard drives and keyboards,
it is composed of sensors, relays, and stepper motors. The per-unit cost of the target plat-
form is typically a critical concern. No hardware component is included without being cost
justified. As a result, the processor of the target system is often from a different processor
family than that of the build-host system and usually has lower performance. In addition
to the processor families designed only for use in embedded systems, there are versions of
nearly every general-purpose processor specifically tailored for real-time embedded systems.

Chapter 1: Introduction 3

For example, many of the processors targeting the embedded market do not include hard-
ware floating point units, but do include peripherals such as timers, serial controllers, or
network interfaces.

1.3 Resources on the Internet

This section describes various resources on the Internet which are of use to RTEMS users.

1.3.1 Online Tool Documentation

Each of the tools in the GNU development suite comes with documentation. It is in the
reader’s and tool maintainers’ interest that one read the documentation before posting a
problem to a mailing list or news group. The RTEMS Project provides formatted documen-
tation for the primary tools in the cross development toolset including BINUTILS, GCC,
NEWLIB, and GDB with the pre-built versions of those tools.

Much of the documentation is available at other sites on the Internet. The following is a
list of URLs where one can find HTML versions of the GNU manuals:

Free Software Foundation
http://www.gnu.org/manual /manual.html

Delorie Software http://www.delorie.com/gnu/docs

1.3.2 RTEMS Mailing List

rtems-users@rtems.com

This mailing list is dedicated to the discussion of issues related to RTEMS, including
GNAT/RTEMS. If you have questions about RTEMS, wish to make suggestions, or just
want to pick up hints, this is a good list to monitor. Subscribe by sending an empty mail
message to rtems-users-subscribe@rtems.com. Messages sent to rtems-users@rtems.com are
posted to the list.

1.3.3 CrossGCC Mailing List

crossgcc@sources.redhat.com

This mailing list is dedicated to the use of the GNU tools in cross development environments.
Most of the discussions focus on embedded issues. Information on subscribing to this mailing

list is included in the CrossGCC FAQ.
The CrossGCC FAQ and Wiki are are available at http://www.billgatliff.com.

http://www.gnu.org/manual/manual.html
http://www.delorie.com/gnu/docs
mailto:rtems-users@rtems.com
mailto:rtems-users-subscribe@rtems.com
mailto:rtems-users@rtems.com
mailto:crossgcc@sources.redhat.com
http://www.objsw.com/CrossGCC/
http://www.billgatliff.com

4 Getting Started with RTEMS

1.3.4 GCC Mailing Lists

The GCC Project is hosted at http://gcc.gnu.org. They maintain multiple mailing lists
that are described at the web site along with subscription information.

http://gcc.gnu.org

Chapter 2: Requirements 5

2 Requirements

This chapter describes the build-host system requirements and initial steps in installing the
GNU Cross Compiler Tools and RTEMS on a build-host.

2.1 Disk Space

A fairly large amount of disk space is required to perform the build of the GNU C/C++
Cross Compiler Tools for RTTEMS. The following table may help in assessing the amount of
disk space required for your installation:

e e e e +
| Component | Disk Space Required |
e et e +
I archive directory | 55 Mbytes |
[tools src unarchived | 350 Mbytes |
| each individual build directory | up to 750 Mbytes |
| each installation directory | 20-200 Mbytes |
e et +

It is important to understand that the above requirements only address the GNU C/C++
Cross Compiler Tools themselves. Adding additional languages such as Fortran or
Objective-C can increase the size of the build and installation directories. Also, the unar-
chived source and build directories can be removed after the tools are installed.

After the tools themselves are installed, RTEMS must be built and installed for each Board
Support Package that you wish to use. Thus the precise amount of disk space required for
each installation directory depends highly on the number of RTEMS BSPs which are to be
installed. If a single BSP is installed, then the additional size of each install directory will
tend to be in the 40-60 Mbyte range.

There are a number of factors which must be taken into account in order to estimate the
amount of disk space required to build RTEMS itself. Attempting to build multiple BSPs
in a single step increases the disk space requirements. Similarly enabling optional features
increases the build and install space requirements. In particular, enabling and building the
RTEMS tests results in a significant increase in build space requirements but since the tests
are not installed has, enabling them has no impact on installation requirements.

2.2 General Host Software Requirements

The instructions in this manual should work on any computer running a UNIX variant.
Some native GNU tools are used by this procedure including:

e GCC
e GNU make
e GNU makeinfo

6 Getting Started with RTEMS

In addition, some native utilities may be deficient for building the GNU tools.
2.2.1 GCC

Although RTEMS itself is intended to execute on an embedded target, there is source
code for some native programs included with the RTEMS distribution. Some of these
programs are used to assist in the building of RTEMS itself, while others are BSP specific
tools. Regardless, no attempt has been made to compile these programs with a non-GNU
compiler.

2.2.2 GNU Make

Both NEWLIB and RTEMS use GNU make specific features and can only be built using
GNU make. Many systems include a make utility that is not GNU make. The safest way
to meet this requirement is to ensure that when you invoke the command make, it is GNU
make. This can be verified by attempting to print the GNU make version information:

make —--version

If you have GNU make and another make on your system, it is common to put the directory
containing GNU make before the directory containing other implementations of make.

2.2.3 GNU makeinfo Version Requirements

In order to build gee 2.9.x or newer versions, the GNU makeinfo program installed on your
system must be at least version 1.68. The appropriate version of makeinfo is distributed
with gcc.

The following demonstrates how to determine the version of makeinfo on your machine:

makeinfo —--version

2.3 Host Specific Notes

2.3.1 Solaris 2.x

The following problems have been reported by Solaris 2.x users:

e The build scripts are written in "shell". The program /bin/sh on Solaris 2.x is not
robust enough to execute these scripts. If you are on a Solaris 2.x host, then use
the /bin/ksh or /bin/bash shell instead.

e The native patch program is broken. Install the GNU version.

e The native m4 program is deficient. Install the GNU version.

Chapter 2: Requirements 7

2.3.2 Linux

The following problems have been reported by Linux users:

e Certain versions of GNU fileutils include a version of install which does not work
properly. Please perform the following test to see if you need to upgrade:

install -c -d /tmp/foo/bar

If this does not create the specified directories your install program will not install
RTEMS properly. You will need to upgrade to at least GNU fileutils version 3.16
to resolve this problem.

2.4 Archive and Build Directories

If you are using RPM or another packaging format that supports building a package from
source, then there is probably a directory structure assumed by that packaging format.
Otherwise, you are free to use whatever organization you like. However, this document
will use the directory organization described in Section 2.4.2 [Archive and Build Directory
Format], page 7.

2.4.1 RPM Archive and Build Directory Format

For RPM, it is assumed that the following subdirectories are under a root directory such as
/usr/src/redhat:

BUILD
RPMS
SOURCES
SPECS
SRPMS

For the purposes of this document, the RPM SOURCES directory is the directory into which
all tool source and patches are assumed to reside. The BUILD directory is where the actual
build is performed when building binaries from a source RPM. The SOURCES and BUILD are
logically equivalent to the archive and tools directory discussed in the next section.

2.4.2 Archive and Build Directory Format

When no packaging format requirements are present, the root directory for the storage of
source archives and patches as well as for building the tools is up to the user. The only
concern is that there be enough disk space to complete the build. In this document, the
following organization will be used.

Make an archive directory to contain the downloaded source code and a tools directory
to be used as a build directory. The command sequence to do this is shown below:

mkdir archive

8 Getting Started with RTEMS

mkdir tools

This will result in an initial directory structure similar to the one shown in the following
figure:

/whatever/prefix/you/choose/
archive/
tools/

Chapter 3: Prebuilt Toolset Executables 9

3 Prebuilt Toolset Executables

Precompiled toolsets are available for Linux, Cygwin, FreeBSD, and Solaris. These are
packaged in the following formats:

e Linux - RPM
e Cygwin - tar.bz2

e Solaris - tar.bz2

RPM is an acronym for the RPM Package Manager. RPM is the native package installer
for many Linux distributions including RedHat, SuSE, and Fedora.

The prebuilt binaries are intended to be easy to install and the instructions are similar
regardless of the host environment. There are a few structural issues with the packaging of
the RTEMS Cross Toolset binaries that you need to be aware of.

1. There are dependencies between the various packages. This requires that certain
packages be installed before others may be. Some packaging formats enforce this
dependency.

2. Some packages are target CPU family independent and shared across all target
architectures. These are referred to as "base" packages.

3. Depending upon the version of GCC as well as the development host and target
CPU combination, pre-built supplemental packages may be provided for Ada (gnat),
Chill, Java (gcj), Fortran (g77), and Objective-C (objc). These binaries are strictly
optional.

NOTE: Installing toolset binaries does not install RTEMS itself, only the tools required to
build RTEMS. See Chapter 5 [Building RTEMS], page 27 for the next step in the process.

3.1 RPMs
This section provides information on installing and removing RPMs.
3.1.1 Installing RPMs

The following is a sample session illustrating the installation of a C/C++ toolset targeting
the SPARC architecture.

rpm -i rtems-4.6-rtems-base-binutils-2.13.2.1-2.1386.rpm

rpm -i rtems-4.6-sparc-rtems-binutils-2.13.2.1-2.i386.rpm

rpm -1 rtems-4.6-rtems-base-gcc-gcc3.2.3newlibl.11.0-2.1i386.rpm
rpm -1 rtems-4.6-sparc-rtems-c++-gcc3.2.3newlibl1.11.0-2.1i386.rpm
rpm -i rtems-4.6-sparc-rtems-gcc-gcc3.2.3newlibl.11.0-2.i386.rpm
rpm -i rtems-4.6-rtems-base-gdb-5.2-1.1386.rpm

rpm -i rtems-4.6-sparc-rtems-gdb-5.2-1.1386.rpm

10 Getting Started with RTEMS

Upon successful completion of the above command sequence, a C/C++ cross development
toolset targeting the SPARC is installed in /opt/rtems-4.6. In order to use this toolset,
the directory /opt/rtems-4.6/bin must be included in your PATH.

Once you have successfully installed the RPMs for BINUTILS, GCC, NEWLIB, and GDB,
then you may proceed directly to Chapter 5 [Building RTEMS], page 27.

3.1.2 Determining Which RTEMS RPMs are Installed

The following command will report which RTEMS RPMs are currently installed:
rpm -q -g RTEMS/4.6

3.1.3 Removing RPMs

The following is a sample session illustrating the removal of a C/C++ toolset targeting the

SPARC architecture.

rpm —e rtems-4.6-sparc-rtems-gdb-5.2-1.1386.rpm

rpm -e rtems-4.6-rtems-base-gdb-5.2-1.1386.rpm

rpm -e rtems-4.6-sparc-rtems-gcc-gcc3.2.3newlibl1.11.0-2.1386.rpm
rpm -e rtems—-4.6-sparc-rtems-c++-gcc3.2.3newlibl1.11.0-2.1i386.rpm
rpm -e rtems-4.6-rtems-base-gcc-gcc3.2.3newlibl1.11.0-2.1386.rpm
rpm -e rtems-4.6-sparc-rtems-binutils-2.13.2.1-2.i386.rpm

rpm -e rtems-4.6-rtems-base-binutils-2.13.2.1-2.1i386.rpm

NOTE: If you have installed any RTEMS BSPs, then it is likely that RPM will complain
about not being able to remove everything.

3.2 Zipped Tar Files

This section provides information on installing and removing Zipped Tar Files (e.g .tar.gz
or .tar.bz2).

3.2.1 Installing Zipped Tar Files

The following is a sample session illustrating the installation of a C/C++ toolset targeting
the SPARC architecture assuming that GNU tar is installed as tar for a set of archive files
compressed with GNU Zip (gzip):

cd /

tar xzf rtems-4.6-rtems-base-binutils-2.13.2.1-2.tar.gz

tar xzf rtems-4.6-sparc-rtems-binutils-2.13.2.1-2.tar.gz

tar xzf rtems-4.6-rtems-base-gcc-gcc3.2.3newlibl.11.0-2.tar.gz
tar xzf rtems-4.6-sparc-rtems-gcc-gcc3.2.3newlibl.11.0-2.tar.gz
tar xzf rtems-4.6-rtems-base-gdb-5.2-1.tar.gz

Chapter 3: Prebuilt Toolset Executables 11

tar xzf rtems-4.6-sparc-rtems-gdb-5.2-1.tar.gz

The following command set is the equivalent command sequence for the same toolset as-
suming that is was compressed with GNU BZip (bzip2):

cd /

tar
tar
tar
tar
tar
tar

xjf
xjf
xjf
xjf
xjf
xjf

rtems-4.
rtems-4.
rtems-4.
rtems-4.
rtems-4.
rtems-4.

6-rtems-base-binutils-2.13.2.1-2.tar.bz2
6-sparc-rtems-binutils-2.13.2.1-2.tar.bz2
6-rtems-base-gcc-gcc3.2.3newlibl.11.0-2.tar.bz2
6-sparc-rtems-gcc-gcc3.2.3newlibl.11.0-2.tar.bz2
6-rtems-base-gdb-5.2-1.tar.bz2
6-sparc-rtems-gdb-5.2-1.tar.bz2

Upon successful completion of the above command sequence, a C/C++ cross development
toolset targeting the SPARC is installed in /opt/rtems-4.6. In order to use this toolset,
the directory /opt/rtems-4.6 must be included in your PATH.

3.2.2 Removing Zipped Tar Files

There is no automatic way to remove the contents of a tar.gz or tar.bz2 once it is installed.
The contents of the directory /opt/rtems-4.6 can be removed but this will likely result in
other packages being removed as well.

12

Getting Started with RTEMS

Chapter 4: Building the GNU Cross Compiler Toolset 13

4 Building the GNU Cross Compiler Toolset

NOTE: This chapter does NOT apply if you installed prebuilt toolset executables for BINU-
TILS, GCC, NEWLIB, and GDB. If you installed prebuilt executables for all of those,
proceed to Chapter 5 [Building RTEMS], page 27. If you require a GDB with a special
configuration to connect to your target board, then proceed to Section 4.2 [Building the
GNU Debugger GDBJ, page 20 for some advice.

This chapter describes the steps required to acquire the source code for a GNU cross compiler
toolset, apply any required RTEMS specific patches, compile that toolset and install it.

It is recommended that when toolset binaries are available for your particular host, that
they be used. Prebuilt binaries are much easier to install.

4.1 Building BINUTILS GCC and NEWLIB

NOTE: This step is NOT required if prebuilt executables for BINUTILS, GCC, and
NEWLIB were installed.

This section describes the process of building BINUTILS, GCC, and NEWLIB using a
variety of methods. Included is information on obtaining the source code and patches,
applying patches, and building and installing the tools using multiple methods.

4.1.1 Obtain Source and Patches for BINUTILS GCC and
NEWLIB

NOTE: This step is required for all methods of building BINUTILS, GCC, and NEWLIB.

This section lists the components required to build BINUTILS, GCC, and NEWLIB from
source to target RTEMS. These files should be placed in your archive directory. Included
are the locations of each component as well as any required RTEMS specific patches.

gcc-3.2.3
FTP Site: ftp.gnu.org
Directory: /pub/gnu/gcc/gcc-3.2.3
File: gcc—3.2.3.tar.bz2
URL: ftp://ftp.gnu.org/pub/gnu/gcc/gecc-3.2.3/gcc-3.2.3.tar.bz2]]

binutils-2.13.2.1

FTP Site: ftp.gnu.org
Directory: /pub/gnu/binutils
File: binutils-2.13.2.1.tar.gz

URL: ftp://ftp.gnu.org/pub/gnu/binutils/binutils-2.13.2.1.tar.gz}]

ftp://ftp.gnu.org/pub/gnu/gcc/gcc-3.2.3/gcc-3.2.3.tar.bz2
ftp://ftp.gnu.org/pub/gnu/binutils/binutils-2.13.2.1.tar.gz

14 Getting Started with RTEMS

newlib-1.11.0

FTP Site: sources.redhat.com

Directory: /pub/newlib

File: newlib-1.11.0.tar.gz

URL: ftp://sources.redhat.com/pub/newlib/newlib-1.11.0.tar.gz|j

RTEMS Specific Tool Patches and Scripts

FTP Site: ftp.rtems.com

Directory: /pub/rtems/4.6.0

File: newlib-1.11.0-rtems-20030605.diff
File: gcc-3.2.3-rtems-20040108.diff

4.1.2 Unarchiving the Tools

NOTE: This step is required if building BINUTILS, GCC, and NEWLIB using the procedure
described in Section 4.1.4.2 [Using configure and make|, page 18. It is NOT required if
using the procedure described in Section 4.1.4.1 [Using RPM to Build BINUTILS GCC and
NEWLIB]J, page 16.

GNU source distributions are archived using tar and compressed using either gzip or bzip.
If compressed with gzip, the extension .gz is used. If compressed with bzip, the extension
.bz2 is used.

While in the tools directory, unpack the compressed tar files for BINUTILS, GCC, and
NEWLIB using the appropriate command based upon the compression program used.

cd tools
tar xzf ../archive/TOOLNAME.tar.gz # for gzip’ed tools
tar xIf ../archive/TOOLNAME.tar.bz2 # for bzip’ed tools

After the compressed tar files have been unpacked using the appropriate commands, the
following directories will have been created under tools.

e binutils-2.13.2.1
e gce-3.2.3
e newlib-1.11.0

The tree should look something like the following figure:

ftp://sources.redhat.com/pub/newlib/newlib-1.11.0.tar.gz

Chapter 4: Building the GNU Cross Compiler Toolset 15

/whatever/prefix/you/choose/
archive/
gcc-3.2.3.tar.bz2
binutils-2.13.2.1.tar.gz
newlib-1.11.0.tar.gz
gcc—3.2.3-rtems-20040108.diff
newlib-1.11.0-rtems-20030605.diff

tools/
binutils-2.13.2.1/
gcc-3.2.3/

newlib-1.11.0/

4.1.3 Applying RTEMS Patches

NOTE: This step is required if building BINUTILS, GCC, and NEWLIB using the proce-
dures described in Section 4.1.4.2 [Using configure and make|, page 18. It is NOT required
if using the procedure described in Section 4.1.4.1 [Using RPM to Build BINUTILS GCC
and NEWLIB], page 16.

This section describes the process of applying the RTEMS patches to GCC, NEWLIB, and
BINUTILS.

Apply RTEMS Patch to GCC

Apply the patch using the following command sequence:

cd tools/gcc-3.2.3
cat ../../archive/gcc-3.2.3-rtems-20040108.diff | \
patch -pi

If the patch was compressed with the gzip program, it will have a suffix of .gz and you
should use zcat instead of cat as shown above. If the patch was compressed with the gzip
program, it will have a suffix of .bz2 and you should use bzcat instead of cat as shown
above.

Check to see if any of these patches have been rejected using the following sequence:

cd tools/gcc-3.2.3
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file which is properly applied.

Apply RTEMS Patch to binutils

No RTEMS specific patches are required for binutils-2.13.2.1 to support RTEMS 4.6.0.

16 Getting Started with RTEMS

Apply RTEMS Patch to newlib

Apply the patch using the following command sequence:

cd tools/newlib-1.11.0
cat ../../archive/newlib-1.11.0-rtems-20030605.diff | \
patch -pi

If the patch was compressed with the gzip program, it will have a suffix of .gz and you
should use zcat instead of cat as shown above. If the patch was compressed with the gzip
program, it will have a suffix of .bz2 and you should use bzcat instead of cat as shown
above.

Check to see if any of these patches have been rejected using the following sequence:
cd tools/newlib-1.11.0
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file which is properly applied.

4.1.4 Compiling and Installing BINUTILS GCC and NEWLIB

There are two supported methods to compile and install BINUTILS, GCC, and NEWLIB:
e RPM

e direct invocation of configure and make

Direct invocation of configure and make provides more control and easier recovery from
problems when building.

4.1.4.1 Using RPM to Build BINUTILS GCC and NEWLIB

NOTE: The procedures described in the following sections must be completed before this
step:

e Section 4.1.1 [Obtain Source and Patches for BINUTILS GCC and NEWLIB],
page 13

RPM automatically unarchives the source and applies any needed patches so you do NOT
have to manually perform the procedures described Section 4.1.2 [Unarchiving the Tools],
page 14 and Section 4.1.3 [Applying RTEMS Patches], page 15.

This section describes the process of building binutils, gce, and newlib using RPM. RPM
is a packaging format which can be used to distribute binary files as well as to capture
the procedure and source code used to produce those binary files. Before attempting
to build any RPM from source, it is necessary to ensure that all required source and
patches are in the SOURCES directory under the RPM root (probably /usr/src/redhat
or /usr/local/src/redhat) on your machine. This procedure starts by installing the
source RPMs as shown in the following example:

Chapter 4: Building the GNU Cross Compiler Toolset 17

rpm -i rtems-4.6-i386-rtems-binutils-collection-2.13.2.1-2.nosrc.rpm
rpm -i rtems-4.6-i386-rtems-gcc-newlib-gcc3.2.3newlibl.11.0-2.nosrc.rpm

The RTEMS tool source RPMS are called "nosrc" to indicate that one or more source files
required to produce the RPMs are not present. The RTEMS source RPMs typically include
all required patches, but do not include the large .tar.gz or .tgz files for each component
such as BINUTILS, GCC, or NEWLIB. These are shared by all RTEMS RPMs regardless
of target CPU and there was no reason to duplicate them. You will have to get the required
source archive files by hand and place them in the SOURCES directory before attempting to
build. If you forget to do this, RPM is smart — it will tell you what is missing. To determine
what is included or referenced by a particular RPM, use a command like the following:

$ rpm -q -1 -p rtems-4.6-1386-rtems-gcc-newlib-gcc3.2.3newlibl.11.0-1.nosrc.rpmj]
gcc-3.2.3-rtems-20030507a.diff

i386-rtems-gcc-3.2.3-newlib-1.11.0.spec

newlib-1.11.0-rtems-20030507.diff

Notice that there are patch files (the .diff files) and a file describing the build
procedure and files produced (the .spec file), but no source archives (the *tar.*
files). When installing this source RPM (rpm -U rtems-4.6-1386-rtems-gcc-newlib-
gce3.2.3newlibl.11.0-1.nosrc.rpm), the .spec file is placed in the SPECS directory
under the RPM root directory, while the *.diff files are placed into the SOURCES directory.

Configuring and Building BINUTILS using RPM

The following example illustrates the invocation of RPM to build a new, locally compiled,
binutils binary RPM that matches the installed source RPM. This example assumes that
all of the required source is installed.

cd <RPM_ROOT_DIRECTORY>/SPECS
rpm -bb i386-rtems-binutils-2.13.2.1.spec

If the build completes successfully, RPMS like the following will be generated in a build-host
architecture specific subdirectory of the RPMS directory under the RPM root directory.

rtems-4.6-rtems-base-binutils-2.13.2.1-2.i386.rpm
rtems-4.6-1386-rtems-binutils-2.13.2.1-2.1386.rpm

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

Configuring and Building GCC and NEWLIB using RPM

The following example illustrates the invocation of RPM to build a new, locally compiled,
set of GCC and NEWLIB binary RPMs that match the installed source RPM. It is also
necessary to install the BINUTILS RPMs and place them in your PATH. This example
assumes that all of the required source is installed.

cd <RPM_ROOT_DIRECTORY>/RPMS/i386
rpm -i rtems-4.6-rtems-base-binutils-2.13.2.1-2.i386.rpm

18 Getting Started with RTEMS

rpm -i rtems-4.6-i386-rtems-binutils-2.13.2.1-2.i386.rpm
export PATH=/opt/rtems-4.6/bin:$PATH

cd <RPM_ROOT_DIRECTORY>/SPECS

rpm -bb i386-rtems-gcc-3.2.3-newlib-1.11.0.spec

If the build completes successfully, a set of RPMS like the following will be generated in a
build-host architecture specific subdirectory of the RPMS directory under the RPM root
directory.

rtems-4.6-rtems-base-gcc-gcc3.2.3newlibl1.11.0-2.1386.rpm
rtems-4.6-rtems-base-g77-gcc3.2.3newlibl1.11.0-2.1386.rpm
rtems-4.6-rtems-base-gcj-gcc3.2.3newlibl.11.0-2.1386.rpm
rtems-4.6-1386-rtems-gcc-gcc3.2.3newlibl.11.0-2.1386.rpm
rtems-4.6-1386-rtems-g77-gcc3.2.3newlibl.11.0-2.i386.rpm
rtems-4.6-1386-rtems-gcj-gcc3.2.3newlibl.11.0-2.1386.rpm

rtems-4.6-1386-rtems-objc-gcc3.2.3newlibl1.11.0-2.1386.rpm
NOTE: Some targets do not support building all languages.

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

4.1.4.2 Using configure and make

NOTE: The procedures described in the following sections must be completed before this
step:
e Section 4.1.1 [Obtain Source and Patches for BINUTILS GCC and NEWLIB],
page 13
e Section 4.1.2 [Unarchiving the Tools|, page 14
e Section 4.1.3 [Applying RTEMS Patches], page 15

This section describes the process of building binutils, gcc, and newlib manually using
configure and make directly.

Configuring and Building BINUTILS

The following example illustrates the invocation of configure and make to build and install
binutils-2.13.2.1 for the sparc-rtems target:

mkdir b-binutils

cd b-binutils

../binutils-2.13.2.1/configure --target=sparc-rtems \
—--prefix=/opt/rtems-4.6

make all

make info

make install

After binutils-2.13.2.1 is built and installed the build directory b-binutils may be removed.

Chapter 4: Building the GNU Cross Compiler Toolset 19

For more information on the invocation of configure, please refer to the documentation
for binutils-2.13.2.1 or invoke the binutils-2.13.2.1 configure command with the --help
option.

NOTE: The shell PATH variable needs to be updated to include the path the binutils has
been installed in. This the prefix used above with ‘bin’ post-fixed.

export PATH=$PATH:/opt/rtems-4.6/bin

Failure to have the binutils in the path will cause the GCC and NEWLIB build to fail with
an error message similar to:

sparc-rtems-ar: command not found

Configuring and Building GCC and NEWLIB

Before building gcc-3.2.3 and newlib-1.11.0, binutils-2.13.2.1 must be installed and the di-
rectory containing those executables must be in your PATH.

The C Library is built as a subordinate component of gce-3.2.3. Because of this, the newlib-
1.11.0 directory source must be available inside the gce-3.2.3 source tree. This is normally
accomplished using a symbolic link as shown in this example:

cd gcc-3.2.3
In -s ../newlib-1.11.0/newlib .

The following example illustrates the invocation of configure and make to build and install
gee-3.2.3 with only C and C++ support for the sparc-rtems target:

mkdir b-gcc

cd b-gcc

../gcc-3.2.3/configure --target=sparc-rtems \
--with-gnu-as --with-gnu-1d --with-newlib --verbose \
--enable-threads --enable-languages='"c,c++" \
—--prefix=/opt/rtems-4.6

make all

make info

make install

After gce-3.2.3 is built and installed the build directory b-gcc may be removed.

For more information on the invocation of configure, please refer to the documentation
for gce-3.2.3 or invoke the gce-3.2.3 configure command with the -—help option.

Building GCC with Ada Support

If you want a GCC toolset that includes support for Ada (e.g. GNAT), there are some
additional requirements on the host environment and additional build steps to perform. It
is critical that you use the same version of GCC/GNAT as the native compiler. GNAT must
be compiled with an Ada compiler and when building a GNAT cross-compiler, it should be
the same version of GNAT itself.

20 Getting Started with RTEMS

The build procedure is the same until the configure step. A GCC toolset with GNAT
enabled requires that ada be included in the set of enabled languages. The following example
illustrates the invocation of configure and make to build and install gce-3.2.3 with only C,
C++, and Ada support for the sparc-rtems target:

mkdir b-gcc

cd gcc-3.2.3/gcc/ada

touch treeprs.ads [es]info.h nmake.ad[bs]

cd ../../../b-gcc

../gcc-3.2.3/configure --target=sparc-rtems \
--with-gnu-as --with-gnu-1d --with-newlib --verbose \
--enable-threads --enable-languages="c,c++,ada" \
—--prefix=/opt/rtems-4.6

make all

make info

make -C gcc cross-gnattools

make -C gcc ada.all.cross

make -C gcc GNATLIBCFLAGS="USER_SELECTED_CPU_CFLAGS" gnatlib

make install

After gce-3.2.3 is built and installed the build directory b-gcc may be removed.

4.2 Building the GNU Debugger GDB

NOTE: This step is NOT required if prebuilt executables for the GNU Debugger GDB were
installed.

The GNU Debugger GDB supports many configurations but requires some means of com-
municating between the host computer and target board. This communication can be via
a serial port, Ethernet, BDM, or ROM emulator. The communication protocol can be the
GDB remote protocol or GDB can talk directly to a ROM monitor. This setup is tar-
get board specific. The following configurations have been successfully used with RTEMS
applications:

e BDM with ColdFire, 683xx, MPC860 CPUs

e Motorola Mxxxbug found on M68xxx VME boards

e Motorola PPCbug found on PowerPC VME, CompactPCI, and MTX boards
e ARM based Cogent EDP7312

e PC’s using various Intel and AMD CPUs including 1386, i486, Pentium and above,
and Athlon

e PowerPC Instruction Simulator in GDB (PSIM)
e MIPS Instruction Simulator in GDB (JMR3904)
e Sparc Instruction Simulator in GDB (SIS)

e Sparc Instruction Simulator (TSIM)

e DINK32 on various PowerPC boards

Chapter 4: Building the GNU Cross Compiler Toolset 21

GDB is currently RTEMS thread/task aware only if you are using the remote debugging
support via Ethernet. These are configured using gdb targets of the form CPU-RTEMS.
Note the capital RTEMS.

It is recommended that when toolset binaries are available for your particular host, that
they be used. Prebuilt binaries are much easier to install but in the case of gdb may or may
not include support for your particular target board.

4.2.1 Obtain Source and Patches for GDB

NOTE: This step is required for all methods of building GDB.

This section lists the components required to build GDB from source to target RTEMS.
These files should be placed in your archive directory. Included are the locations of each
component as well as any required RTEMS specific patches.

gdb-5.2
FTP Site: ftp.gnu.org
Directory: /pub/gnu/gdb
File: gdb-5.2.tar.gz
URL: ftp://ftp.gnu.org/pub/gnu/gdb/gdb-5.2.tar.gz

RTEMS Specific Tool Patches and Scripts

FTP Site: ftp.rtems.com

Directory: /pub/rtems/SOURCES

File: gdb-5.2-rtems-20030211.diff

URL: ftp://ftp.rtems.com/pub/rtems/SOURCES/gdb-5.2-rtems-20030211.diff]]

4.2.2 Unarchiving the GDB Distribution

Use the following commands to unarchive the GDB distribution:

cd tools
tar xzf ../archive/gdb-5.2.tar.gz

The directory gdb-5.2 is created under the tools directory.
4.2.3 Applying RTEMS Patch to GDB

Apply the patch using the following command sequence:

cd tools/gdb-5.2
cat archive/gdb-5.2-rtems-20030211.diff | \
patch -pi

ftp://ftp.gnu.org/pub/gnu/gdb/gdb-5.2.tar.gz
ftp://ftp.rtems.com/pub/rtems/SOURCES/gdb-5.2-rtems-20030211.diff

22 Getting Started with RTEMS

If the patch was compressed with the gzip program, it will have a suffix of .gz and you
should use zcat instead of cat as shown above. If the patch was compressed with the gzip
program, it will have a suffix of .bz2 and you should use bzcat instead of cat as shown
above.

Check to see if any of these patches have been rejected using the following sequence:

cd tools/gdb-5.2
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file.

4.2.4 Compiling and Installing the GNU Debugger GDB

There are three methods of building the GNU Debugger:
e RPM

e direct invocation of configure and make

Direct invocation of configure and make provides more control and easier recovery from
problems when building.

4.2.4.1 Using RPM to Build GDB

This section describes the process of building binutils, gce, and newlib using RPM. RPM
is a packaging format which can be used to distribute binary files as well as to capture
the procedure and source code used to produce those binary files. Before attempting
to build any RPM from source, it is necessary to ensure that all required source and
patches are in the SOURCES directory under the RPM root (probably /usr/src/redhat
or /usr/local/src/redhat) on your machine. This procedure starts by installing the
source RPMs as shown in the following example:

rpm -i rtems-4.6-i386-rtems-gdb-collection-5.2-1.nosrc.rpm

Because RTEMS tool RPMS are called "nosrc" to indicate that one or more source files
required to produce the RPMs are not present. The RTEMS source GDB RPM does not
include the large .tar.gz or .tgz files for GDB. This is shared by all RTEMS RPMs
regardless of target CPU and there was no reason to duplicate them. You will have to get
the required source archive files by hand and place them in the SOURCES directory before
attempting to build. If you forget to do this, RPM is smart — it will tell you what is missing.
To determine what is included or referenced by a particular RPM, use a command like the
following:

$ rpm -q -1 -p rtems-4.6-i386-rtems-gdb-collection-5.2-1.nosrc.rpm
gdb-5.2-rtems-20030211.diff

gdb-5.2.tar.gz

i386-rtems-gdb-5.2.spec

Chapter 4: Building the GNU Cross Compiler Toolset 23

Notice that there is a patch file (the .diff file), a source archive file (the .tar.gz), and
a file describing the build procedure and files produced (the .spec file). The .spec file is
placed in the SPECS directory under the RPM root directory.

Configuring and Building GDB using RPM

The following example illustrates the invocation of RPM to build a new, locally compiled,
binutils binary RPM that matches the installed source RPM. This example assumes that
all of the required source is installed.

cd <RPM_ROOT_DIRECTORY>/SPECS
rpm -bb i386-rtems-gdb-5.2.spec

If the build completes successfully, RPMS like the following will be generated in a build-host
architecture specific subdirectory of the RPMS directory under the RPM root directory.

rtems-4.6-rtems-base-gdb-5.2-1.1386.rpm
rtems-4.6-1386-rtems-gdb-5.2-1.1386.rpm

NOTE: It may be necessary to remove the build tree in the BUILD directory under the RPM
root directory.

4.2.4.2 Using the GDB configure Script Directly

This section describes how to configure the GNU debugger for RTEMS targets using
configure and make directly. The following example illustrates the invocation of configure
and make to build and install gdb-5.2 for the m68k-rtems target:

mkdir b-gdb

cd b-gdb

../gdb-5.2/configure --target=m68k-rtems \
--prefix=/opt/rtems-4.6

make all

make info

make install

For some configurations, it is necessary to specify extra options to configure to enable
and configure option components such as a processor simulator. The following is a list of
configurations for which there are extra options:

1960-rtems --enable-sim

powerpc-rtems --enable-sim —-enable-sim-powerpc --enable-sim-timebase
--enable-sim-hardware

sparc-rtems --enable-sim

After gdb-5.2 is built and installed the build directory b-gdb may be removed.

For more information on the invocation of configure, please refer to the documentation
for gdb-5.2 or invoke the gdb-5.2 configure command with the --help option.

24 Getting Started with RTEMS

4.3 Common Problems

4.3.1 Error Message Indicates Invalid Option to Assembler

If a message like this is printed then the new cross compiler is most likely using the native
assembler instead of the cross assembler or vice-versa (native compiler using new cross
assembler). This can occur for one of the following reasons:

e Binutils Patch Improperly Applied

e Binutils Not Built
e Current Directory is in Your PATH

If you are using binutils 2.9.1 or newer with certain older versions of gcc, they do not agree
on what the name of the newly generated cross assembler is. Older binutils called it as.new
which became as.new.exe under Windows. This is not a valid file name, so as.new is now
called as-new. By using the latest released tool versions and RTEMS patches, this problem
will be avoided.

If binutils did not successfully build the cross assembler, then the new cross gee (xgec) used
to build the libraries can not find it. Make sure the build of the binutils succeeded.

If you include the current directory in your PATH, then there is a chance that the native
compiler will accidentally use the new cross assembler instead of the native one. This usually
indicates that "." is before the standard system directories in your PATH. As a general rule,
including "." in your PATH is a security risk and should be avoided. Remove "." from your
PATH.

NOTE: In some environments, it may be difficult to remove "." completely from your PATH.
In this case, make sure that "." is after the system directories containing "as" and "ld".

4.3.2 Error Messages Indicating Configuration Problems

If you see error messages like the following,

e cannot configure libiberty
e coff-emulation not found
e etc.

Then it is likely that one or more of your gnu tools is already configured locally in its source
tree. You can check for this by searching for the config.status file in the various tool
source trees. The following command does this for the binutils source:

find binutils-2.13.2.1 -name config.status -print

The solution for this is to execute the command make distclean in each of the GNU tools
root source directory. This should remove all generated files including Makefiles.

This situation usually occurs when you have previously built the tool source for some
non-RTEMS target. The generated configuration specific files are still in the source tree

Chapter 4: Building the GNU Cross Compiler Toolset 25

and the include path specified during the RTEMS build accidentally picks up the previous
configuration. The include path used is something like this:

-I../../binutils-2.13.2.1/gcc -I/binutils-2.13.2.1/gcc/include -I.
Note that the tool source directory is searched before the build directory.

This situation can be avoided entirely by never using the source tree as the build directory
— even for

26

Getting Started with RTEMS

Chapter 5: Building RTEMS 27

5 Building RTEMS

5.1 Obtain the RTEMS Source Code

This section provides pointers to the RTEMS source code and Hello World example program.
These files should be placed in your archive directory.

RTEMS 4.6.0
FTP Site: ftp.rtems.com
Directory: /pub/rtems/4.6.0
File: rtems-4.6.0.tar.bz2

RTEMS Examples including Hello World

FTP Site: ftp.rtems.com

Directory: /pub/rtems/4.6.0

File: examples-4.6.0.tar.bz2

URL: ftp://ftp.rtems.com/pub/rtems/4.6.0/examples-4.6.0.tar.bz2]]

5.2 Unarchive the RTEMS Source

Use the following command sequence to unpack the RTEMS source into the tools directory:

cd tools
tar xzf ../archive/rtems-4.6.0.tar.bz2

This creates the directory rtems-4.6.0.

5.3 Add <INSTALL_POINT?>/bin to Executable PATH

In order to compile RTEMS, you must have the cross compilation toolset in your search
path. The following command appends the directory where the tools were installed prior
to this point:

export PATH=$PATH:<INSTALL_POINT>/bin

NOTE: The above command is in Bourne shell (sh) syntax and should work with the Korn
(ksh) and GNU Bourne Again Shell (bash). It will not work with the C Shell (csh) or
derivatives of the C Shell.

ftp://ftp.rtems.com/pub/rtems/4.6.0/examples-4.6.0.tar.bz2

28 Getting Started with RTEMS

5.4 Verifying the Operation of the Cross Toolset

In order to insure that the cross-compiler is invoking the correct subprograms (like as
and 1d), one can test assemble a small program. When in verbose mode, gcc prints out
information showing where it found the subprograms it invokes. In a temporary working
directory, place the following function in a file named f.c:

int £(int x)
{

return x + 1;

}
Then assemble the file using a command similar to the following:
m68k-rtems-gcc -v -S f.c

Where m68k-rtems-gcc should be changed to match the installed name of your cross com-
piler. The result of this command will be a sequence of output showing where the cross-
compiler searched for and found its subcomponents. Verify that these paths correspond to
your <INSTALL _POINT>.

Look at the created file £.s and verify that it is in fact for your target processor.
Then try to compile the file £ . c directly to object code using a command like the following:
m68k-rtems-gcc -v -c f.c

If this produces messages that indicate the assembly code is not val