BSP and Device Driver Development (Guide

Edition 4.6.0, for 4.6.0

30 August 2003

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TrXinfo 2002-11-25.11

COPYRIGHT (© 1988 - 2003.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

Table of Contents

1 Introduction...................... 1
2 Target Dependent Files 3
2.1 CPU Dependent......... ..o, 3

2.2 Board Dependent 3

2.3 Peripheral Dependent.............. 3

2.4 Questions to ASK 4

2.5 CPU Dependent Executive Files.......................... 4

2.6 CPU Dependent Support Files 5

2.7 Board Support Package Structure 5

3 Makefiles..............ciiiiiiiiiii... 7
3.1 Makefiles Used During The BSP Building Process 7

3.1.1 Directory Makefiles 8

3.1.2 Source Directory Makefiles 8

3.1.3 Wrapup Makefile 8

3.2 Makefiles Used Both During The BSP Design and its Use .. 9

3.2.1 Creating a New BSP Make Customization File... 10

4 Linker Script, 11
4.1 What is a "linkemds" file? 11
4.2 Program Sectionscooiiiiniiiiiniiii 11
4.3 Image of an Executable................ 12
4.4 Example Linker Command Script........................ 12
4.5 Initialized Data 18
5 Miscellaneous Support Files............... 21
5.1 GCC Compiler Specifications File 21
52 README Files ... 22
0.3 BIMES . .ot 22
5.4 Tools Subdirectory ... 22
5.5 bsphlnclude File........ 22
5.6 Calling Overhead File 23
5.7 sbrk() Implementation...................., 23
5.8 bsp_cleanup() - Cleanup the Hardware 24
5.9 set_vector() - Install an Interrupt Vector 24
6 Ada95 Interrupt Support.................. 25
6.1 Introduction 25
6.2 Mapping Interrupts to POSIX Signals 25
6.3 Example Ada95 Interrupt Program 25
6.4 Version Requirements............. 26

ii BSP and Device Driver Development Guide

7 Initialization Code........................ 27
7.1 Introduction.............. ... 27
7.2 Required Global Variables 27
7.3 Board Initialization........... 27

7.3.1 Start Code - Assembly Language Initialization ... 28
7.3.2 boot_card() - Boot the Card 28
7.3.3 bsp_start() - BSP Specific Initialization.......... 29
734 main()-CMain. ... 29
7.3.5 RTEMS Pretasking Callback 30
7.3.6 RTEMS Predriver Callback..................... 30
7.3.7 Device Driver Initialization..................... 30
7.3.8 RTEMS Postdriver Callback.................... 31
7.4 The Interrupt Vector Table 31
7.4.1 Interrupt Vector Table on the gen68340 BSP. 32
7.5 Chip Select Initialization................................ 32
7.6 Integrated Processor Registers Initialization.............. 32
7.7 Data Section Recopycovvinii 32
7.8 RTEMS-Specific Initialization 33
7.9 The RTEMS configuration table......................... 33

8 ConsoleDrivercoviiin... 35
8.1 Introduction............ i, 35
8.2 Termiosot 35
8.3 Driver Functioning Modes 35
8.4 Serial Driver Functioning Overview 36

8.4.1 Termios and Polled I/O........................ 36
8.4.1.1 pollWrite........ 37
8.4.1.2 pollRead 37
8.4.2 Termios and Interrupt Driven I/O 37
8.4.2.1 InterruptHandler...................... 37
8.4.2.2 ImterruptWrite........................ 38
8.4.3 Initialization 38
8.4.4 Opening a serial device......................... 39
84.4.1 PolledI/O............ i 39
8.4.4.2 Interrupt Driven I/O.................. 39
8.4.5 Closing a Serial Device......................... 39
8.4.6 Reading Characters From a Serial Device........ 40
8.4.7 Writing Characters to a Serial Device 40

8.4.8 Changing Serial Line Parameters................ 40

10

11

12

13

Clock Driverc.cuiiiiin e nenenn. 41
9.1 Introduction............ ..., 41
9.2 Clock Driver Global Variables........................... 41

9.2.1 Major and Minor Number...................... 41

9.2.2 Ticks Counter...........ouuiuiiiiinn... 41

9.3 Initialization......... 41

9.4 System shutdown 42

9.5 Clock Interrupt Subroutine 42

9.6 IO Control....... ..o 42

Timer Driver........c.oueiiieenenennn 45
10.1 Benchmark Timer......... 45

10.1.1 Timer_initialize........... 45

10.1.2 Read_timer........... ..., 45

10.1.3 An Empty Function 46

10.1.4 Set_find_average overhead 46

10.2 gen68340 UART FIFO Full Mode 46

Real-Time Clock Driver.................. 47
11.1 Introductiont 47

11.2 Initialization.............o . 47

11.3 setRealTimeToRTEMS 48

11.4 setRealTimeFromRTEMS.......... 49

11.5 getRealTime....... ... 49

11.6 setRealTime 49

11.7 checkRealTime. 49

ATA Driver ...ovivii ettt teeeeeennnns 51
12,1 Terms 51

12.2 Introduction 51

12.3 Initialization......... 51

12.4 ATA Driver Architecture 52

12.4.1 ATA Driver Main Internal Data Structures 52

12.4.2 Brief ATA Driver Core Overview. 54

IDE Controller Driver 55
13.1 Introduction............ ..., 55

13.2 Initialization......... ... 55

13.3 Read IDE Controller Register 56

13.4 Write IDE Controller Register.......................... 56

13.5 Read Data Block Through IDE Controller Data Register

iii

iv BSP and Device Driver Development Guide

14 Non-Volatile Memory Driver 59
14.1 Major and Minor Numbers............................. 59
14.2 Non-Volatile Memory Driver Configuration.............. 59
14.3 Initialize the Non-Volatile Memory Driver............... 61
14.4 Disable Read and Write Handlers....................... 61
14.5 Open a Particular Memory Partition.................... 61
14.6 Close a Particular Memory Partition.................... 61
14.7 Read from a Particular Memory Partition............... 61
14.8 Write to a Particular Memory Partition................. 62
14.9 FErase the Non-Volatile Memory Area 62

15 Networking Driver....................... 63
15.1 Introduction oo, 63
15.2 Learn about the network device 63
15.3 Understand the network scheduling conventions 64
15.4 Network Driver Makefile............................... 64
15.5 Write the Driver Attach Function 65
15.6 Write the Driver Start Function. 66
15.7 Write the Driver Initialization Function. 66
15.8 Write the Driver Transmit Task 67
15.9 Write the Driver Receive Task.......................... 67
15.10 Write the Driver Interrupt Handler.................... 67
15.11 Write the Driver IOCTL Function..................... 67
15.12 Write the Driver Statistic-Printing Function............ 68

16 Shared Memory Support Driver.......... 69
16.1 Shared Memory Configuration Table.................... 69
16.2 Primitives 70

16.2.1 Convert Address. ..., .. 70

16.2.2 Get Configuration 70

16.2.3 Locking Primitives............................ 71
16.2.3.1 Initializing a Shared Lock............. 71

16.2.3.2 Acquiring a Shared Lock 72

16.2.3.3 Releasing a Shared Lock.............. 72

16.3 Installing the MPCIISR.........., 73

17 Analog Driver................. ..., 75
17.1 Major and Minor Numbers............................. 75
17.2 Analog Driver Configuration 75
17.3 Initialize an Analog Board 76
17.4 Open a Particular Analog................ 76
17.5 Close a Particular Analog.............................. 76
17.6 Read from a Particular Analog......................... 76
17.7 Write to a Particular Analog........................ ... 7
17.8 Reset DACS . ..o 77
17.9 Reinitialize DACS 7

17.10 Get Last Written Values........... 77

18 Discrete Driver.........c.cvivieieieennn.. 79

18.1 Major and Minor Numbers............................. 79
18.2 Discrete I/O Driver Configuration...................... 79
18.3 Initialize a Discrete I/O Board 80
18.4 Open a Particular Discrete Bitfield 80
18.5 Close a Particular Discrete Bitfield 80
18.6 Read from a Particular Discrete Bitfield 80
18.7 Write to a Particular Discrete Bitfield 81
18.8 Disable Discrete Outputs 81
18.9 Enable Discrete Outputs...................i... 81
18.10 Reinitialize Qutputs. ... 81
18.11 Get Last Written Values.............................. 81
Command and Variable Index 83

Concept Indexiiiiiiiinn... 85

vi

BSP and Device Driver Development Guide

Chapter 1: Introduction 1

1 Introduction

Before reading this documentation, it is strongly advised to read the RTEMS Development
Environment Guide to get acquainted with the RT'TEMS directory structure. This document
describes how to do a RTEMS Board Support Package, i.e. how to port RTEMS on a new
target board. Discussions are provided for the following topics:

e RTEMS Board Support Package Organization
e Makefiles and the Linker Command Script

e Board Initialization Sequence

e Device Drivers Including:

Console Driver

Clock Driver

Timer Driver

Real-Time Clock Driver
Non-Volatile Memory Driver
Networking Driver

Shared Memory Support Driver
Analog Driver

Discrete Driver

The original version of this manual was written by Geoffroy Montel <g_montel@yahoo.com>.
When he started development of the gen68340 BSP, this manual did not exist. He wrote the
initial version of this manual as the result of his experiences. At that time, this document
was viewed internally as the most important "missing manual" in the RTEMS documenta-

tion set.

BSP and Device Driver Development Guide

Chapter 2: Target Dependent Files 3

2 Target Dependent Files

RTEMS has a multi-layered approach to portability. This is done to maximize the amount
of software that can be reused. Much of the RTEMS source code can be reused on all
RTEMS platforms. Other parts of the executive are specific to hardware in some sense.
RTEMS classifies target dependent code based upon its dependencies into one of the fol-
lowing categories.

e CPU dependent
e Board dependent
e Peripheral dependent

2.1 CPU Dependent

This class of code includes the foundation routines for the executive proper such as the
context switch and the interrupt subroutine implementations. Sources for the supported
processor families can be found in cpukit/score/cpu. A good starting point for a new
family of processors is the no_cpu directory, which holds both prototypes and descriptions
of each needed CPU dependent function.

CPU dependent code is further subcategorized if the implementation is dependent on a
particular CPU model. For example, the MC68000 and MC68020 processors are both
members of the m68k CPU family but there are significant differences between these CPU
models which RTEMS must take into account.

2.2 Board Dependent

This class of code provides the most specific glue between RTEMS and a particular board.
This code is represented by the Board Support Packages and associated Device Drivers.
Sources for the BSPs included in the RTEMS distribution are located in the directory
c/src/1ib/1libbsp. The BSP source directory is further subdivided based on the CPU
family and BSP.

Some BSPs may support multiple board models within a single board family. This is
necessary when the board supports multiple variants on a single base board. For example,
the Motorola MVME162 board family has a fairly large number of variations based upon
the particular CPU model and the peripherals actually placed on the board.

2.3 Peripheral Dependent

This class of code provides a reusable library of peripheral device drivers which can be
tailored easily to a particular board. The libchip library is a collection of reusable software
objects that correspond to standard controllers. Just as the hardware engineer chooses a
standard controller when designing a board, the goal of this library is to let the software
engineer do the same thing.

4 BSP and Device Driver Development Guide

The source code for the reusable peripheral driver library may be found in the directory
c/src/lib/libchip. The source code is further divided based upon the class of hardware.
Example classes include serial communications controllers, real-time clocks, non-volatile
memory, and network controllers.

2.4 Questions to Ask

When evaluating what is required to support RTEMS applications on a particular target
board, the following questions should be asked:

e Does a BSP for this board exist?
e Does a BSP for a similar board exists?
e Is the board’s CPU supported?

If there is already a BSP for the board, then things may already be ready to start developing
application software. All that remains is to verify that the existing BSP provides device
drivers for all the peripherals on the board that the application will be using. For example,
the application in question may require that the board’s Ethernet controller be used and
the existing BSP may not support this.

If the BSP does not exist and the board’s CPU model is supported, then examine the
reusable chip library and existing BSPs for a close match. Other BSPs and libchip provide
starting points for the development of a new BSP. It is often possible to copy existing
components in the reusable chip library or device drivers from BSPs from different CPU
families as the starting point for a new device driver. This will help reduce the development
effort required.

If the board’s CPU family is supported but the particular CPU model on that board is not,
then the RTEMS port to that CPU family will have to be augmented. After this is done,
development of the new BSP can proceed.

Otherwise both CPU dependent code and the BSP will have to be written.

This type of development often requires specialized skills. If you need help in making these
modifications to RTEMS, please consider using one of the RTEMS Service Providers. The
current list of these is at http://www.rtems.com/support.html.

2.5 CPU Dependent Executive Files

The CPU dependent files in the RTEMS executive source code are found in the following
directory:

cpukit/score/cpu/CPU
where CPU is replaced with the CPU family name.

Within each CPU dependent directory inside the executive proper is a file named CPU.h
which contains information about each of the supported CPU models within that family.

http://www.rtems.com/support.html

Chapter 2: Target Dependent Files 5

2.6 CPU Dependent Support Files

The CPU dependent support files contain routines which aid in the development of appli-
cations using that CPU family. For example, the support routines may contain standard
trap handlers for alignment or floating point exceptions or device drivers for peripheral
controllers found on the CPU itself. This class of code may be found in the following
directory:

c/src/1ib/1libcpu/CPU
CPU model dependent support code is found in the following directory:
c/src/1ib/libcpu/CPU/CPU_MODEL

2.7 Board Support Package Structure

The BSPs are all under the c/src/lib/libbsp directory. Below this directory, there is a subdi-
rectory for each CPU family. Each BSP is found under the subdirectory for the appropriate
processor family (m68k, powerpc, etc.). In addition, there is source code available which
may be shared across all BSPs regardless of the CPU family or just across BSPs within a
single CPU family. This results in a BSP using the following directories:

c/src/1ib/1ibbsp/shared
c/src/1ib/1ibbsp/CPU/shared
c¢/src/1ib/1libbsp/CPU/BSP

Under each BSP specific directory, there is a collection of subdirectories. For commonly
provided functionality, the BSPs follow a convention on subdirectory naming. The following
list describes the commonly found subdirectories under each BSP.

e console: is technically the serial driver for the BSP rather than just a console driver,
it deals with the board UARTSs (i.e. serial devices).

e clock: support for the clock tick — a regular time basis to the kernel.

e timer: support of timer devices.

e rtc: support for the hardware real-time clock.

e nvmem: support for non-volatile memory such as EEPROM or Flash.

e network: the Ethernet driver.

e shmsupp: support of shared memory driver MPCI layer in a multiprocessor system,
e include: include files for this BSP.

e wrapup: bundles all the components necessary to construct the BSP library.

The build order of the BSP is determined by the Makefile structure. This structure is
discussed in more detail in the Chapter 3 [Makefiles|, page 7 chapter.

NOTE: This manual refers to the gen68340 BSP for numerous concrete examples. You
should have a copy of the gen68340 BSP available while reading this piece of documentation.
This BSP is located in the following directory:

6 BSP and Device Driver Development Guide

c/src/1ib/1libbsp/m68k/gen68340
Later in this document, the $BSP340_ROOT label will be used to refer to this directory.

Chapter 3: Makefiles 7

3 Makefiles

This chapter discusses the Makefiles associated with a BSP. It does not describe the process
of configuring, building, and installing RTEMS. This chapter will not provide detailed
information about this process. Nonetheless, it is important to remember that the general
process consists of three parts:

e configure
e build

e install

During the configure phase, a number of files are generated. These generated files are
tailored for the specific host/target combination by the configure script. This set of files
includes the Makefiles used to actually compile and install RTEMS.

During the build phase, the source files are compiled into object files and libraries are built.

During the install phase, the libraries, header files, and other support files are copied to
the BSP specific installation point. After installation is successfully completed, the files
generated by the configure and build phases may be removed.

3.1 Makefiles Used During The BSP Building Process

RTEMS uses the GNU automake and GNU autoconf automatic configuration package.
Consequently, there are a number of automatically generated files in each directory in the
RTEMS source tree. The bootstrap script found in the top level directory of the RTEMS
source tree is executed to produce the automatically generated files. That script must be
run from a directory with a configure.ac file in it.

There is a file named Makefile.am in each directory of a BSP. This file is used by automake
to produce the file named Makefile.in which is also found in each directory of a BSP. The
configure process specializes the Makefile.in files at the time that RTEMS is configured
for a specific development host and target. Makefiles are automatically generated from the
Makefile.in files. It is necessary for the BSP developer to provide the Makefile.am files
and generate the Makefile.in files. Most of the time, it is possible to copy the Makefile.am
from another similar directory and edit it.

The Makefile files generated are processed when configuring and building RTEMS for a
given BSP.

The BSP developer is responsible for generating Makefile.an files which properly build all
the files associated with their BSP. There are generally three types of Makefiles in a BSP
source tree:

e Directory Makefiles

e Source Directory Makefiles

o Wrapup Makefile

8 BSP and Device Driver Development Guide

3.1.1 Directory Makefiles

The Directory class of Makefiles directs the build process through a set of subdirectories
in a particular order. This order is usually chosen to insure that build dependencies are
properly processed. Most BSPs only have one Directory class Makefile. The Makefile.am in
the BSP root directory (c/src/1ib/1libbsp/CPU/BSP) specifies following Makefile fragment
shows how a BSP would specify the directories to be built and their order:

SUB_DIRS=include start340 startup clock console timer \
network wrapup

3.1.2 Source Directory Makefiles

There is a Makefile.am in most of the directories in a BSP. This class of Makefile lists the
files to be built as part of the driver. When adding new files to an existing directory, Do
not forget to add the new files to the list of files to be built in the Makefile.am and run
bootstrap.

NOTE: The Makefile.am files are ONLY processed by bootstrap and the resulting
Makefile. in files are only processed during the configure process of a RTEMS build. There-
fore, when developing a BSP and adding a new file to a Makefile.am, the already generated
Makefile will not automatically include the new references unless you configured RTEMS
with the -—enable-maintainer-mode option. Otherwise, the new file not being be taken
into account!

If adding a new directory, be sure to add it to the list of automatically generated files in
the BSP’s configure.ac script.

3.1.3 Wrapup Makefile

This class of Makefiles produces a library. The BSP wrapup Makefile is responsible for
producing the library 1ibbsp.a which is later merged into the librtemsall.a library. This
Makefile specifies which BSP components are to be placed into the library as well as which
components from the CPU dependent support code library. For example, this component
may choose to use a default exception handler from the CPU dependent support code or
provide its own.

This Makefile makes use of the foreach construct in GNU make to pick up the required
components:

BSP_PIECES=startup clock console timer
CPU_PIECES=
GENERIC_PIECES=

bummer; have to use $foreach since 7, pattern subst

rules only replace 1x

0BJS=$(foreach piece, $(BSP_PIECES), ../$(piece)/$(ARCH)/$(piece).o0) \
$(foreach piece, $(CPU_PIECES), \

Chapter 3: Makefiles 9

../../../../libcpu/$ (RTEMS_CPU) /$ (piece) /$ (ARCH) /$(piece) .0) \
$(wildcard \
../../../../libcpu/$ (RTEMS_CPU) /$ (RTEMS_CPU_MODEL) /fpsp/$ (ARCH) /fpsp.rel) \}j
$(foreach piece, \
$ (GENERIC_PIECES), ../../../$(piece)/$(ARCH)/$(piece).0)

The variable 0BJS is the list of "pieces" expanded to include path information to the appro-
priate object files. The wildcard function is used on pieces of 1ibbsp.a which are optional
and may not be present based upon the configuration options.

3.2 Makefiles Used Both During The BSP Design and its
Use

When building a BSP or an application using that BSP, it is necessary to tailor the com-
pilation arguments to account for compiler flags, use custom linker scripts, include the
RTEMS libraries, etc.. The BSP must be built using this information. Later, once the
BSP is installed with the toolset, this same information must be used when building the
application. So a BSP must include a build configuration file. The configuration file is
make/custom/BSP.cfg.

The configuration file is taken into account when building one’s application using the
RTEMS template Makefiles (make/templates). It is strongly advised to use these tem-
plate Makefiles since they encapsulate a number of build rules along with the compile and
link time options necessary to execute on the target board.

There is a template Makefile provided for each of class of RTEMS Makefiles. The purpose
of each class of RTEMS Makefile is to:

e call recursively the makefiles in the directories beneath the current one,

e build a library, or

e build an executable.

The following is a shortened and heavily commented version of the make customization file
for the gen68340 BSP. The original source for this file can be found in the make/custom
directory.

The RTEMS CPU Family and Model
RTEMS_CPU=m68k
RTEMS_CPU_MODEL=mcpu32

include $(RTEMS_ROOT)/make/custom/default.cfg
The name of the BSP directory used for the actual source code.
This allows for build variants of the same BSP source.

RTEMS_BSP_FAMILY=gen68340

CPU flag to pass to GCC

10

BSP and Device Driver Development Guide

CPU_CFLAGS = -mcpu32

optimization flag to pass to GCC
CFLAGS_OPTIMIZE_V=-04 -fomit-frame-pointer

The name of the start file to be linked with. This file is the first
part of the BSP which executes.
START_BASE=start340

This make-exe macro is used in template makefiles to build the
final executable. Any other commands to follow, just as using
objcopy to build a PROM image or converting the executable to binary.

define make-exe

$(CC) $(CFLAGS) $(CFLAGS_LD) -o $(basename $0).exe $(LINK_0BJS)
$(NM) -g -n $(basename $0).exe > $(basename $@).num

$(SIZE) $(basename $0).exe

endif

3.2.1 Creating a New BSP Make Customization File

The basic steps for creating a make/custon file for a new BSP are as follows:

e copy any .cfg file to BSP.cfg

e modify RTEMS_CPU, RTEMS_CPU_MODEL, RTEMS_BSP_FAMILY,
RTEMS_BSP, CPU_CFLAGS, START_BASE, and make-exe rules.

It is generally easier to copy a make/custom file from a BSP similar to the one being
developed.

Chapter 4: Linker Script 11

4 Linker Script

4.1 What is a "linkcmds" file?

The 1linkcmds file is a script which is passed to the linker at linking time. This file describes
the memory configuration of the board as needed to link the program. Specifically it specifies
where the code and data for the application will reside in memory.

4.2 Program Sections

An embedded systems programmer must be much more aware of the placement of their ex-
ecutable image in memory than the average applications programmer. A program destined
to be embedded as well as the target system have some specific properties that must be
taken into account. Embedded machines often mean average performances and small mem-
ory usage. It is the memory usage that concerns us when examining the linker command

file.
Two types of memories have to be distinguished:

e RAM - volatile offering read and write access

e ROM - non-volatile but read only

Even though RAM and ROM can be found in every personal computer, one generally
doesn’t care about them. In a personal computer, a program is nearly always stored on
disk and executed in RAM. Things are a bit different for embedded targets: the target will
execute the program each time it is rebooted or switched on. The application program is
stored in non-volatile memory such as ROM, PROM, EEPROM, or Flash. On the other
hand, data processing occurs in RAM.

This leads us to the structure of an embedded program. In rough terms, an embedded
program is made of sections. It is the responsibility of the application programmer to place
these sections in the appropriate place in target memory. To make this clearer, if using
the COFF object file format on the Motorola m68k family of microprocessors, the following
sections will be present:

e code (.text) section: is the program’s code and it should not be modified. This
section may be placed in ROM.

e non-initialized data (.bss) section: holds uninitialized variables of the program. It
can stay in RAM.

e initialized data (.data) section: holds the initialized program data which may be
modified during the program’s life. This means they have to be in RAM. On the
other hand, these variables must be set to predefined values, and those predefined
values have to be stored in ROM.

NOTE: Many programs and support libraries unknowingly assume that the .bss section
and, possibly, the application heap are initialized to zero at program start. This is not

12 BSP and Device Driver Development Guide

required by the ISO/ANSI C Standard but is such a common requirement that most BSPs
do this.

That brings us up to the notion of the image of an executable: it consists of the set of the
sections that together constitute the application.

4.3 Image of an Executable

As a program executable has many sections (note that the user can define their own, and
that compilers define theirs without any notice), one has to specify the placement of each
section as well as the type of memory (RAM or ROM) the sections will be placed into. For
instance, a program compiled for a Personal Computer will see all the sections to go to
RAM, while a program destined to be embedded will see some of his sections going into the
ROM.

The connection between a section and where that section is loaded into memory is made at
link time. One has to let the linker know where the different sections are to be placed once
they are in memory.

The following example shows a simple layout of program sections. With some object for-
mats, there are many more sections but the basic layout is conceptually similar.

e +

| .text | RAM or ROM
o +

| data | RAM
e +

| bss | RAM
o +

4.4 Example Linker Command Script

The GNU linker has a command language to specify the image format. This command
language can be quite complicated but most of what is required can be learned by care-
ful examination of a well-documented example. The following is a heavily commented
version of the linker script used with the the gen68340 BSP This file can be found at
$BSP340_ROOT /startup/linkcmds.

/*
* Specify that the output is to be coff-m68k regardless of what the
* mnative object format is.

*/
OUTPUT_FORMAT (cof f-m68k)

/*
* Set the amount of RAM on the target board.

Chapter 4: Linker Script 13

* NOTE: The default may be overridden by passing an argument to 1d.
*/

RamSize = DEFINED(RamSize) 7 RamSize : 4M;

~
*

Set the amount of RAM to be used for the application heap. Objects
allocated using malloc() come from this area. Having a tight heap
size is somewhat difficult and multiple attempts to squeeze it may
be needed reducing memory usage is important. If all objects are
allocated from the heap at system initialization time, this eases
the sizing of the application heap.

NOTE 1: The default may be overridden by passing an argument to 1d.
NOTE 2: The TCP/IP stack requires additional memory in the Heap.

NOTE 3: The GNAT/RTEMS run-time requires additional memory in
the Heap.

¥ X X X X K K X X X X X X

*
~

HeapSize = DEFINED(HeapSize) 7 HeapSize : 0x10000;

/*

* Set the size of the starting stack used during BSP initialization
* until first task switch. After that point, task stacks allocated
* by RTEMS are used.

*

* NOTE: The default may be overridden by passing an argument to 1d.
*/

StackSize = DEFINED(StackSize) ? StackSize : 0x1000;

/*
* Starting addresses and length of RAM and ROM.
*
* The addresses must be valid addresses on the board. The
* Chip Selects should be initialized such that the code addresses
* are valid.
*/
MEMORY {
ram : ORIGIN = 0x10000000, LENGTH = 4M
rom : ORIGIN = 0x01000000, LENGTH = 4M

14 BSP and Device Driver Development Guide

* This is for the network driver. See the Networking documentation
* for more details.

*/

ETHERNET_ADDRESS =
DEFINED (ETHERNET_ADDRESS) 7 ETHERNET_ADDRESS : OxDEAD12;

~
*

The following defines the order in which the sections should go.
It also defines a number of variables which can be used by the
application program.

NOTE: Each variable appears with 1 or 2 leading underscores to
ensure that the variable is accessible from C code with a
single underscore. Some object formats automatically add
a leading underscore to all C global symbols.

¥ X X X X X X ¥

*
~

SECTIONS {

/*
* Make the RomBase variable available to the application.

*/

_RamSize = RamSize;
__RamSize = RamSize;

/*
* Boot PROM - Set the RomBase variable to the start of the ROM.
x/

rom : {
_RomBase = .;
__RomBase = .;
} >rom

/*
* Dynamic RAM - set the RamBase variable to the start of the RAM.
*/

ram : {
_RamBase = .;
__RamBase = .;
} >ram

/%

Chapter 4: Linker Script 15

* Text (code) goes into ROM

*/

.text ¢ A{
/*
* Create a symbol for each object (.o0).
*/

CREATE_OBJECT_SYMBOLS

/*

* Put all the object files code sections here.

*/

*(.text)

. = ALIGN (16); /* go to a 16-byte boundary */
/*

* C++ constructors and destructors

* NOTE: See the CROSSGCC mailing-list FAQ for
* more details about the "[...... .
*/
__CTOR_LIST__ = .;
[o.....]
__DTOR_END__ = .;
/*
* Declares where the .text section ends.
*/
etext = .;
_etext = .;
} >rom
/%
* Exception Handler Frame section
*/
.eh_fram : {
. = ALIGN (16);
*(.eh_fram)
} >ram

/%

16 BSP and Device Driver Development Guide

* GCC Exception section

*/

.gcc_exc : |
. = ALIGN (16);
*x(.gcc_exc)

} >ram

/*
* Special variable to let application get to the dual-ported
* memory.

*/

dpram : {

m340 = .;

_m340 = .;

. += (8 * 1024);
} >ram

/*
* Initialized Data section goes in RAM

*/

.data : {
copy_start = .;
*(.data)

. = ALIGN (16);
_edata = .;
copy_end = .;

} >ram

/*
* Uninitialized Data section goes in ROM

*/

.bss : {
/*
* M68K specific: Reserve some room for the Vector Table
* (256 vectors of 4 bytes).
*/

M68Kvec = .;
_M68Kvec = .;
. += (256 * 4);

/*

Chapter 4: Linker Script

}

* Start of memory to zero out at initialization time.

*/
clear_start = .;

/*
* Put all the object files uninitialized data sections
* here.

*/
*(.bss)
* (COMMON)

. = ALIGN (16);
_end = .;

/*
* Start of the Application Heap
*/

_HeapStart = .;
__HeapStart = .;
. += HeapSize;

/*

* The Starting Stack goes after the Application Heap.
* M68K stack grows down so start at high address.

*/

. += StackSize;
. = ALIGN (16);
stack_init = .;

clear_end = .;

/*

* The RTEMS Executive Workspace goes here. RTEMS
allocates tasks, stacks, semaphores, etc. from this
* memory.

*/

*

_WorkspaceBase = .;
__WorkspaceBase = .;

} >ram

17

18 BSP and Device Driver Development Guide

4.5 Initialized Data

Now there’s a problem with the initialized data: the .data section has to be in RAM as this
data may be modified during the program execution. But how will the values be initialized
at boot time?

One approach is to place the entire program image in RAM and reload the image in its
entirety each time the program is run. This is fine for use in a debug environment where a
high-speed connection is available between the development host computer and the target.
But even in this environment, it is cumbersome.

The solution is to place a copy of the initialized data in a separate area of memory and
copy it into the proper location each time the program is started. It is common practice to
place a copy of the initialized .data section at the end of the code (.text) section in ROM
when building a PROM image. The GNU tool objcopy can be used for this purpose.

The following figure illustrates the steps a linked program goes through to become a down-
loadable image.

Fomm + o +
| .data RAM | | .data RAM |
e + o +
| .bss RAM | | .bss RAM |
o + e it + o +
| .text ROM | | .text ROM | | text
o + o + o +
| copy of .data ROM | | copy of .data |
o + o +
Step 1 Step 2 Step 3

In Step 1, the program is linked together using the BSP linker script.

In Step 2, a copy is made of the .data section and placed after the .text section so it can
be placed in PROM. This step is done after the linking time. There is an example of doing
this in the file SRTEMS_ROOT /make/custom/gen68340.cfg:

make a PROM image using objcopy
m68k-rtems-objcopy \
--adjust-section-vma .data= \

‘m68k-rtems-objdump --section-headers \
$ (basename $@).exe \

| awk *[...1°\

$ (basename $Q) .exe

NOTE: The address of the "copy of .data section" is created by extracting the last address
in the .text section with an awk script. The details of how this is done are not relevant.

Chapter 4: Linker Script 19

Step 3 shows the final executable image as it logically appears in the target’s non-volatile
program memory. The board initialization code will copy the ""copy of .data section"
(which are stored in ROM) to their reserved location in RAM.

20

BSP and Device Driver Development Guide

Chapter 5: Miscellaneous Support Files 21

5 Miscellaneous Support Files

5.1 GCC Compiler Specifications File

The file bsp_specs defines the start files and libraries that are always used with this BSP.
The format of this file is admittedly cryptic and this document will make no attempt to
explain it completely. Below is the bsp_specs file from the PowerPC psim BSP:

%rename cpp old_cpp

%rename lib old_lib

%rename endfile old_endfile
%rename startfile old_startfile
%rename link old_link

*Cpp:
%(old_cpp) %{qrtems: -D__embedded__} -Asystem(embedded)

*1ib:

%{'grtems: %(old_1ib)} Y%{qrtems: --start-group \
/»{'qrtems_debug: -lrtemsall} %{qrtems_debug: -lrtemsall_g} \
-lc -lgcc --end-group ecrtn)0%s \

%{'qnolinkcmds: -T linkcmds%s}}

*startfile:

%{'grtems: %(old_startfile)} %{qrtems: ecrtil0%s \
%{!'qrtems_debug: startsim.o%s} \

%{qrtems_debug: startsim_g.o%s}}

*1ink:
%{'grtems: %(old_link)} Y%{qrtems: -Qy -dp -Bstatic \
-T linkcmds%s -e _start -u __vectors}

The first section of this file renames the built-in definition of some specification variables so
they can be augmented without embedded their original definition. The subsequent sections
specify what behavior is expected when the ~qrtems or —qrtems_debug option is specified.

The *cpp definition specifies that when -qrtems is specified, predefine the preprocessor
symbol __embedded__.

The *1ib section insures that the RTEMS library, BSP specific linker script, gcec support
library, and the EABI specific ecrtn file are used.

The *startfile section specifies that the BSP specific file startsim.o will be used instead
of crt0.o0. In addition, the EABI specific file ecrti.o will be linked in with the executable.

The *1ink section specifies the arguments that will be passed to the linker.

22 BSP and Device Driver Development Guide

The format of this file is specific to the GNU Compiler Suite. The argument used to override
and extend the compiler built-in specifications is relatively new to the toolset. The -specs
option is present in all egcs distributions and gcc distributions starting with version 2.8.0.

5.2 README Files

Most BSPs provide one or more README files. Generally, there is a README file at the top
of the BSP source. This file describes the board and its hardware configuration, provides
vendor information, local configuration information, information on downloading code to
the board, debugging, etc.. The intent of this file is to help someone begin to use the BSP
faster.

A README file in a BSP subdirectory typically explains something about the contents of that
subdirectory in greater detail. For example, it may list the documentation available for a
particular peripheral controller and how to obtain that documentation. It may also explain
some particularly cryptic part of the software in that directory or provide rationale on the
implementation.

5.3 times

This file contains the results of the RTTEMS Timing Test Suite. It is in a standard format
so that results from one BSP can be easily compared with those of another target board.

If a BSP supports multiple variants, then there may be multiple times files. Usually these
are named times.VARIANTn.

5.4 Tools Subdirectory

Some BSPs provide additional tools that aid in using the target board. These tools run on
the development host and are built as part of building the BSP. Most common is a script
to automate running the RTEMS Test Suites on the BSP. Examples of this include:

e powerpc/psim includes scripts to ease use of the simulator

e m68k/mvme162 includes a utility to download across the VMEbus into target memory
if the host is a VMEDbus board in the same chasis.

e unix/posix includes scripts to run the tests automatically on this BSP.

5.5 bsp.h Include File

The file include/bsp.h contains prototypes and definitions specific to this board. Every
BSP is required to provide a bsp.h. The best approach to writing a bsp.h is copying an
existing one as a starting point.

Many bsp.h files provide prototypes of variables defined in the linker script (1inkcmds).

Chapter 5: Miscellaneous Support Files 23

There are a number of fields in this file that are used only by the RTTEMS Test Suites. The
following is a list of these:

e MAX_LONG_TEST_DURATION - the longest length of time a "long running" test should
run.

e MAX_SHORT_TEST_DURATION - the longest length of time a "short running" test
should run.

e MUST_WAIT_FOR_INTERRUPT - modifies behavior of tm27.

e Install_tm27_vector - installs the interrupt service routine for the Interrupt
Benchmark Test (tm27).

e Cause_tm27_intr - generates the interrupt source used in the Interrupt Benchmark
Test (tm27).

e Clear_tm27_intr - clears the interrupt source used in the Interrupt Benchmark
Test (tm27).

e Lower_tm27_intr - lowers the interrupt mask so the interrupt source used in the
Interrupt Benchmark Test (tm27) can generate a nested interrupt.

5.6 Calling Overhead File

The file include/coverhd.h contains the overhead associated with invoking each directive.
This overhead consists of the execution time required to package the parameters as well as
to execute the "jump to subroutine" and "return from subroutine" sequence. The intent of
this file is to help separate the calling overhead from the actual execution time of a directive.
This file is only used by the tests in the RTEMS Timing Test Suite.

The numbers in this file are obtained by running the "Timer Overhead" tmoverhd test. The
numbers in this file may be 0 and no overhead is subtracted from the directive execution
times reported by the Timing Suite.

5.7 sbrk() Implementation

If the BSP wants to dynamically extend the heap used by the C Library memory allocation
routines (i.e. malloc family), then this routine must be functional. The following is the
prototype for this routine:

void * sbrk(size_t increment)

The increment amount is based upon the sbrk_amount parameter passed to the RTEMS_
Malloc_Initialize during system initialization. See Section 7.3.5 [Initialization Code
RTEMS Pretasking Callback], page 30 for more information.

There is a default implementation which returns an error to indicate that the heap can not be
extended. This implementation can be found in ¢/src/1ib/libbsp/shared/sbrk.c. Many
of the BSPs use this shared implementation. In order to use this implementation, the file
Makefile.am in the BSP’s startup directory must be modified so that the $VPATH variable
searches both the startup directory and the shared directory. The following illustates the
VPATH setting in the PowerPC psim BSP’s startup/Makefile.am:

24 BSP and Device Driver Development Guide

VPATH = @srcdir@:Q@srcdir@/../../../shared

This instructs make to look in all of the directories in the VPATH for the source files. The
directories will be examined in the order they are specified.

5.8 bsp_cleanup() - Cleanup the Hardware

The bsp_cleanup() is the last C code invoked. Most of the BSPs use the same shared
version of bsp_cleanup () that does nothing. This implementation is located in the following
file:

c/src/lib/libbsp/shared/bspclean.c

The bsp_cleanup () routine can be used to return to a ROM monitor, insure that interrupt
sources are disabled, etc.. This routine is the last place to insure a clean shutdown of the
hardware.

5.9 set_vector() - Install an Interrupt Vector

The set_vector routine is responsible for installing an interrupt vector. It invokes the
support routines necessary to install an interrupt handler as either a "raw" or an RTEMS
interrupt handler. Raw handlers bypass the RTEMS interrupt structure and are responsible
for saving and restoring all their own registers. Raw handlers are useful for handling traps,
debug vectors, etc..

The set_vector routine is a central place to perform interrupt controller manipulation and
encapsulate that information. It is usually implemented as follows:

rtems_isr_entry set_vector(/* returns old vector */
rtems_isr_entry handler, /* isr routine */
rtems_vector_number vector, /* vector number */
int type /* RTEMS or RAW intr x/
)
{
if the type is RAW
install the raw vector
else
use rtems_interrupt_catch to install the vector
perform any interrupt controller necessary to unmask
the interrupt source
return the previous handler
3

NOTE: set_vector is provided by the majority of BSPs but not all. In particular, the i386

BSPs use a different scheme.

Chapter 6: Ada95 Interrupt Support 25

6 Ada95 Interrupt Support

6.1 Introduction

This chapter describes what is required to enable Ada interrupt and error exception handling
when using GNAT over RTEMS.

The GNAT Ada95 interrupt support RTEMS was developed by Jiri Gaisler
<jgais@ws.estec.esa.nl> who also wrote this chapter.

6.2 Mapping Interrupts to POSIX Signals

In Ada95, in