

RTEMS Shell Documentation

Release 4.11.3

©Copyright 2016, RTEMS Project (built 15th February 2018)

CONTENTS

Ι	RTE	MS She	ll User's Guide	1
1	Prefa		vledgements	5
2	Conf	iguratio	n and Initialization	9
	2.1	Introdu	uction	10
	2.2	Configu	ıration	11
		2.2.1	Customizing the Command Set	11
		2.2.2	Adding Custom Commands	11
	2.3	Initializ	zation	13
		2.3.1	Attached to a Serial Port	13
		2.3.2	Attached to a Socket	13
	2.4	Access	Control	14
		2.4.1	Login Checks	14
		2.4.2	Configuration Files	
		2.4.3	Command Visibility and Execution Permission	
		2.4.4	Add CRYPT(3) Formats	
	2.5		ons	
		2.5.1	rtems_shell_init - Initialize the shell	
		2.5.2	rtems_shell_login_check - Default login check handler	18
3	Gene	eral Con	nmands	19
	3.1	Introdu	uction	20
	3.2	Comma	ands	21
		3.2.1	help - Print command help	22
		3.2.2	alias - add alias for an existing command	23
		3.2.3	cmdls - List commands	24
		3.2.4	cmdchown - Change user or owner of commands	25
		3.2.5	cmdchmod - Change mode of commands	
		3.2.6	date - print or set current date and time	
		3.2.7	echo - produce message in a shell script	
		3.2.8	sleep - delay for a specified amount of time	
		3.2.9	id - show uid gid euid and egid	
		3.2.10	tty - show ttyname	
		3.2.11	1	
			getenv - print environment variable	
			setenv - set environment variable	
		3.2.14	unsetenv - unset environment variable	35

		3.2.16 3.2.17	time - time command execution	37 38
4	File a		ectory Commands 4	
	4.1	Introdu	lction	12
	4.2	Comma	ands	13
		4.2.1	blksync - sync the block driver	14
		4.2.2	cat - display file contents	1 5
		4.2.3	cd - alias for chdir	
		4.2.4	chdir - change the current directory	
		4.2.5	chmod - change permissions of a file	
		4.2.6	chroot - change the root directory	
		4.2.7	cp - copy files	
		4.2.8	dd - convert and copy a file	
		4.2.9	debugrfs - debug RFS file system	
		4.2.10	df - display file system disk space usage	
		4.2.11		
			fdisk - format disk	
			hexdump - ascii/dec/hex/octal dump	
			In - make links	
			ls - list files in the directory	
			md5 - compute the Md5 hash of a file or list of files 6	
			mkdir - create a directory	
			mkdos - DOSFS file system format	
			mknod - make device special file	
			mkrfs - format RFS file system	
			mount - mount disk	
			mv - move files	
			pwd - print work directory	
			rmdir - remove empty directories	
			rm - remove files	
		4.2.2/	unmount - unmount disk	ď
5	Mem	ory Con	nmands 7	79
	5.1	•	ıction	30
	5.2		ands	31
		5.2.1	mdump - display contents of memory	32
		5.2.2	wdump - display contents of memory (word)	
		5.2.3	ldump - display contents of memory (longword)	
		5.2.4	medit - modify contents of memory	
		5.2.5	mfill - file memory with pattern	
		5.2.6	mmove - move contents of memory	
		5.2.7	malloc - obtain information on C program heap	
6		-	ific Commands 9	
	6.1		ıction	
	6.2		ands	
		6.2.1	shutdown - Shutdown the system	
		6.2.2	cpuuse - print or reset per thread cpu usage)5

		6.2.3	stackuse - print per thread stack usage	. 96
		6.2.4	perioduse - print or reset per period usage	. 97
		6.2.5	profreport - print a profiling report	. 98
		6.2.6	wkspace - display information on executive workspace	
		6.2.7	config - show the system configuration	. 101
		6.2.8	itask - list init tasks for the system	. 102
		6.2.9	extension - display information about extensions	
			task - display information about tasks	
		6.2.11	queue - display information about message queues	. 105
		6.2.12	sema - display information about semaphores	. 106
		6.2.13	region - display information about regions	. 107
			part - display information about partitions	
			object - display information about RTEMS objects	
			driver - display the RTEMS device driver table	
		6.2.17	dname - displays information about named drivers	. 111
		6.2.18	pthread - display information about POSIX threads	. 112
7	Netw	vork Co	mmands	113
	7.1	Introdu	action	. 114
	7.2	Comma	ands	. 115
		7.2.1	netstats - obtain network statistics	
		7.2.2	ifconfig - configure a network interface	
		7.2.3	route - show or manipulate the ip routing table	
		7.2.4	ping - ping a host or IP address	. 121
8	Func	tion and	d Variable Index	125
9	Conc	ept Ind	ex	127
In	dev			129

Part I RTEMS Shell User's Guide

COPYRIGHT (c) 1988 - 2015. On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. No warranty of any kind, expressed or implied, with regard to the software or the material contained in this document is provided. No liability arising out of the application or use of any product described in this document is assumed. The authors reserve the right to revise this material and to make changes from time to time in the content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.org/. Any inquiries concerning RTEMS, its related support components, or its documentation should be directed to the Community Project hosted at http://www.rtems.org/.

RTEMS Online Resources			
Home	https://www.rtems.org/		
Developers	https://devel.rtems.org/		
Documenta-	https://docs.rtems.org/		
tion			
Bug	https:		
Reporting	//devel.rtems.org/query		
Mailing Lists	https://lists.rtems.org/		
Git	https://git.rtems.org/		
Repositories			

PREFACE

Real-time embedded systems vary widely₂₁ based upon their operational and maintenance requirements. Some of these systems provide, ways for the user or developer to interact with them. This interaction could be used for oper-23 ational, diagnostic, or configuration purposes.²⁴ The capabilities described in this manual are²⁵ those provided with RTEMS to provide a command line interface for user access. Some of these commands will be familiar as standard POSIX utilities while others are RTEMS specific or helpful in debugging and analyzing an embedded system. As a simple example of the powerful and very familiar capabilities that the RTEMS Shell provides to an application, consider the following example which hints at some of the capabilities available:

```
Welcome to rtems-4.10.99.0(SPARC/w/FPU/sis)
  COPYRIGHT (c) 1989-2011.
  On-Line Applications Research Corporation
   \hookrightarrow (OAR).
  Login into RTEMS
  login: rtems
  Password:
  RTEMS SHELL (Ver.1.0-FRC):/dev/console. Feb_
   →28 2008. 'help' to list commands.
8 SHLL [/] $ cat /etc/passwd
  root:*:0:0:root::/:/bin/sh
  rtems:*:1:1:RTEMS Application::/:/bin/sh
11 tty:!:2:2:tty owner::/:/bin/false
12 SHLL [/] $ ls /dev
13 -rwxr-xr-x
               1 rtems
                                          0 Jan_
                           root
   →01 00:00 console
  -rwxr-xr-x
              1
                   root
                                          0 Jan.
                           root
   →01 00:00 console_b
  2 files 0 bytes occupied
  SHLL [/] $ stackuse
  Stack usage by thread
18 ID
                  LOW
                                        CURRENT_
          NAME
                               HIGH
                        USED
         AVAILABLE
19 0x09010001
                IDLE 0x023d89a0 - 0x023d99af
   →0x023d9760
                      4096
                                  608
                      0x023d9f30

    0x023daf3f

  0x0a010001
               UI1
   →0x023dad18
                      4096
                                 1804
```

```
0x0a010002 SHLL 0x023db4c0 - 0x023df4cf 

→0x023de9d0 16384 6204

0xfffffffff INTR 0x023d2760 - 0x023d375f 

→0x00000000 4080 316

SHLL [/] $ mount -L

File systems: msdos

SHLL [/] $
```

In the above example, the user *rtems* logs into a SPARC based RTEMS system. The first command is cat /etc/passwd. This simple command lets us know that this application is running the In Memory File System (IMFS) and that the infrastructure has provided dummy entries for /etc/passwd and a few other files. The contents of /etc/passwd let us know that the user could have logged in as root. In fact, the root user has more permissions than rtems who is not allowed to write into the filesystem.

The second command is 1s /dev which lets us know that RTEMS has POSIX-style device nodes which can be accesses through standard I/O function calls.

The third command executed is the RTEMS specific stackuse which gives a report on the stack usage of each thread in the system. Since stack overflows are a common error in deeply embedded systems, this is a surprising simple, yet powerful debugging aid.

Finally, the last command, mount -L hints that RTEMS supports a variety of mountable filesystems. With support for MS-DOS FAT on IDE/ATA and Flash devices as well as network-based filesystens such as NFS and TFTP, the standard free RTEMS provides a robuse infrastructure for embedded applications.

This manual describes the RTEMS Shell and its command set. In our terminology, the Shell is just a loop reading user input and turning that input into commands with argument. The Shell provided with RTEMS is a simple command reading loop with limited scripting capabilities. It can be connected to via a standard serial port or connected to the RTEMS telnetd server for use across a network.

Each command in the command set is implemented as a single subroutine which has a *main-style* prototype. The commands interpret their arguments and operate upon stdin, std-out, and stderr by default. This allows each command to be invoked independent of the shell.

The described separation of shell from commands from communications mechanism was an important design goal. At one level, the RTEMS Shell is a complete shell environment providing access to multiple POSIX compliant filesystems and TCP/IP stack. The subset of capabilities available is easy to configure and the standard Shell can be logged into from either a serial port or via telnet. But at another level, the Shell is a large set of components which can be integrated into the user's developed command interpreter. In either case, it is trivial to add custom commands to the command set available.

1.1 Acknowledgements

The Institute of Electrical and Electronics Engineers, Inc and The Open Group, have given us permission to reprint portions of their documentation.

Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (c) 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. original Standard can be obtained online at http://www.opengroup. org/unix/online.html. This notice shall appear on any product containing this material.

CONFIGURATION AND INITIALIZATION

2.1 Introduction

This chapter provides information on how the application configures and initializes the RTEMS shell.

2.2 Configuration

The command set available to the application is user configurable. It is configured using a mechanism similar to the confdefs.h mechanism used to specify application configuration.

In the simplest case, if the user wishes to configure a command set with all commands available that are neither filesystem management (e.g. mounting, formating, etc.) or network related, then the following is all that is required:

```
#define CONFIGURE_SHELL_COMMANDS_INIT
#define CONFIGURE_SHELL_COMMANDS_ALL
#include <rtems/shellconfig.h>
```

In a slightly more complex example, if the user wishes to include all networking commands as well as support for mounting MS-DOS and NFS filesystems, then the following is all that is required:

```
#define CONFIGURE_SHELL_COMMANDS_INIT
#define CONFIGURE_SHELL_COMMANDS_ALL
#define CONFIGURE_SHELL_MOUNT_MSDOS
#define CONFIGURE_SHELL_MOUNT_NFS
#include <rtems/shellconfig.h>
```

2.2.1 Customizing the Command Set

The user can configure specific command sets ²₃ by either building up the set from individual ⁴ commands or starting with a complete set and ⁵ disabling individual commands. Each command has two configuration macros associated ⁶ with it.

CONFIGURE SHELL COMMAND XXX

Each command has a constant of this form 9 which is defined when building a command 11 set by individually enabling specific com12 mands.

CONFIGURE_SHELL_NO_COMMAND_XXX

In contrast, each command has a similar command which is defined when the appliation cation is configuring a command set by dis₁₇ abling specific commands in the set.

18

2.2.2 Adding Custom Commands

One of the design goals of the RTEMS Shell was to make it easy for a user to add custom commands specific to their application. We believe this design goal was accomplished. In order to add a custom command, the user is required to do the following:

- Provide a *main-style* function which implements the command. If that command function uses a getopt related function to parse arguments, it *MUST* use the reentrant form.
- Provide a command definition structure of type rtems_shell_cmd_t.
- Configure that command using the CONFIGURE_SHELL_USER_COMMANDS macro.

Custom aliases are configured similarly but the user only provides an alias definition structure of type rtems_shell_alias_t and configures the alias via the CONFIGURE_SHELL_USER_ALIASES macro.

In the following example, we have implemented a custom command named usercmd which simply prints the arguments it was passed. We have also provided an alias for usercmd named userecho.

```
#include <rtems/shell.h>
  int main_usercmd(int argc, char **argv)
      int i;
       printf( "UserCommand: argc=%d\n", argc_
       for (i=0 ; i<argc ; i++ )
          printf( "argv[%d]= %s\n", i, argv[i]_
   →);
      return 0;
  rtems_shell_cmd_t Shell_USERCMD_Command = {
       "usercmd",
       "usercmd n1 \[n2 \[n3...]]", /* usage */
       "user",
                                     /* topic */
13
      main_usercmd,
                                     /* command_
                                     /* alias */
      NULL,
      NULL
                                     /* next */
18 rtems_shell_alias_t Shell_USERECHO_Alias = {
      "usercmd",
                                   /* command */
19
       "userecho"
                                     /* alias */
20
21
  };
```

```
#define CONFIGURE_SHELL_USER_COMMANDS &

Shell_USERCMD_Command

#define CONFIGURE_SHELL_USER_ALIASES &Shell_

USERECHO_Alias

#define CONFIGURE_SHELL_COMMANDS_INIT

#define CONFIGURE_SHELL_COMMANDS_ALL

#define CONFIGURE_SHELL_MOUNT_MSDOS

#include <rtems/shellconfig.h>
```

Notice in the above example, that the user wrote the *main* for their command (e.g. main_usercmd) which looks much like any other main(). They then defined a rtems_shell_cmd_t structure named Shell_USERCMD_Command which describes that command. This command definition structure is registered into the static command set by defining CONFIGURE_SHELL_USER_COMMANDS to &Shell_USERCMD_Command.

Similarly, to add the userecho alias, the user provides the alias definition structure named Shell_USERECHO_Alias and defines CONFIGURE_SHELL_USER_ALIASES to configure the alias.

The user can configure any number of commands and aliases in this manner.

2.3 Initialization

The shell may be easily attached to a serial port or to the telnetd server. This section describes how that is accomplished.

2.3.1 Attached to a Serial Port

Starting the shell attached to the console or a serial port is very simple. The user invokes rtems_shell_init with parameters to indicate the characteristics of the task that will be executing the shell including name, stack size, and priority. The user also specifies the device that the shell is to be attached to.

This example is taken from the fileio sample test. This shell portion of this test can be run on any target which provides a console with input and output capabilities. It does not include any commands which cannot be supported on all BSPs. The source code for this test is in testsuites/samples/fileio with the shell configuration in the init.c file.

```
#include <rtems/shell.h>
  void start_shell(void)
3
  {
      printf(" =======\n");
      printf(" starting shell\n");
      printf(" ========\n");
7
      rtems_shell_init(
          "SHLL",
   →task name */
           RTEMS_MINIMUM_STACK_SIZE * 4,
   →task stack size */
          100,
10
   →task priority */
           "/dev/console",
11
   →device name */
         false,
                                      /* run
12
   →forever */
          true,
13
   →wait for shell to terminate */
           rtems_shell_login_check
14
   →login check function,
         use NULL to disable a login check */
15
16
      );
17
  }
```

In the above example, the call to rtems_shell_init spawns a task to run the RTEMS Shell attached to /dev/console and executing at priority 100. The caller

suspends itself and lets the shell take over the console device. When the shell is exited by the user, then control returns to the caller.

2.3.2 Attached to a Socket

TBD

2.3. Initialization

2.4 Access Control

2.4.1 Login Checks

Login checks are optional for the RTEMS shell and can be configured via a login check handler passed to rtems_shell_init(). One login check handler is rtems_shell_login_check().

2.4.2 Configuration Files

The following files are used by the login check handler rtems_shell_login_check() to validate a passphrase for a user and to set up the user environment for the shell command execution.

/etc/passwd

The format for each line is

```
user_name:password:UID:GID:GECOS:
  →directory:shell
```

with colon separated fields. For more information refer to the Linux PASSWD(5) man page. Use a password of * to disable the login of the user. An empty password allows login without a password for this user. In contrast to standard UNIX systems, this file is only readable and writeable for the user with an UID of zero by default. The directory is used to perform a filesystem change root operation in rtems_shell_login_check() in contrast to a normal usage as the HOME directory of the user. The default content is:

```
root::0:0::::
```

so there is no password required for the root 2.4.4 Add CRYPT(3) Formats user.

/etc/group

The format for each line is:

```
group_name:password:GID:user_list
```

with colon separated fields. The user_list is comma separated. For more information refer to the Linux GROUP(5) man page. In contrast to standard UNIX systems, this file is only readable and writeable for the user with an UID of zero by default. The default content is

root::0:

2.4.3 Command Visibility and Execution Permission

Each command has:

- · an owner,
- a group, and
- a read permission flag for the owner, the group and all other users, and
- an execution permission flag for the owner, the group and all other users.

The read and write permission flags are stored in the command mode. The read permission flags determine the visibility of the command for the current user. The execution permission flags determine the ability to execute a command for the current user. These command properties can be displayed and changed with the:

- cmdls,
- cmdchown, and
- cmdchmod

commands. The access is determined by the effective UID, the effective GID and the supplementary group IDs of the current user and follows the standard filesystem access procedure.

By default the crypt_r() function used rtems_shell_login_check() by supports only plain text passphrases. Use crypt_add_format() to add more formats. The following formats are available out of the box:

- crypt_md5_format,
- crypt_sha256_format, and
- crypt_sha512_format.

An example follows:

```
#include <crypt.h>
void add_formats( void )
{
    crypt_add_format( &crypt_md5_format );
    crypt_add_format( &crypt_sha512_format_
    ...);
}
```

2.4. Access Control 15

2.5 Functions

This section describes the Shell related C functions which are publicly available related to initialization and configuration.

2.5.1 rtems shell init - Initialize the shell

CALLING SEQUENCE:

```
rtems_status_code rtems_shell_init(
     const char
                      *task_name,
                        task_stacksize,
3
     size_t
     rtems_task_priority task_priority,
     const char
                       *devname,
     bool
                        forever,
     bool
                        wait,
     rtems_login_check
                        login_check
9);
```

DIRECTIVE STATUS CODES:

 $\begin{tabular}{ll} RTEMS_SUCCESSFUL - Shell task spawned successfully {\it others} - to indicate a failure condition \\ \end{tabular}$

DESCRIPTION:

This service creates a task with the specified characteristics to run the RTEMS Shell attached to the specified devname.

NOTES:

This method invokes the rtems_task_create and rtems_task_start directives and as such may return any status code that those directives may return.

There is one POSIX key necessary for all shell instances together and one POSIX key value pair per instance. You should make sure that your RTEMS configuration accounts for these resources.

2.5. Functions 17

2.5.2 rtems_shell_login_check - Default login check handler

CALLING SEQUENCE:

```
bool rtems_shell_login_check(
   const char *user,
   const char *passphrase
);
```

DIRECTIVE STATUS CODES:

true - login is allowed, and false - otherwise.

DESCRIPTION:

This function checks if the specified passphrase is valid for the specified user.

NOTES:

As a side-effect if the specified passphrase is valid for the specified user, this function:

- performs a filesystem change root operation to the directory of the specified user if the directory path is non-empty,
- changes the owner of the current shell device to the UID of the specified user,
- sets the real and effective UID of the current user environment to the UID of the specified user,
- sets the real and effective GID of the current user environment to the GID of the specified user, and
- sets the supplementary group IDs of the current user environment to the supplementary group IDs of the specified user.

In case the filesystem change root operation fails, then the environment setup is aborted and false is returned.

GENERAL COMMANDS

3.1 Introduction

The RTEMS shell has the following general commands:

- help (page 22) Print command help
- *alias* (page 23) Add alias for an existing command
- *cmdls* (page 24) List commands
- *cmdchown* (page 25) Change user or owner of commands
- cmdchmod (page 26) Change mode of commands
- *date* (page 27) Print or set current date and time
- *echo* (page 28) Produce message in a shell script
- *sleep* (page 29) Delay for a specified amount of time
- id (page 30) show uid gid euid and egid
- tty (page 31) show ttyname
- whoami (page 32) print effective user id
- *getenv* (page 33) print environment variable
- setenv (page 34) set environment variable
- *unsetenv* (page 35) unset environment variable
- *time* (page 36) time command execution
- logoff (page 37) logoff from the system
- rtc (page 38) RTC driver configuration
- exit (page 39) alias for logoff command

3.2 Commands

This section details the General Commands available. A subsection is dedicated to each of the commands and describes the behavior and configuration of that command as well as providing an example usage.

3.2. Commands 21

3.2.1 help - Print command help

SYNOPSYS:

```
ı help misc
```

DESCRIPTION:

This command prints the command help. Help without arguments prints a list of topics and help with a topic prints the help for that topic.

EXIT STATUS:

This command returns 0.

NOTES:

The help print will break the output up based on the environment variable SHELL_LINES. If this environment variable is not set the default is 16 lines. If set the number of lines is set to that the value. If the shell lines is set 0 there will be no break.

EXAMPLES:

The following is an example of how to use alias:

```
1 SHLL [/] $ help
2 help: ('r' repeat last cmd - 'e' edit last_
   →cmd)
3 TOPIC? The topics are
4 mem, misc, files, help, rtems, network, _
   →monitor
5 SHLL [/] $ help misc
6 help: list for the topic 'misc'
7 alias

    alias old new

8 time
               - time command [arguments...]
               joel [args] SCRIPT
9 joel
               - date [YYYY-MM-DD HH:MM:SS]
10 date
11 echo
               - echo [args]
               - sleep seconds [nanoseconds]
12 sleep
13 id
                - show uid, gid, euid, and_
   ⊶egid
14 tty
               - show ttyname
15 whoami
               - show current user
16 logoff
               - logoff from the system
               - setenv [var] [string]
17 setenv
18 getenv
               - getenv [var]
               - unsetenv [var]
19 unsetenv
20 umask
               - umask [new_umask]
21 Press any key to continue...
              - real time clock read and set
23 SHLL [/] $ setenv SHELL_ENV 0
24 SHLL [/] $ help misc
25 help: list for the topic 'misc'
26 alias
              - alias old new
```

```
time
               - time command [arguments...]
28 joel
               joel [args] SCRIPT
               - date [YYYY-MM-DD HH:MM:SS]
29 date
30 echo
               - echo [args]
               - sleep seconds [nanoseconds]
31
  sleep
32
  id
                 - show uid, gid, euid, and_
   ⊶egid
               - show ttyname
33 tty
               - show current user
34 whoami
35 logoff
               - logoff from the system
36 setenv
               - setenv [var] [string]
               - getenv [var]
  getenv
               - unsetenv [var]
  unsetenv
  umask
                - umask [new_umask]
39
               - real time clock read and set
  rtc
```

CONFIGURATION:

This command has no configuration.

3.2.2 alias - add alias for an existing command

SYNOPSYS:

```
alias oldCommand newCommand
```

DESCRIPTION:

This command adds an alternate name for an existing command to the command set.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use alias:

```
SHLL [/] $ me
shell:me command not found
SHLL [/] $ alias whoami me
SHLL [/] $ me

rtems
SHLL [/] $ whoami
rtems
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_ALIAS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_ALIAS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The alias is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_alias(
    int argc,
    char **argv
);
```

The configuration structure for the alias has the following prototype:

3.2. Commands 23

3.2.3 cmdls - List commands

SYNOPSYS:

```
cmdls COMMAND...
```

DESCRIPTION:

This command lists the visible commands of the command set.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The current user must have read permission to list a command.

EXAMPLES:

The following is an example of how to use cmdls:

```
SHLL [/] # cmdls help shutdown r-xr-xr-x 0 0 help r-x---- 0 shutdown
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CMDLS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CMDLS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The configuration structure for the cmdls has the following prototype:

3.2.4 cmdchown - Change user or owner of commands

SYNOPSYS:

```
cmdchown [OWNER][:[GROUP]] COMMAND...
```

DESCRIPTION:

This command changes the user or owner of a command.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The current user must have an UID of zero or be the command owner to change the owner or group.

EXAMPLES:

The following is an example of how to use cmdchown:

```
[/] # cmdls help
r-xr-xr-x 0 0 help
[/] # cmdchown 1:1 help
[/] # cmdls help
r--r-- 1 1 help
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CMDCHOWN to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CMDCHOWN when all shell commands have been configured.

PROGRAMMING INFORMATION:

The configuration structure for the cmdchown has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→CMDCHOWN_Command;
```

3.2. Commands 25

3.2.5 cmdchmod - Change mode of commands

SYNOPSYS:

```
1 cmdchmod OCTAL-MODE COMMAND...
```

DESCRIPTION:

This command changes the mode of a command.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The current user must have an UID of zero or be the command owner to change the mode.

EXAMPLES:

The following is an example of how to use cmdchmod:

```
[/] # cmdls help
r-xr-xr-x 0 0 help
[/] # cmdchmod 544 help
[/] # cmdls help
r-xr--r-- 0 0 help
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CMDCHMOD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CMDCHMOD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The configuration structure for the cmdchmod has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→CMDCHMOD_Command;
```

3.2.6 date - print or set current date and time

SYNOPSYS:

```
date date DATE TIME
```

DESCRIPTION:

This command operates one of two modes. When invoked with no arguments, it prints the current date and time. When invoked with both date and time arguments, it sets the current time.

The date is specified in YYYY-MM-DD format. The time is specified in HH:MM:SS format.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use date:

```
SHLL [/] $ date

Fri Jan 1 00:00:09 1988

3 SHLL [/] $ date 2008-02-29 06:45:32

4 SHLL [/] $ date

5 Fri Feb 29 06:45:35 2008
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_DATE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_DATE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The date is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_date(
   int argc,
   char **argv
);
```

The configuration structure for the date has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_DATE_

→Command;
```

3.2. Commands 27

3.2.7 echo - produce message in a shell script

SYNOPSYS:

```
echo [-n | -e] args ...
```

DESCRIPTION:

Echo prints its arguments on the standard output, separated by spaces. Unless the -n option is present, a newline is output following the arguments. The -e option causes echo to treat the escape sequences specially, as described in the following paragraph. The -e option is the default, and is provided solely for compatibility with other systems. Only one of the options -n and -e may be given.

If any of the following sequences of characters is encountered during output, the sequence is not output. Instead, the specified action is performed:

b A backspace character is output.

Subsequent output is suppressed. This is normally used at the end of the last argument to suppress the trailing newline that echo would otherwise output.

f
Output a form feed.

Output a newline character.

*r*Output a carriage return.

t Output a (horizontal) tab character.

Output a vertical tab.

Odigits

Output the character whose value is given by zero to three digits. If there are zero digits, a nul character is output.

Output a backslash.

EXIT STATUS:

This command returns 0 on success and non-

zero if an error is encountered.

NOTES:

The octal character escape mechanism (Odigits) differs from the C language mechanism.

There is no way to force echo to treat its arguments literally, rather than interpreting them as options and escape sequences.

EXAMPLES:

The following is an example of how to use echo:

```
SHLL [/] $ echo a b c
a b c
SHLL [/] $ echo
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_ECHO to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_ECHO when all shell commands have been configured.

PROGRAMMING INFORMATION:

The echo is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_echo(
   int argc,
   char **argv
);
```

The configuration structure for the echo has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_ECHO_

→Command;
```

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD 4.0.

3.2.8 sleep - delay for a specified amount **PROGRAMMING INFORMATION**: of time

SYNOPSYS:

```
1 sleep seconds
2 sleep seconds nanoseconds
```

DESCRIPTION:

This command causes the task executing the shell to block for the specified number of seconds and nanoseconds.

EXIT STATUS:

This command returns 0 on success and nonzero if an error is encountered.

NOTES:

This command is implemented using the nanosleep() method.

The command line interface is similar to the sleep command found on POSIX systems but the addition of the nanoseconds parameter allows fine grained delays in shell scripts without adding another command such as usleep.

EXAMPLES:

The following is an example of how to use sleep:

```
1 SHLL [/] $ sleep 10
2 SHLL [/] $ sleep 0 5000000
```

It is not clear from the above but there is a ten second pause after executing the first command before the prompt is printed. The second command completes very quickly from a human perspective and there is no noticeable delay in the prompt being printed.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, CONFIGURE_SHELL_COMMAND_SLEEP to have this command included.

This command can be excluded from shell command set by defining CONFIGURE_SHELL_NO_COMMAND_SLEEP when all shell commands have been configured.

The sleep is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_sleep(
      int
             argc,
2
     char **argv
3
 );
```

The configuration structure for the sleep has the following prototype:

```
extern
          rtems_shell_cmd_t
                                rtems_shell_

→SLEEP_Command;
```

3.2. Commands 29

3.2.9 id - show uid gid euid and egid

SYNOPSYS:

```
ı id
```

DESCRIPTION:

This command prints the user identity. This includes the user id (uid), group id (gid), effective user id (euid), and effective group id (egid).

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Remember there is only one POSIX process in a single processor RTEMS application. Each thread may have its own user identity and that identity is used by the filesystem to enforce permissions.

EXAMPLES:

The first example of the id command is from a session logged in as the normal user rtems:

```
SHLL [/] # id
2 uid=1(rtems),gid=1(rtems),euid=1(rtems),

→egid=1(rtems)
```

The second example of the id command is from a session logged in as the root user:

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_ID to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_ID when all shell commands have been configured.

PROGRAMMING INFORMATION:

The id is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_id(
   int argc,
   char **argv
};
```

The configuration structure for the id has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_ID_

→Command;
```

3.2.10 tty - show ttyname

SYNOPSYS:

```
ıtty
```

DESCRIPTION:

This command prints the file name of the device connected to standard input.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use tty:

```
SHLL [/] $ tty 2 /dev/console
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_TTY to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_TTY when all shell commands have been configured.

PROGRAMMING INFORMATION:

The tty is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_tty(
   int argc,
   char **argv
);
```

The configuration structure for the tty has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_TTY_

→Command;
```

3.2.11 whoami - print effective user id

SYNOPSYS:

```
ıwhoami
```

DESCRIPTION:

This command displays the user name associated with the current effective user id.

EXIT STATUS:

This command always succeeds.

NOTES:

None.

EXAMPLES:

The following is an example of how to use whoami:

```
SHLL [/] $ whoami rtems
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_WHOAMI to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_WHOAMI when all shell commands have been configured.

PROGRAMMING INFORMATION:

The whoami is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_whoami(
    int argc,
    char **argv
4);
```

The configuration structure for the whoami has the following prototype:

```
1 extern rtems_shell_cmd_t rtems_shell_
→WHOAMI_Command;
```

3.2.12 getenv - print environment variable

SYNOPSYS:

```
getenv variable
```

DESCRIPTION:

This command is used to display the value of a variable in the set of environment variables.

EXIT STATUS:

This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:

The entire RTEMS application shares a single set of environment variables.

EXAMPLES:

The following is an example of how to use getenv:

```
SHLL [/] $ getenv BASEPATH 2 /mnt/hda1
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_GETENV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_GETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The getenv is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_getenv(
   int argc,
   char **argv
}
```

The configuration structure for the getenv has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

GETENV_Command;
```

3.2.13 seteny - set environment variable

SYNOPSYS:

```
setenv variable [value]
```

DESCRIPTION:

This command is used to add a new variable to the set of environment variables or to modify the variable of an already existing variable. If the value is not provided, the variable will be set to the empty string.

EXIT STATUS:

This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:

The entire RTEMS application shares a single set of environment variables.

EXAMPLES:

The following is an example of how to use seteny:

```
SHLL [/] $ setenv BASEPATH /mnt/hda1
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_SETENV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_SETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The setenv is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_setenv(
   int argc,
   char **argv
4
);
```

The configuration structure for the setenv has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→SETENV_Command;
```

3.2.14 unsetenv - unset environment variable

SYNOPSYS:

```
ı unsetenv variable
```

DESCRIPTION:

This command is remove to a variable from the set of environment variables.

EXIT STATUS:

This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:

The entire RTEMS application shares a single set of environment variables.

EXAMPLES:

The following is an example of how to use unsetenv:

```
SHLL [/] $ unsetenv BASEPATH
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_UNSETENV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_UNSETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The unsetenv is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_unsetenv(
   int argc,
   char **argv
4);
```

The configuration structure for the unsetenv has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→UNSETENV_Command;
```

3.2.15 time - time command execution

SYNOPSYS:

```
time command [argument ...]
```

DESCRIPTION:

The time command executes and times a command. After the command finishes, time writes the total time elapsed. Times are reported in seconds.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use time:

```
SHLL [/] $ time cp -r /nfs/directory /c
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_TIME to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_TIME when all shell commands have been configured.

PROGRAMMING INFORMATION:

The time is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_time(
   int argc,
   char **argv
}
```

The configuration structure for the time has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_TIME_

→Command;
```

3.2.16 logoff - logoff from the system

SYNOPSYS:

```
1 logoff
```

DESCRIPTION:

This command logs the user out of the shell.

EXIT STATUS:

This command does not return.

NOTES:

The system behavior when the shell is exited depends upon how the shell was initiated. The typical behavior is that a login prompt will be displayed for the next login attempt or that the connection will be dropped by the RTEMS system.

EXAMPLES:

The following is an example of how to use logoff:

```
SHLL [/] $ logoff logoff from the system...
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_LOGOFF to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_LOGOFF when all shell commands have been configured.

PROGRAMMING INFORMATION:

The logoff is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_logoff(
   int argc,
   char **argv
);
```

The configuration structure for the logoff has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→LOGOFF_Command;
```

3.2.17 rtc - RTC driver configuration

SYNOPSYS:

1 rtc

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_RTC to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_RTC when all shell commands have been configured.

3.2.18 exit - exit the shell

SYNOPSYS:

```
ıexit
```

DESCRIPTION:

This command causes the shell interpreter to exit.

EXIT STATUS:

This command does not return.

NOTES:

In contrast to *logoff - logoff from the system*, this command is built into the shell interpreter loop.

EXAMPLES:

The following is an example of how to use

```
SHLL [/] $ exit
Shell exiting
```

CONFIGURATION:

This command is always present and cannot be disabled.

PROGRAMMING INFORMATION:

The exit is implemented directly in the shell interpreter. There is no C routine associated with it.

FILE AND DIRECTORY COMMANDS

4.1 Introduction

The RTEMS shell has the following file and directory commands:

- blksync (page 44) sync the block driver
- cat (page 45) display file contents
- cd (page 46) alias for chdir
- *chdir* (page 47) change the current directory
- chmod (page 48) change permissions of a file
- *chroot* (page 49) change the root directory
- *cp* (page 50) copy files
- dd (page 52) convert and copy a file
- debugrfs (page 55) debug RFS file system
- *df* (page 56) display file system disk space usage
- *dir* (page 57) alias for *ls* (page 64)
- fdisk (page 58) format disks
- hexdump (page 59) format disks
- ln (page 62) make links
- ls (page 64) list files in the directory
- *md5* (page 65) display file system disk space usage
- mkdir (page 66) create a directory
- mkdos (page 67) DOSFS disk format
- *mknod* (page 68) make device special file
- mkrfs (page 70) format RFS file system
- mount (page 71) mount disk
- mv (page 73) move files
- pwd (page 74) print work directory
- rmdir (page 75) remove empty directories
- rm (page 76) remove files

- umask (page 77) Set file mode creation mask
- unmount (page 78) unmount disk

4.2 Commands

This section details the File and Directory Commands available. A subsection is dedicated to each of the commands and describes the behavior and configuration of that command as well as providing an example usage.

4.2.1 blksync - sync the block driver

SYNOPSYS:

```
1 blksync driver
```

DESCRIPTION:

This command issues a block driver sync call to the driver. The driver is a path to a device node. The sync call will flush all pending writes in the cache to the media and block until the writes have completed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use blksync:

```
ı blksync /dev/hda1
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_BLKSYNC to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_BLKSYNC when all shell commands have been configured.

PROGRAMMING INFORMATION:

The blksync is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_blksync(
   int argc,
   char **argv
);
```

The configuration structure for the blksync has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→BLKSYNC_Command;
```

4.2.2 cat - display file contents

SYNOPSYS:

```
cat file1 [file2 .. fileN]
```

DESCRIPTION:

This command displays the contents of the specified files.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

It is possible to read the input from a device file using cat.

EXAMPLES:

The following is an example of how to use

```
SHLL [/] # cat /etc/passwd
root:*:0:0:root::/:/bin/sh
rtems:*:1:1:RTEMS Application::/:/bin/sh
tty:!:2:2:tty owner::/:/bin/false
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CAT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CAT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cat is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_cat(
   int argc,
   char **argv
);
```

The configuration structure for the cat has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_CAT_

→Command;
```

4.2.3 cd - alias for chdir

SYNOPSYS:

```
1 cd directory
```

DESCRIPTION:

This command is an alias or alternate name for the chdir. See *ls* - *list files in the directory* for more information.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use

```
1 SHLL [/] $ cd etc
2 SHLL [/etc] $ cd /
3 SHLL [/] $ cd /etc
4 SHLL [/etc] $ pwd
5 /etc
6 SHLL [/etc] $ cd /
7 SHLL [/] $ pwd
8 /
9 SHLL [/] $ cd etc
10 SHLL [/etc] $ cd ..
SHLL [/] $ pwd
12 /
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cd is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_cd(
    int argc,
    char **argv
4);
```

The configuration structure for the cd has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_CD_

→Command;
```

4.2.4 chdir - change the current directory

SYNOPSYS:

```
ı chdir [dir]
```

DESCRIPTION:

This command is used to change the current working directory to the specified directory. If no arguments are given, the current working directory will be changed to /.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use chdir:

```
SHLL [/] $ pwd

//
SHLL [/] $ chdir etc

SHLL [/etc] $ pwd

/etc
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CHDIR to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CHDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The chdir is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_chdir(
   int argc,
   char **argv
);
```

The configuration structure for the chdir has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→CHDIR_Command;
```

4.2.5 chmod - change permissions of a file

SYNOPSYS:

```
chmod permissions file1 [file2...]
```

DESCRIPTION:

This command changes the permissions on the files specified to the indicated permissions. The permission values are POSIX based with owner, group, and world having individual read, write, and executive permission bits.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The chmod command only takes numeric representations of the permissions.

EXAMPLES:

The following is an example of how to use chmod:

```
SHLL [/] # cd etc
2 SHLL [/etc] # 1s
3 -rw-r--r- 1
                   root
                                        102.
                           root
   →Jan 01 00:00 passwd
  -rw-r--r--
              1
                                          42_
   →Jan 01 00:00 group
  -rw-r--r- 1
                                         30_
                   root
                           root
   →Jan 01 00:00 issue
  -rw-r--r-- 1
                                         28.
                   root
   →Jan 01 00:00 issue.net
7 4 files 202 bytes occupied
8 SHLL [/etc] # chmod 0777 passwd
9 SHLL [/etc] # ls
10 -rwxrwxrwx
              1
                                        102_
                   root
                           root
   →Jan 01 00:00 passwd
11 -rw-r--r--
              1
                   root
                           root
                                          42<u></u>
   →Jan 01 00:00 group
12 -rw-r--r--
              1
                   root
                                          30_
                           root
   →Jan 01 00:00 issue
13 -rw-r--r--
              1
                   root
                           root
                                          28_
   →Jan 01 00:00 issue.net
14 4 files 202 bytes occupied
15 SHLL [/etc] # chmod 0322 passwd
16 SHLL [/etc] # ls
  --wx-w--w-
              1 nouser
                           root
                                        102_
   →Jan 01 00:00 passwd
18 -rw-r--r--
              1 nouser
                           root
                                          42_
   →Jan 01 00:00 group
19 -rw-r--r 1 nouser
                           root
                                          30_
   →Jan 01 00:00 issue
```

```
-rw-r--r--
               1 nouser
                                          28_
   →Jan 01 00:00 issue.net
21 4 files 202 bytes occupied
22 SHLL [/etc] # chmod 0644 passwd
23 SHLL [/etc] # 1s
  -rw-r--r--
              1
                   root
                                        102_
   →Jan 01 00:00 passwd
  -rw-r--r--
               1
                                          42_
                   root
                           root
   →Jan 01 00:00 group
26 -rw-r--r--
              1
                                          30..
   →Jan 01 00:00 issue
  -rw-r--r 1
                    root
                                          28_
                           root
   →Jan 01 00:00 issue.net
  4 files 202 bytes occupied
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CHMOD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CHMOD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The chmod is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_chmod(
   int argc,
   char **argv
);
```

The configuration structure for the chmod has the following prototype:

4.2.6 chroot - change the root directory

SYNOPSYS:

```
1 chroot [dir]
```

DESCRIPTION:

This command changes the root directory to dir for subsequent commands.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

The destination directory dir must exist.

NOTES:

None.

EXAMPLES:

The following is an example of how to use chroot and the impact it has on the environment for subsequent command invocations:

```
SHLL [/] $ cat passwd
cat: passwd: No such file or directory
SHLL [/] $ chroot etc
SHLL [/] $ cat passwd
root:*:0:0:root::/:/bin/sh
rtems:*:1:1:RTEMS Application::/:/bin/sh
tty:!:2:2:tty owner::/:/bin/false
SHLL [/] $ cat /etc/passwd
cat: /etc/passwd: No such file or directory
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CHROOT to have this command included. Additional to that you have to add one POSIX key value pair for each thread where you want to use the command.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CHROOT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The chroot is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_chroot(
   int argc,
```

```
char **argv
);
```

The configuration structure for the chroot has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→CHROOT_Command;
```

4.2.7 cp - copy files

SYNOPSYS:

DESCRIPTION:

In the first synopsis form, the cp utility copies the contents of the source_file to the target_file. In the second synopsis form, the contents of each named source_file is copied to the destination target_directory. The names of the files themselves are not changed. If cp detects an attempt to copy a file to itself, the copy will fail.

The following options are available:

-f

For each existing destination pathname, attempt to overwrite it. If permissions do not allow copy to succeed, remove it and create a new file, without prompting for confirmation. (The -i option is ignored if the -f option is specified.)

-Н

If the -R option is specified, symbolic links on the command line are followed. (Symbolic links encountered in the tree traversal are not followed.)

-i

Causes cp to write a prompt to the standard error output before copying a file that would overwrite an existing file. If the response from the standard input begins with the character 'y', the file copy is attempted.

-L

If the -R option is specified, all symbolic links are followed.

-N

When used with -p, do not copy file flags.

-P

No symbolic links are followed.

-p

Causes cp to preserve in the copy as many

of the modification time, access time, file flags, file mode, user ID, and group ID as allowed by permissions. If the user ID and group ID cannot be preserved, no error message is displayed and the exit value is not altered. If the source file has its set user ID bit on and the user ID cannot be preserved, the set user ID bit is not preserved in the copy's permissions. If the source file has its set group ID bit on and the group ID cannot be preserved, the set group ID bit is not preserved in the copy's permissions. If the source file has both its set user ID and set group ID bits on, and either the user ID or group ID cannot be preserved, neither the set user ID or set group ID bits are preserved in the copy's permissions.

-R

If source_file designates a directory, cp copies the directory and the entire subtree connected at that point. This option also causes symbolic links to be copied, rather than indirected through, and for cp to create special files rather than copying them as normal files. Created directories have the same mode as the corresponding source directory, unmodified by the process's umask.

-ν

Cause cp to be verbose, showing files as they are copied.

For each destination file that already exists, its contents are overwritten if permissions allow, but its mode, user ID, and group ID are unchanged.

In the second synopsis form, target_directory must exist unless there is only one named source_file which is a directory and the -R flag is specified.

If the destination file does not exist, the mode of the source file is used as modified by the file mode creation mask (umask, see csh(1)). If the source file has its set user ID bit on, that bit is removed unless both the source file and the destination file are owned by the same user. If the source file has its set group ID bit on, that bit is removed unless both the source file and the destination

50

file are in the same group and the user is a member of that group. If both the set user ID and set group ID bits are set, all of the above conditions must be fulfilled or both bits are removed.

Appropriate permissions are required for file creation or overwriting.

Symbolic links are always followed unless the -R flag is set, in which case symbolic links are not followed, by default. The -H or -L flags (in conjunction with the -R flag), as well as the -P flag cause symbolic links to be followed as described above. The -H and -L options are ignored unless the -R option is specified. In addition, these options override each subhedading other and the command's actions are determined by the last one specified.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use cp to copy a file to a new name in the current directory:

```
1 SHLL [/] # cat joel
2 cat: joel: No such file or directory
3 SHLL [/] # cp etc/passwd joel
4 SHLL [/] # cat joel
5 root:*:0:0:root::/:/bin/sh
6 rtems:*:1:1:RTEMS Application::/:/bin/sh
  tty:!:2:2:tty owner::/:/bin/false
  SHLL [/] # 1s
9 drwxr-xr-x
               1
                   root
                           root
                                         536_
   →Jan 01 00:00 dev/
10 drwxr-xr-x 1 root
                                        1072
                           root
   →Jan 01 00:00 etc/
11 -rw-r--r- 1
                                         102.
                   root
                           root
   →Jan 01 00:00 joel
12 3 files 1710 bytes occupied
```

The following is an example of how to use cp to copy one or more files to a destination directory and use the same basename in the destination directory:

```
SHLL [/] # mkdir tmp
SHLL [/] # 1s tmp
```

```
₃ 0 files 0 bytes occupied
  SHLL [/] # cp /etc/passwd tmp
  SHLL [/] # ls /tmp
  -rw-r--r-- 1
                                         102.
                           root
   →Jan 01 00:01 passwd
  1 files 102 bytes occupied
  SHLL [/] # cp /etc/passwd /etc/group /tmp
  SHLL [/] # ls /tmp
10 -rw-r--r--
              1
                    root
                           root
                                         102.
   →Jan 01 00:01 passwd
11 -rw-r--r--
              1
                    root
                           root
                                          42.
   →Jan 01 00:01 group
12 2 files 144 bytes occupied
13 SHLL [/] #
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define "CONFIGURE_SHELL_COMMAND_CP" to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cp command is implemented by a C language function which has the following prototype:

```
int rtems_shell_main_cp(
   int argc,
   char **argv
);
```

The configuration structure for the cp has the following prototype:

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD 4.0.

4.2.8 dd - convert and copy a file

SYNOPSYS:

dd [operands ...]

DESCRIPTION:

The dd utility copies the standard input to the standard output. Input data is read and written in 512-byte blocks. If input reads are short, input from multiple reads are aggregated to form the output block. When finished, dd displays the number of complete and partial input and output blocks and truncated input records to the standard error output.

The following operands are available:

bs=n

Set both input and output block size, superseding the ibs and obs operands. If no conversion values other than noerror, notrunc or sync are specified, then each input block is copied to the output as a single block without any aggregation of short blocks.

cbs=n

Set the conversion record size to n bytes. The conversion record size is required by the record oriented conversion values.

count = n

Copy only n input blocks.

files = n

Copy n input files before terminating. This operand is only applicable when the input device is a tape.

ibs=n

Set the input block size to n bytes instead of the default 512.

if=file

Read input from file instead of the standard input.

obs = n

Set the output block size to n bytes instead of the default 512.

of=file

Write output to file instead of the standard

output. Any regular output file is truncated unless the notrunc conversion value is specified. If an initial portion of the output file is skipped (see the seek operand) the output file is truncated at that point.

seek=n

Seek n blocks from the beginning of the output before copying. On non-tape devices, a *lseek* operation is used. Otherwise, existing blocks are read and the data discarded. If the seek operation is past the end of file, space from the current end of file to the specified offset is filled with blocks of NUL bytes.

skip=n

Skip n blocks from the beginning of the input before copying. On input which supports seeks, a *lseek* operation is used. Otherwise, input data is read and discarded. For pipes, the correct number of bytes is read. For all other devices, the correct number of blocks is read without distinguishing between a partial or complete block being read.

progress=n

Switch on display of progress if n is set to any non-zero value. This will cause a "." to be printed (to the standard error output) for every n full or partial blocks written to the output file.

conv=value[,value...]

Where value is one of the symbols from the following list.

ascii, oldascii

The same as the unblock value except that characters are translated from EBCDIC to ASCII before the records are converted. (These values imply unblock if the operand cbs is also specified.) There are two conversion maps for ASCII. The value ascii specifies the recommended one which is compatible with AT&T System V UNIX. The value oldascii specifies the one used in historic AT&T and pre 4.3BSD-Reno systems.

block

Treats the input as a sequence of newline or end-of-file terminated variable length records independent of input and output block boundaries. Any trailing newline character is discarded. Each input record is converted to a fixed length output record where the length is specified by the cbs operand. Input records shorter than the conversion record size are padded with spaces. Input records longer than the conversion record size are truncated. The number of truncated input records, if any, are reported to the standard error output at the completion of the copy.

ebcdic, ibm, oldebcdic, oldibm

The same as the block value except that characters are translated from ASCII to EBCDIC after the records are converted. (These values imply block if the operand cbs is also specified.) There are four conversion maps for EBCDIC. The value ebcdic specifies the recommended one which is compatible with AT&T System V UNIX. The value ibm is a slightly different mapping, which is compatible with the AT&T System V UNIX ibm value. The values oldebcdic and oldibm are maps used in historic AT&T and pre 4.3BSD-Reno systems.

lcase

Transform uppercase characters into lowercase characters.

noerror

Do not stop processing on an input error. When an input error occurs, a diagnostic message followed by the current input and output block counts will be written to the standard error output in the same format as the standard completion message. If the sync conversion is also specified, any missing input data will be replaced with NUL bytes (or with spaces if a block oriented conversion value was specified) and processed as a normal input buffer. If the sync conversion is not specified, the input block is omitted from the output. On input files which are not tapes or pipes, the file offset will be positioned past the block in which the error occurred using lseek(2).

notrunc

Do not truncate the output file. This will preserve any blocks in the output file not explicitly written by dd. The notrunc value is not supported for tapes.

osyno

Pad the final output block to the full output block size. If the input file is not a multiple of the output block size after conversion, this conversion forces the final output block to be the same size as preceding blocks for use on devices that require regularly sized blocks to be written. This option is incompatible with use of the bs=n block size specification.

sparse

If one or more non-final output blocks would consist solely of NUL bytes, try to seek the output file by the required space instead of filling them with NULs. This results in a sparse file on some file systems.

swab

Swap every pair of input bytes. If an input buffer has an odd number of bytes, the last byte will be ignored during swapping.

sync

Pad every input block to the input buffer size. Spaces are used for pad bytes if a block oriented conversion value is specified, otherwise NUL bytes are used.

ucase

Transform lowercase characters into uppercase characters.

unblock

Treats the input as a sequence of fixed length records independent of input and output block boundaries. The length of the input records is specified by the cbs operand. Any trailing space characters are discarded and a newline character is appended.

Where sizes are specified, a decimal number of bytes is expected. Two or more numbers may be separated by an "x" to indicate a product. Each number may have one of the following optional suffixes:

b Block; multiply by 512

k

Kibi; multiply by 1024 (1 KiB)

m

Mebi; multiply by 1048576 (1 MiB)

g

Gibi; multiply by 1073741824 (1 GiB)

t Tebi; multiply by 1099511627776 (1 TiB)

w

Word; multiply by the number of bytes in an integer

When finished, dd displays the number of complete and partial input and output blocks, truncated input records and oddlength byte-swapping ritten. Partial output blocks to tape devices are considered fatal errors. Otherwise, the rest of the block will be written. Partial output blocks to character devices will produce a warning message. A truncated input block is one where a variable length record oriented conversion value was specified and the input line was too long to fit in the conversion record or was not newline terminated.

Normally, data resulting from input or conversion or both are aggregated into output blocks of the specified size. After the end of input is reached, any remaining output is written as a block. This means that the final output block may be shorter than the output block size.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use dd:

CONFIGURATION:

This command is included in the default shell command set. When build-

ing a custom command set, define CONFIGURE_SHELL_COMMAND_DD to have this command included.

This command can be excluded from the shell command set by defining "CONFIGURE_SHELL_NO_COMMAND_DD" when all shell commands have been configured.

PROGRAMMING INFORMATION:

The dd command is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_dd(
   int argc,
   char **argv
);
```

The configuration structure for the dd has the following prototype:

4.2.9 debugrfs - debug RFS file system

SYNOPSYS:

```
debugrfs [-hl] path command [options]
```

DESCRIPTION:

The command provides debugging information for the RFS file system.

The options are:

-h

Print a help message.

-l

List the commands.

path

Path to the mounted RFS file system. The file system has to be mounted to view to use this command.

The commands are:

block start [end]

Display the contents of the blocks from **PROGRAMMING INFORMATION:** start to end.

data

Display the file system data and configuration.

dir bno

Process the block as a directory displaying the entries.

group start [end]

Display the group data from the start group to the end group.

inode [-aef] [start] [end]

Display the inodes between start and end. If no start and end is provides all inodes are displayed.

-a

Display all inodes. That is allocated and unallocated inodes.

Search and display on inodes that have an error.

Force display of inodes, even when in error.

EXIT STATUS:

This command returns 0 on success and nonzero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use debugrfs:

```
SHLL [/] $ debugrfs /c data
```

CONFIGURATION:

This command is included in the de-When buildfault shell command set. ing a custom command set, CONFIGURE_SHELL_COMMAND_DEBUGRFS have this command included.

This command can be excluded from shell command set by defining CONFIGURE_SHELL_NO_COMMAND_DEBUGRFS when all shell commands have been configured.

The debugrfs command is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_debugrfs(
     int
             argc,
2
     char **argv
```

The configuration structure for debugrfs has the following prototype:

```
extern
          rtems_shell_cmd_t
                               rtems_shell_
 →DEBUGRFS_Command;
```

4.2.10 df - display file system disk space usage

SYNOPSYS:

```
df [-h] [-B block_size]
```

DESCRIPTION:

This command print disk space usage for mounted file systems.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use df:

```
1 SHLL [/] $ df -B 4K
2 Filesystem
                4K-blocks
                                 Used
  →Available
                 Use%
                           Mounted on
3 /dev/rda
                     124
  → 124
                0%
                    /mnt/ramdisk
4 SHLL [/] $ df
5 Filesystem
               1K-blocks
                                 Used
  →Available
                Use%
                           Mounted on
6 /dev/rda
                     495
                                 1
  → 494
                0%
                     /mnt/ramdisk
7 SHLL [/] $ df -h
8 Filesystem
               Size
                                 Used
  ⊶Available
                Use%
                           Mounted on
9 /dev/rda
                     495K
                                1K
  → 494K
                 0%
                     /mnt/ramdisk
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_DF to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_DF when all shell commands have been configured.

PROGRAMMING INFORMATION:

The df is implemented by a C language function which has the following prototype:

```
int rtems_shell_main_df(
    int argc,
    char **argv
);
```

The configuration structure for the df has the following prototype:

4.2.11 dir - alias for ls

SYNOPSYS:

```
ı dir [dir]
```

DESCRIPTION:

This command is an alias or alternate name for the 1s. See *ls - list files in the directory* for more information.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use dir:

```
1 SHLL [/] $ dir
2 drwxr-xr-x
             1
                                      536_
                  root
                         root
   →Jan 01 00:00 dev/
3 drwxr-xr-x 1 root
                                     1072
  →Jan 01 00:00 etc/
4 2 files 1608 bytes occupied
5 SHLL [/] $ dir etc
6 -rw-r--r 1
                         root
                                      102_
   →Jan 01 00:00 passwd
7 -rw-r--r- 1
                 root
                         root
                                       42_
   →Jan 01 00:00 group
8 -rw-r--r 1
                         root
                                       30_
   →Jan 01 00:00 issue
9 -rw-r--r- 1
                  root
                         root
                                       28_
   →Jan 01 00:00 issue.net
10 4 files 202 bytes occupied
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define "CONFIGURE_SHELL_COMMAND_DIR" to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_DIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The dir is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_dir(
   int argc,
   char **argv
);
```

The configuration structure for the dir has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_DIR_

→Command;
```

4.2.12 fdisk - format disk

SYNOPSYS:

1 fdisk

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_FDISK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_FDISK when all shell commands have been configured.

4.2.13 hexdump - ascii/dec/hex/octal dump

SYNOPSYS:

DESCRIPTION:

The hexdump utility is a filter which displays the specified files, or the standard input, if no files are specified, in a user specified format.

The options are as follows:

-b

One-byte octal display. Display the input offset in hexadecimal, followed by sixteen space-separated, three column, zero-filled, bytes of input data, in octal, per line.

-c One-byte character display. Display the input offset in hexadecimal, followed by sixteen space-separated, three column, space-filled, characters of input data per line.

-C

Canonical hex+ASCII display. Display the input offset in hexadecimal, followed by sixteen space-separated, two column, hexadecimal bytes, followed by the same sixteen bytes in %_p format enclosed in "|" characters.

-d

Two-byte decimal display. Display the input offset in hexadecimal, followed by eight space-separated, five column, zero-filled, two-byte units of input data, in unsigned decimal, per line.

-e format_string

Specify a format string to be used for displaying data.

-f format_file

Specify a file that contains one or more newline separated format strings. Empty lines and lines whose first non-blank character is a hash mark (#) are ignored.

-n length

Interpret only length bytes of input.

-о

Two-byte octal display. Display the input offset in hexadecimal, followed by eight space-separated, six column, zero-filled, two byte quantities of input data, in octal, per line.

-s offset

Skip offset bytes from the beginning of the input. By default, offset is interpreted as a decimal number. With a leading 0x or 0X, offset is interpreted as a hexadecimal number, otherwise, with a leading 0, offset is interpreted as an octal number. Appending the character b, k, or m to offset causes it to be interpreted as a multiple of 512, 1024, or 1048576, respectively.

-ν

The -v option causes hexdump to display all input data. Without the -v option, any number of groups of output lines, which would be identical to the immediately preceding group of output lines (except for the input offsets), are replaced with a line containing a single asterisk.

-x

Two-byte hexadecimal display. Display the input offset in hexadecimal, followed by eight, space separated, four column, zero-filled, two-byte quantities of input data, in hexadecimal, per line.

For each input file, hexdump sequentially copies the input to standard output, transforming the data according to the format strings specified by the -e and -f options, in the order that they were specified.

Formats

A format string contains any number of format units, separated by whitespace. A format unit contains up to three items: an iteration count, a byte count, and a format.

The iteration count is an optional positive integer, which defaults to one. Each format is applied iteration count times.

The byte count is an optional positive integer. If specified it defines the number of

bytes to be interpreted by each iteration of the format.

If an iteration count and/or a byte count is specified, a single slash must be placed after the iteration count and/or before the byte count to disambiguate them. Any whitespace before or after the slash is ignored.

The format is required and must be surrounded by double quote (" ") marks. It is interpreted as a fprintf-style format string (see*fprintf*), with the following exceptions:

- An asterisk (*) may not be used as a field width or precision.
- A byte count or field precision is required for each "s" con- version character (unlike the fprintf(3) default which prints the entire string if the precision is unspecified).
- The conversion characters "h", "l", "n", "p" and "q" are not supported.
- The single character escape sequences described in the C standard are supported:

NUL 0 <alert character> a <backspace> b <form-feed> f <newline> n <carriage return> r <tab> t <vertical tab> v

Hexdump also supports the following additional conversion strings:

_a[dox]

Display the input offset, cumulative across input files, of the next byte to be displayed. The appended characters d, o, and x specify the display base as decimal, octal or hexadecimal respectively.

A[dox]

Identical to the _a conversion string except that it is only performed once, when all of the input data has been processed.

_c Output characters in the default character set. Nonprinting characters are displayed in three character, zero-padded octal, except for those representable by standard escape notation (see above), which are displayed as two character strings.

р

Output characters in the default character set. Nonprinting characters are displayed as a single ".".

_u

Output US ASCII characters, with the exception that control characters are displayed using the following, lower-case, names. Characters greater than 0xff, hexadecimal, are displayed as hexadecimal strings.

000	001	002	003	004	005
nul	soh	stx	etx	eot	enq
006	007	008	009	00A	00B
ack	bel	bs	ht	lf	vt
00C	00D	00E	00F	010	011
ff	cr	so	si	dle	dc1
012	013	014	015	016	017
dc2	dc3	dc4	nak	syn	etb
018	019	01A	01B	01C	01D
can	em	sub	esc	fs	gs
01E	01F	07F			
rs	us	del			

The default and supported byte counts for the conversion characters are as follows:

%_c,	One byte counts		
%_p,	only.		
%_u,			
%c			
%d, %i,	Four byte default,		
%o,	one, two, four and		
%u,	eight byte counts		
%X, %x	supported.		
%E,	Eight byte default,		
%e, %f,	four byte counts		
%G, %g	supported.		

The amount of data interpreted by each format string is the sum of the data required by each format unit, which is the iteration count times the byte count, or the iteration count times the number of bytes required by the format if the byte count is not specified.

The input is manipulated in "blocks", where a block is defined as the largest amount of data specified by any format string. Format strings interpreting less than an input block's worth of data, whose last format unit both interprets some number of bytes and does not have a specified iteration count, have the iteration count incremented until the entire input block has been processed or there is not enough data remaining in the block to satisfy the format string.

If, either as a result of user specification or hexdump modifying the iteration count as described above, an iteration count is greater than one, no trailing whitespace characters are output during the last iteration.

It is an error to specify a byte count as well as multiple conversion characters or strings unless all but one of the conversion characters or strings is a or A.

If, as a result of the specification of the -n option or end-of-file being reached, input data only partially satisfies a format string, the input block is zero-padded sufficiently to display all available data (i.e. any format units overlapping the end of data will display some num- ber of the zero bytes).

Further output by such format strings is replaced by an equivalent number of spaces. An equivalent number of spaces is defined as the number of spaces output by an s conversion character with the same field width and precision as the original conversion character or conversion string but with any "+", ", "#" conversion flag characters removed, and ref- erencing a NULL string.

If no format strings are specified, the default display is equivalent to specifying the -x option.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use hexdump:

```
SHLL [/] $ hexdump -C -n 512 /dev/hda1
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_HEXDUMP to have this command included.

This command can be excluded from the shell command set by defining "CONFIGURE_SHELL_NO_COMMAND_HEXDUMP" when all shell commands have been configured.

PROGRAMMING INFORMATION:

The hexdump command is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_hexdump(
   int argc,
   char **argv
);
```

The configuration structure for the hexdump has the following prototype:

4.2.14 ln - make links

SYNOPSYS:

ln [-fhinsv] source_file [target_file]
ln [-fhinsv] source_file ... target_dir

DESCRIPTION:

The ln utility creates a new directory entry (linked file) which has the same modes as the original file. It is useful for maintaining multiple copies of a file in many places at once without using up storage for the "copies"; instead, a link "points" to the original copy. There are two types of links; hard links and symbolic links. How a link "points" to a file is one of the differences between a hard or symbolic link.

The options are as follows:

-f

Unlink any already existing file, permitting the link to occur.

-h

If the target_file or target_dir is a symbolic link, do not follow it. This is most useful with the -f option, to replace a symlink which may point to a directory.

-i

Cause In to write a prompt to standard error if the target file exists. If the response from the standard input begins with the character 'y' or 'Y', then unlink the target file so that the link may occur. Otherwise, do not attempt the link. (The -i option overrides any previous -f options.)

-n

Same as -h, for compatibility with other ln implementations.

S

Create a symbolic link.

-ν

Cause In to be verbose, showing files as they are processed.

By default ln makes hard links. A hard link to a file is indistinguishable from the original directory entry; any changes to a file are effective independent of the name used to reference the file. Hard links may not normally refer to directories and may not span file systems.

A symbolic link contains the name of the file to which it is linked. The referenced file is used when an *open* operation is performed on the link. A *stat* on a symbolic link will return the linked-to file; an *lstat* must be done to obtain information about the link. The *readlink* call may be used to read the contents of a symbolic link. Symbolic links may span file systems and may refer to directories.

Given one or two arguments, In creates a link to an existing file source_file. If target_file is given, the link has that name; target_file may also be a directory in which to place the link; otherwise it is placed in the current directory. If only the directory is specified, the link will be made to the last component of source file.

Given more than two arguments, ln makes links in target_dir to all the named source files. The links made will have the same name as the files being linked to.

EXIT STATUS:

The 1n utility exits 0 on success, and >0 if an error occurs.

NOTES:

None.

EXAMPLES:

1 SHLL [/] ln -s /dev/console /dev/con1

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_LN to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_LN when all shell commands have been configured.

PROGRAMMING INFORMATION:

The 1n command is implemented by a C lan-

guage function which has the following prototype:

```
int rtems_shell_rtems_main_ln(
    int argc,
    char **argv
);
```

The configuration structure for the ln has the following prototype:

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD 4.0.

4.2.15 ls - list files in the directory

SYNOPSYS:

```
ı ls [dir]
```

DESCRIPTION:

This command displays the contents of the specified directory. If no arguments are given, then it displays the contents of the current working directory.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command currently does not display information on a set of files like the POSIX ls(1). It only displays the contents of entire directories.

EXAMPLES:

The following is an example of how to use ls:

```
1 SHLL [/] $ 1s
                                       536
2 drwxr-xr-x 1
                   root
                          root
   →Jan 01 00:00 dev/
3 drwxr-xr-x 1 root
                          root
                                      1072
   →Jan 01 00:00 etc/
4 2 files 1608 bytes occupied
5 SHLL [/] $ 1s etc
6 -rw-r--r 1
                                       102.
                  root
                          root
   →Jan 01 00:00 passwd
7 -rw-r--r-- 1 root
                          root
                                        42_
   →Jan 01 00:00 group
8 -rw-r--r- 1
                  root
                                        30_
                          root
   →Jan 01 00:00 issue
9 -rw-r--r 1 root
                          root
                                        28<u></u>
   →Jan 01 00:00 issue.net
10 4 files 202 bytes occupied
11 SHLL [/] $ 1s dev etc
12 -rwxr-xr-x
             1 rtems
   →Jan 01 00:00 console
13 -rwxr-xr-x
             1 root
                          root
                                         0_
   →Jan 01 00:00 console_b
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_LS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_LS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The 1s is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_ls(
    int argc,
    char **argv
);
```

The configuration structure for the 1s has the following prototype:

4.2.16 md5 - compute the Md5 hash of a file or list of files

SYNOPSYS:

```
1 md5 <files>
```

DESCRIPTION:

This command prints the MD5 of a file. You can provide one or more files on the command line and a hash for each file is printed in a single line of output.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use md5:

```
1 SHLL [/] $ md5 shell-init
2 MD5 (shell-init) = ___

→43b4d2e71b47db79eae679a2efeacf31
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define "CONFIGURE_SHELL_COMMAND_MD5" to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MD5 when all shell commands have been configured.

PROGRAMMING INFORMATION:

The md5 is implemented by a C language function which has the following prototype:

```
int rtems_shell_main_md5(
    int argc,
    char **argv
4);
```

The configuration structure for the md5 has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_MD5_

→Command;
```

4.2.17 mkdir - create a directory

SYNOPSYS:

```
mkdir dir [dir1 .. dirN]
```

DESCRIPTION:

This command creates the set of directories in the order they are specified on the command line. If an error is encountered making one of the directories, the command will continue to attempt to create the remaining directories on the command line.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

If this command is invoked with no arguments, nothing occurs.

The user must have sufficient permissions to create the directory. For the fileio test provided with RTEMS, this means the user must login as root not rtems.

EXAMPLES:

The following is an example of how to use mkdir:

```
1 SHLL [/] # 1s
                                        536
2 drwxr-xr-x
             1
                   root
                           root
   →Jan 01 00:00 dev/
3 drwxr-xr-x 1 root
                           root
                                       1072
   →Jan 01 00:00 etc/
4 2 files 1608 bytes occupied
5 SHLL [/] # mkdir joel
6 SHLL [/] # 1s joel
  0 files 0 bytes occupied
8 SHLL [/] # cp etc/passwd joel
9 SHLL [/] # ls joel
10 -rw-r--r--
              1
                   root
                                        102.
                           root
   →Jan 01 00:02 passwd
11 1 files 102 bytes occupied
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MKDIR to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MKDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mkdir is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mkdir(
   int argc,
   char **argv
);
```

The configuration structure for the mkdir has the following prototype:

4.2.18 mkdos - DOSFS file system format

SYNOPSYS:

```
nkdos [-V label] [-s sectors/cluster] [-r_

→size] [-v] path
```

DESCRIPTION:

This command formats a block device entry with the DOSFS file system.

-V label

Specify the volume label.

-s sectors/cluster

Specify the number of sectors per cluster.

-r size

Specify the number of entries in the root directory.

-ν

Enable verbose output mode.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use mkdos:

```
1 SHLL [/] $ mkdos /dev/rda1
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MKDOS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MKDOS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mkdos is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mkdos(
int argc,
```

```
char **argv
);
```

The configuration structure for the mkdos has the following prototype:

4.2.19 mknod - make device special file

SYNOPSYS:

```
mknod [-rR] [-F fmt] [-g gid] [-m mode] [-

u uid] name [c | b] [driver | major].

minor

mknod [-rR] [-F fmt] [-g gid] [-m mode] [-

u uid] name [c | b] major unit subunit

mknod [-rR] [-g gid] [-m mode] [-u uid].

name [c | b] number

mknod [-rR] [-g gid] [-m mode] [-u uid].

name p
```

DESCRIPTION:

The mknod command creates device special files, or fifos. Normally the shell script /dev/MAKEDEV is used to create special files for commonly known devices; it executes mknod with the appropriate arguments and can make all the files required for the device.

To make nodes manually, the arguments are:

-r

Replace an existing file if its type is incorrect.

-R

Replace an existing file if its type is incorrect. Correct the mode, user and group.

-g gid

Specify the group for the device node. The gid operand may be a numeric group ID or a group name. If a group name is also a numeric group ID, the operand is used as a group name. Precede a numeric group ID with a # to stop it being treated as a name.

-m mode

Specify the mode for the device node. The mode may be absolute or symbolic, see *chmod*.

-u uid

Specify the user for the device node. The uid operand may be a numeric user ID or a user name. If a user name is also a numeric user ID, the operand is used as a user name. Precede a numeric user ID with a # to stop it being treated as a name.

name

Device name, for example "tty" for a termios serial device or "hd" for a disk.

$b \mid c \mid p$

Type of device. If the device is a block type device such as a tape or disk drive which needs both cooked and raw special files, the type is b. All other devices are character type devices, such as terminal and pseudo devices, and are type c. Specifying p creates fifo files.

driver | major

The major device number is an integer number which tells the kernel which device driver entry point to use. If the device driver is configured into the current kernel it may be specified by driver name or major number.

minor

The minor device number tells the kernel which one of several similar devices the node corresponds to; for example, it may be a specific serial port or pty.

unit and subunit

The unit and subunit numbers select a subset of a device; for example, the unit may specify a particular disk, and the subunit a partition on that disk. (Currently this form of specification is only supported by the bsdos format, for compatibility with the BSD/OS mknod).

number

A single opaque device number. Useful for netbooted computers which require device numbers packed in a format that isn't supported by -F.

EXIT STATUS:

The mknod utility exits 0 on success, and >0 if an error occurs.

NOTES:

None.

EXAMPLES:

1 SHLL [/] mknod c 3 0 /dev/ttyS10

CONFIGURATION:

This command is included in the de-

fault shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MKNOD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MKNOD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mknod command is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mknod(
   int argc,
   char **argv
4);
```

The configuration structure for the mknod has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→MKNOD_Command;
```

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD 4.0.

4.2.20 mkrfs - format RFS file system

SYNOPSYS:

```
nmkrfs [-vsbiIo] device
```

DESCRIPTION:

Format the block device with the RTEMS File System (RFS). The default configuration with not parameters selects a suitable block size based on the size of the media being formatted.

The media is broken up into groups of blocks. The number of blocks in a group is based on the number of bits a block contains. The large a block the more blocks a group contains and the fewer groups in the file system.

The following options are provided:

-ν

Display configuration and progress of the format.

-S

Set the block size in bytes.

-b

The number of blocks in a group. The block count must be equal or less than the number of bits in a block.

-i

Number of inodes in a group. The inode count must be equal or less than the number of bits in a block.

-I

Initialise the inodes. The default is not to initialise the inodes and to rely on the inode being initialised when allocated. Initialising the inode table helps recovery if a problem appears.

-0

Integer percentage of the media used by inodes. The default is 1%.

device

Path of the device to format.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use mkrfs:

```
SHLL [/] $ mkrfs /dev/fdda
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MKRFS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MKRFS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mkrfs command is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mkrfs(
   int argc,
   char **argv
);
```

The configuration structure for mkrfs has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→MKRFS_Command;
```

4.2.21 mount - mount disk

SYNOPSYS:

```
mount [-t fstype] [-r] [-L] device path
```

DESCRIPTION:

The mount command will mount a block device to a mount point using the specified file system. The files systems are:

- msdos MSDOS File System
- tftp TFTP Network File System
- ftp FTP Network File System
- nfs Network File System
- rfs RTEMS File System

When the file system type is 'msdos' or 'rfs' the driver is a "block device driver" node present in the file system. The driver is ignored with the 'tftp' and 'ftp' file systems. For the 'nfs' file system the driver is the 'host:/path' string that described NFS host and the exported file system path.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The mount point must exist.

The services offered by each file-system vary. For example you cannot list the directory of a TFTP file-system as this server is not provided in the TFTP protocol. You need to check each file-system's documentation for the services provided.

EXAMPLES:

Mount the Flash Disk driver to the '/fd' mount point:

Mount the NFS file system exported path 'bar' by host 'foo':

```
$ mount -t nfs foo:/bar /nfs
```

Mount the TFTP file system on '/tftp':

```
s mount -t tftp /tftp
```

To access the TFTP files on server '10.10.10.10': .. code-block:: shell

\$ cat /tftp/10.10.10.10/test.txt

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MOUNT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MOUNT when all shell commands have been configured.

The mount command includes references to file-system code. If you do not wish to include file-system that you do not use do not define the mount command support for that file-system. The file-system mount command defines are:

- msdos CONFIG-URE SHELL MOUNT_MSDOS
- tftp CONFIG-URE_SHELL_MOUNT_TFTP
- ftp CONFIG-URE SHELL MOUNT FTP
- nfs CONFIG-URE SHELL_MOUNT_NFS
- rfs CONFIG-URE_SHELL_MOUNT_RFS

An example configuration is:

```
#define CONFIGURE_SHELL_MOUNT_MSDOS
#ifdef RTEMS_NETWORKING
#define CONFIGURE_SHELL_MOUNT_TFTP
#define CONFIGURE_SHELL_MOUNT_NFS
#define CONFIGURE_SHELL_MOUNT_RFS
#define CONFIGURE_SHELL_MOUNT_RFS
#endif
```

PROGRAMMING INFORMATION:

The mount is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mount(
   int argc,
```

```
char **argv
);
```

The configuration structure for the mount has the following prototype:

4.2.22 my - move files

SYNOPSYS:

```
mv [-fiv] source_file target_file
z mv [-fiv] source_file... target_file
```

DESCRIPTION:

In its first form, the mv utility renames the file named by the source operand to the destination path named by the target operand. This form is assumed when the last operand does not name an already existing directory.

In its second form, mv moves each file named by a source operand to a destination file in the existing directory named by the directory operand. The destination path for each operand is the pathname produced by the concatenation of the last operand, a slash, and the final pathname component of the named file.

The following options are available:

-f

Do not prompt for confirmation before overwriting the destination path.

-i

Causes my to write a prompt to standard error before moving a file that would overwrite an existing file. If the response from the standard input begins with the character 'y', the move is attempted.

-ν

Cause mv to be verbose, showing files as they are processed.

The last of any -f or -i options is the one which affects mv's behavior.

It is an error for any of the source operands to specify a nonexistent file or directory.

It is an error for the source operand to specify a directory if the target exists and is not a directory.

If the destination path does not have a mode which permits writing, mv prompts the user for confirmation as specified for the -i option.

Should the *rename* call fail because source and target are on different file systems, mv will remove the destination file, copy the source file to the destination, and then remove the source. The effect is roughly equivalent to:

```
rm -f destination_path && \
cp -PRp source_file destination_path && \
rm -rf source_file
```

EXIT STATUS:

The mv utility exits 0 on success, and >0 if an error occurs.

NOTES:

None.

EXAMPLES:

```
SHLL [/] mv /dev/console /dev/con1
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mv command is implemented by a C language function which has the following prototype:

```
int rtems_shell_main_mv(
    int argc,
    char **argv
);
```

The configuration structure for the mv has the following prototype:

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD 4.0.

4.2.23 pwd - print work directory

SYNOPSYS:

```
ı pwd
```

DESCRIPTION:

This command prints the fully qualified filename of the current working directory.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use pwd:

```
SHLL [/] $ pwd
/
SHLL [/] $ cd dev
SHLL [/dev] $ pwd
/dev
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_PWD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_PWD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The pwd is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_pwd(
    int argc,
    char argv
);
```

The configuration structure for the pwd has the following prototype:

```
1
```

extern rtems_shell_cmd_t rtems shell PWD_Command;

4.2.24 rmdir - remove empty directories

SYNOPSYS:

```
rmdir [dir1 .. dirN]
```

DESCRIPTION:

This command removes the specified set of directories. If no directories are provided on the command line, no actions are taken.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command is a implemented using the rmdir(2) system call and all reasons that call may fail apply to this command.

EXAMPLES:

The following is an example of how to use rmdir:

```
SHLL [/] # mkdir joeldir
SHLL [/] # rmdir joeldir
SHLL [/] # ls joeldir
joeldir: No such file or directory.
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_RMDIR to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_RMDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The rmdir is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_rmdir(
   int argc,
   char **argv
);
```

The configuration structure for the rmdir has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→RMDIR_Command;
```

4.2.25 rm - remove files

SYNOPSYS:

```
rm file1 [file2 ... fileN]
```

DESCRIPTION:

This command deletes a name from the filesystem. If the specified file name was the last link to a file and there are no open file descriptor references to that file, then it is deleted and the associated space in the file system is made available for subsequent use.

If the filename specified was the last link to a file but there are open file descriptor references to it, then the file will remain in existence until the last file descriptor referencing it is closed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use rm:

```
SHLL [/] # cp /etc/passwd tmpfile

SHLL [/] # cat tmpfile

root:*:0:0:root::/:/bin/sh

rtems:*:1:1:RTEMS Application::/:/bin/sh

tty:!:2:2:tty owner::/:/bin/false

SHLL [/] # rm tmpfile

SHLL [/] # cat tmpfile

scat: tmpfile: No such file or directory
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_RM to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_RM when all shell commands have been configured.

PROGRAMMING INFORMATION:

The rm is implemented by a C language function which has the following prototype:

```
int rtems_shell_main_rm(
    int argc,
    char **argv
}
```

The configuration structure for the rm has the following prototype: .. code-block:: c

extern rtems_shell_cmd_t rtems_shell_RM_Command;

4.2.26 umask - set file mode creation mask

```
extern rtems_shell_cmd_t rtems_shell_

→UMASK_Command;
```

SYNOPSYS:

```
ı umask [new_umask]
```

DESCRIPTION:

This command sets the user file creation mask to new_umask. The argument new_umask may be octal, hexadecimal, or decimal.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command does not currently support symbolic mode masks.

EXAMPLES:

The following is an example of how to use umask:

```
SHLL [/] $ umask

022

3 SHLL [/] $ umask 0666

4 0666

5 SHLL [/] $ umask

0666
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_UMASK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_UMASK when all shell commands have been configured.

PROGRAMMING INFORMATION:

The umask is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_umask(
   int argc,
   char **argv
);
```

The configuration structure for the umask has the following prototype:

4.2.27 unmount - unmount disk

SYNOPSYS:

```
ı unmount path
```

DESCRIPTION:

This command unmounts the device at the specified path.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

TBD - Surely there must be some warnings to go here.

EXAMPLES:

The following is an example of how to use unmount:

```
ı # unmount /mnt
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_UNMOUNT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_UNMOUNT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The unmount is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_unmount(
   int argc,
   char **argv
4
);
```

The configuration structure for the unmount has the following prototype:

MEMORY COMMANDS

5.1 Introduction

The RTEMS shell has the following memory commands:

- *mdump* (page 82) Display contents of memory
- *wdump* (page 83) Display contents of memory (word)
- *ldump* (page 84) Display contents of memory (longword)
- *medit* (page 85) Modify contents of memory
- *mfill* (page 86) File memory with pattern
- *mmove* (page 87) Move contents of memory
- *malloc* (page 88) Obtain information on C Program Heap

5.2 Commands

This section details the Memory Commands available. A subsection is dedicated to each of the commands and describes the behavior and configuration of that command as well as providing an example usage.

5.2.1 mdump - display contents of memory

SYNOPSYS:

```
ndump [address [length [size]]]
```

DESCRIPTION:

This command displays the contents of memory at the address and length in size byte units specified on the command line.

When size is not provided, it defaults to 1 byte units. Values of 1, 2, and 4 are valid; all others will cause an error to be reported.

When length is not provided, it defaults to 320 which is twenty lines of output with sixteen bytes of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:

This command always returns 0 to indicate success.

NOTES:

Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:

The following is an example of how to use mdump:

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define

CONFIGURE_SHELL_COMMAND_MDUMP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mdump is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mdump(
   int argc,
   char **argv
);
```

The configuration structure for the mdump has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→MDUMP_Command;
```

5.2.2 wdump - display contents of memory (word)

SYNOPSYS:

```
wdump [address [length]]
```

DESCRIPTION:

This command displays the contents of memory at the address and length in bytes specified on the command line.

This command is equivalent to mdump address length 2.

When length is not provided, it defaults to 320 which is twenty lines of output with eight words of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:

This command always returns 0 to indicate success.

NOTES:

Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:

The following is an example of how to use wdump:

```
SHLL [/] $ wdump 0x02010000 32
0x02010000 0201 08D8 0201 08C0-0201 08AC...
0x02010010 0201 0894 0201 0718-0201 0640...
0x0201 0798 ......
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_WDUMP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_WDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The wdump is implemented by a C language

function which has the following prototype:

```
int rtems_shell_rtems_main_wdump(
   int argc,
   char **argv
);
```

The configuration structure for the wdump has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→WDUMP_Command;
```

5.2.3 ldump - display contents of memory (longword)

SYNOPSYS:

```
1 dump [address [length]]
```

DESCRIPTION:

This command displays the contents of memory at the address and length in bytes specified on the command line.

This command is equivalent to mdump address length 4.

When length is not provided, it defaults to 320 which is twenty lines of output with four longwords of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:

This command always returns 0 to indicate success.

NOTES:

Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:

The following is an example of how to use ldump:

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_LDUMP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_LDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The 1dump is implemented by a C language

function which has the following prototype:

```
int rtems_shell_rtems_main_ldump(
   int argc,
   char **argv
);
```

The configuration structure for the 1dump has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→LDUMP_Command;
```

5.2.4 medit - modify contents of memory

SYNOPSYS:

```
medit address value1 [value2 ... valueN]
```

DESCRIPTION:

This command is used to modify the contents of the memory starting at address using the octets specified by the parameters "value1" through valueN.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:

The following is an example of how to use medit:

```
SHLL [/] $ mdump 0x02000000 32

0x02000000 A1 48 00 00 29 00 80 33-81 C5_

→22 BC A6 10 21 00 .H..)..3.."...!.

3 0x02000010 A1 48 00 00 29 00 80 33-81 C5_

→22 BC A6 10 21 01 .H..)..3.."...!.

4 SHLL [/] $ medit 0x02000000 0x01 0x02_

→0x03 0x04 0x05 0x06 0x07 0x08 0x09

5 SHLL [/] $ mdump 0x02000000 32

6 0x02000000 01 02 03 04 05 06 07 08-09 00_

→22 BC A6 10 21 00 ......"..!.

7 0x02000010 A1 48 00 00 29 00 80 33-81 C5_

→22 BC A6 10 21 01 .H..)..3.."..!
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MEDIT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MEDIT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The medit is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_medit(
   int argc,
   char **argv
);
```

The configuration structure for the medit has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→MEDIT_Command;
```

5.2.5 mfill - file memory with pattern

SYNOPSYS:

```
nfill address length value
```

DESCRIPTION:

This command is used to fill the memory starting at address for the specified length in octets when the specified at "value".

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Filling a non-existent address range may result in an unrecoverable program fault. Similarly overwriting interrupt vector tables, code space or critical data areas can be fatal as shown in the example.

EXAMPLES:

In this example, the address used (0x23d89a0) as the base address of the filled area is the end of the stack for the Idle thread. This address was determined manually using gdb and is very specific to this application and BSP. The first command in this example is an mdump to display the initial contents of this memory. We see that the first 8 bytes are 0xA5 which is the pattern used as a guard by the Stack Checker. On the first context switch after the pattern is overwritten by the mfill command, the Stack Checker detect the pattern has been corrupted and generates a fatal error.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define

CONFIGURE_SHELL_COMMAND_MFILL to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MFILL when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mfill is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mfill(
   int argc,
   char **argv
);
```

The configuration structure for the mfill has the following prototype:

5.2.6 mmove - move contents of memory

SYNOPSYS:

```
1 mmove dst src length
```

DESCRIPTION:

This command is used to copy the contents of the memory starting at src to the memory located at dst for the specified length in octets.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use mmove:

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MMOVE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MMOVE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mmove is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_mmove(
   int argc,
   char **argv
4);
```

The configuration structure for the mmove has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→MMOVE_Command;
```

5.2.7 malloc - obtain information on C EXAMPLES: program heap

SYNOPSYS:

1 malloc [walk]

DESCRIPTION:

This command prints information about the current state of the C Program Heap used by the malloc() family of calls if no or invalid options are passed to the command. This includes the following information:

- Number of free blocks
- Largest free block
- · Total bytes free
- Number of used blocks
- Largest used block
- Total bytes used
- Size of the allocatable area in bytes
- Minimum free size ever in bytes
- · Maximum number of free blocks ever
- · Maximum number of blocks searched
- · Lifetime number of bytes allocated
- · Lifetime number of bytes freed
- Total number of searches
- Total number of successful allocations
- Total number of failed allocations
- Total number of successful frees.
- Total number of successful resizes

When the subcommand walk is specified, then a heap walk will be performed and information about each block is printed out.

EXIT STATUS:

This command returns 0 on success and nonzero if an error is encountered.

NOTES:

NONE

The following is an example of how to use the malloc command.

```
SHLL [/] $ malloc
  C Program Heap and RTEMS Workspace are the_
   →same.
3 Number of free blocks:
4 Largest free block:
   → 266207504
5 Total bytes free:
   → 266208392
6 Number of used blocks:
             167
   \hookrightarrow
7 Largest used block:
           16392
8 Total bytes used:
           83536
   \hookrightarrow
  Size of the allocatable area in bytes:
   → 266291928
10 Minimum free size ever in bytes:
       266207360
11 Maximum number of free blocks ever:
12 Maximum number of blocks searched ever:
13 Lifetime number of bytes allocated:
            91760
14 Lifetime number of bytes freed:
             8224
15 Total number of searches:
   \hookrightarrow
16 Total number of successful allocations:
             186
   \hookrightarrow
  Total number of failed allocations:
18 Total number of successful frees:
               19
19 Total number of successful resizes:
20 SHLL [/] $ malloc walk
21 malloc walk
22 PASS[0]: page size 8, min block size 48
23 area begin 0x00210210, area end 0x0FFFC000
24 first block 0x00210214, last block
   →0x0FFFBFDC
25 first free 0x00228084, last free 0x00228354
26 PASS[0]: block 0x00210214: size 88
27 ...
  PASS[0]: block 0x00220154: size 144
29 PASS[0]: block 0x002201E4: size 168, prev_
   \rightarrow0x002205BC, next 0x00228354 (= last _
30 PASS[0]: block 0x0022028C: size 168, prev_
   ⇔size 168
32 PASS[0]: block 0x00226E7C: size 4136
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_MALLOC to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_MALLOC when all shell commands have been configured.

PROGRAMMING INFORMATION:

The malloc is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_malloc(
   int argc,
   char **argv
}
```

The configuration structure for the malloc has the following prototype:

RTEMS SPECIFIC COMMANDS

6.1 Introduction

The RTEMS shell has the following RTEMS specific commands:

- *shutdown* (page 94) Shutdown the system
- *cpuuse* (page 95) print or reset per thread cpu usage
- *stackuse* (page 96) print per thread stack usage
- *perioduse* (page 97) print or reset per period usage
- *profreport* (page 98) print a profiling report
- *wkspace* (page 100) Display information on Executive Workspace
- *config* (page 101) Show the system configuration.
- *itask* (page 102) List init tasks for the system
- extension (page 103) Display information about extensions
- *task* (page 104) Display information about tasks
- *queue* (page 105) Display information about message queues
- *sema* (page 106) display information about semaphores
- region (page 107) display information about regions
- *part* (page 108) display information about partitions
- *object* (page 109) Display information about RTEMS objects
- *driver* (page 110) Display the RTEMS device driver table
- *dname* (page 111) Displays information about named drivers
- pthread (page 112) Displays information about POSIX threads

6.2 Commands

This section details the RTEMS Specific Commands available. A subsection is dedicated to each of the commands and describes the behavior and configuration of that command as well as providing an example usage.

6.2.1 shutdown - Shutdown the system

SYNOPSYS:

```
ı shutdown
```

DESCRIPTION:

This command is used to shutdown the RTEMS application.

EXIT STATUS:

This command does not return.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use shutdown:

```
SHLL [/] $ shutdown
System shutting down at user request
```

The user will not see another prompt and the system will shutdown.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_SHUTDOWN to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_SHUTDOWN when all shell commands have been configured.

PROGRAMMING INFORMATION:

The configuration structure for the shutdown has the following prototype:

6.2.2 cpuuse - print or reset per thread cpu usage

SYNOPSYS:

```
cpuuse [-r]
```

DESCRIPTION:

This command may be used to print a report on the per thread cpu usage or to reset the per thread CPU usage statistics. When invoked with the -r option, the CPU usage statistics are reset.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The granularity of the timing information reported is dependent upon the BSP and the manner in which RTEMS was built. In the default RTEMS configuration, if the BSP supports nanosecond granularity timestamps, then the information reported will be highly accurate. Otherwise, the accuracy of the information reported is limited by the clock tick quantum.

EXAMPLES:

The following is an example of how to use cpuuse:

```
SHLL [/] $ cpuuse
2 CPU Usage by thread
3 ID
                NAME
                              SECONDS
                                        PERCENT
4 0x09010001
                                   49.745393
                IDLE
   →98.953
                                   0.000000
5 0x0a010001
                UT1
   -0.000
6 0x0a010002
                SHLL
                                   0.525928
   →1.046
7 Time since last CPU Usage reset 50.271321_
   → seconds
8 SHLL [/] $ cpuuse -r
9 Resetting CPU Usage information
10 SHLL [/] $ cpuuse
_{11}|\,\mbox{CPU} Usage by thread
                              SECONDS
12 ID
                NAME
                                        PERCENT
  0x09010001
                IDLE
                                   0.000000
   -0.000
14 0x0a010001
                UI1
                                   0.000000
   →0.000
15 0x0a010002
                 SHLL
                                     0.003092
   →100.000
```

```
Time since last CPU Usage reset 0.003092.

→seconds
```

In the above example, the system had set idle for nearly a minute when the first report was generated. The "cpuuse -r" and cpuuse commands were pasted from another window so were executed with no gap between. In the second report, only the shell thread has run since the CPU Usage was reset. It has consumed approximately 3.092 milliseconds of CPU time processing the two commands and generating the output.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CPUUSE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CPUUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cpuuse is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_cpuuse(
   int argc,
   char **argv
);
```

The configuration structure for the cpuuse has the following prototype:

6.2.3 stackuse - print per thread stack us- **PROGRAMMING INFORMATION:** age

SYNOPSYS:

```
stackuse
```

DESCRIPTION:

This command prints a Stack Usage Report for all of the tasks and threads in the system. On systems which support it, the usage of the interrupt stack is also included in the report.

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

The CONFIGURE_STACK_CHECKER_ENABLED confdefs.h constant must be defined when the application is configured for this command to have any information to report.

EXAMPLES:

The following is an example of how to use stackuse:

```
1 SHLL [/] $ stackuse
2 Stack usage by thread
3 ID
          NAME
                  LOW
                                 HIGH
  →CURRENT
               AVAILABLE
                             USED
4 0x09010001 IDLE 0x023d89a0 - 0x023d99af...
  →0x023d9760
                   4096
                               608
5 0x0a010001 UI1 0x023d9f30 - 0x023daf3f_
  →0x023dad18
                   4096
                              1804
6 0x0a010002 SHLL 0x023db4c0 - 0x023df4cf_
  →0x023de9d0
                              5116
                16384
0xffffffff INTR 0x023d2760 - 0x023d375f_
  →0x00000000
                   4080
                               316
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set. CONFIGURE_SHELL_COMMAND_STACKUSE have this command included.

This command can be excluded from the command set by defining CONFIGURE_SHELL_NO_COMMAND_STACKUSE when all shell commands have been configured.

The stackuse is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_stackuse(
      int
             argc,
2
3
     char **argv
 );
```

The configuration structure for the stackuse has the following prototype:

```
rtems_shell_cmd_t
                               rtems_shell_
extern
→STACKUSE_Command;
```

6.2.4 perioduse - print or reset per period usage

SYNOPSYS:

```
perioduse [-r]
```

DESCRIPTION:

This command may be used to print a statistics report on the rate monotonic periods in the application or to reset the rate monotonic period usage statistics. When invoked with the -r option, the usage statistics are reset.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The granularity of the timing information reported is dependent upon the BSP and the manner in which RTEMS was built. In the default RTEMS configuration, if the BSP supports nanosecond granularity timestamps, then the information reported will be highly accurate. Otherwise, the accuracy of the information reported is limited by the clock tick quantum.

EXAMPLES:

The following is an example of how to use perioduse:

```
1 SHLL [/] $ perioduse
2 Period information by period
3 --- CPU times are in seconds ---
  --- Wall times are in seconds ---
5 ID
           OWNER COUNT MISSED
                                           CPU_
   →TIME
                             WALL TIME
6 MIN/MAX/AVG
                               MIN/MAX/AVG
7 0x42010001 TA1
                             502
   →0 0:000039/0:042650/0:004158 0:000039/
   \rightarrow 0:020118/0:002848
8 0x42010002 TA2
                             502
   →0 0:000041/0:042657/0:004309 0:000041/
   \rightarrow 0:020116/0:002848
9 0x42010003 TA3
   \rightarrow 0 0:000041/0:041564/0:003653
                                     0:000041/
   →0:020003/0:002814
10 0x42010004 TA4
                             501

→ 0 0:000043/0:044075/0:004911

                                      0:000043/
   \rightarrow 0:020004/0:002814
11 0x42010005 TA5
                               10
   →0 0:000065/0:005413/0:002739
                                      0:000065/
   →1:000457/0:041058
```

```
12 MIN/MAX/AVG
                               MIN/MAX/AVG
  SHLL [/] $ perioduse -r
14 Resetting Period Usage information
15 SHLL [/] $ perioduse
  --- CPU times are in seconds ---
17
  --- Wall times are in seconds ---
  ID
          OWNER COUNT MISSED
                                          CPU_
18
   →TIME
                            WALL TIME
19 MIN/MAX/AVG
                              MIN/MAX/AVG
20 0x42010001 TA1
21 0x42010002 TA2
                       0
                               0
22 0x42010003 TA3
                       0
                               0
23 0x42010004 TA4
                       0
                               0
  0x42010005 TA5
                               0
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_PERIODUSE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_PERIODUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The perioduse is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_perioduse(
   int argc,
   char **argv
);
```

The configuration structure for the perioduse has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→PERIODUSE_Command;
```

6.2.5 profreport - print a profiling report

SYNOPSYS:

1 profreport

DESCRIPTION:

This command may be used to print a profiling report if profiling is built into the RTEMS kernel.

EXIT STATUS:

This command returns 0.

NOTES:

Profiling must be enabled at build configuration time to get profiling information.

EXAMPLES:

The following is an example of how to use ³¹ profreport:

```
1 SHLL [/] $ profreport
2 < ProfilingReport name="Shell">
3 <PerCPUProfilingReport processorIndex="0">
4 <MaxThreadDispatchDisabledTime unit="ns">
   →10447</MaxThreadDispatchDisabledTime>
5 < MeanThreadDispatchDisabledTime unit="ns">
   →2</MeanThreadDispatchDisabledTime>
6 < Total Thread Dispatch Disabled Time
   →unit="ns">195926627
   →TotalThreadDispatchDisabledTime>
7 < ThreadDispatchDisabledCount > 77908688 < /
   →ThreadDispatchDisabledCount>
8 <MaxInterruptDelay</pre>
                                unit="ns">0</
   →MaxInterruptDelay>
9 < MaxInterruptTime</pre>
                              unit="ns">688</
   →MaxInterruptTime>
                              unit="ns">127</
10 < MeanInterruptTime
   →MeanInterruptTime>
11 <TotalInterruptTime unit="ns">282651157
   →TotalInterruptTime>
12 <InterruptCount>2215855</InterruptCount>
13 </PerCPUProfilingReport>
14 < PerCPUProfilingReport processorIndex="1">
15 <MaxThreadDispatchDisabledTime unit="ns">
   →9053</MaxThreadDispatchDisabledTime>
16 < MeanThreadDispatchDisabledTime unit="ns">
   →41</MeanThreadDispatchDisabledTime>
17 < Total Thread Dispatch Disabled Time
   →unit="ns">3053830335/
   → TotalThreadDispatchDisabledTime>
18 <ThreadDispatchDisabledCount>73334202</
   →ThreadDispatchDisabledCount>
19 < MaxInterruptDelay
                                 unit="ns">0</
   →MaxInterruptDelay>
```

```
20 <MaxInterruptTime
                                unit="ns">57</
   →MaxInterruptTime>
21 < MeanInterruptTime
                                unit="ns">35</
   →MeanInterruptTime>
22 <TotalInterruptTime
                         unit="ns">76980203</
   →TotalInterruptTime>
  <InterruptCount>2141179</InterruptCount>
24 </PerCPUProfilingReport>
25 <SMPLockProfilingReport name="SMP lock _</pre>
   ⇒stats">
26 < MaxAcquire Time
                              unit="ns">608</
   →MaxAcquireTime>
                             unit="ns">1387</
27 < MaxSectionTime
   →MaxSectionTime>
  <MeanAcquireTime
                              unit="ns">112</
   →MeanAcquireTime>
29 < Mean Section Time
                               unit="ns">338</
   →MeanSectionTime>
                           unit="ns">119031</
30 < Total Acquire Time
   →TotalAcquireTime>
  <TotalSectionTime
                           unit="ns">357222</
   →TotalSectionTime>
  <UsageCount>1055</UsageCount>
                      initialQueueLength="0">
33 <ContentionCount
   →1055</ContentionCount>
34 <ContentionCount initialQueueLength="1">0

→</ContentionCount>

35 <ContentionCount initialQueueLength="2">0

→</ContentionCount>

36 <ContentionCount initialQueueLength="3">0
   →</ContentionCount>
37 </SMPLockProfilingReport>
38 <SMPLockProfilingReport name="Giant">
39 < MaxAcquire Time
                             unit="ns">4186</
   →MaxAcquireTime>
40 <MaxSectionTime
                             unit="ns">7575</
   →MaxSectionTime>
41 < MeanAcquireTime
                              unit="ns">160</
   →MeanAcquireTime>
42 <MeanSectionTime
                               unit="ns">183</
   →MeanSectionTime>
43 <TotalAcquireTime
                       unit="ns">1772793111</
   →TotalAcquireTime>
44 <TotalSectionTime
                       unit="ns">2029733879</
   →TotalSectionTime>
45 <UsageCount>11039140</UsageCount>
                      initialQueueLength="0">
46 < Contention Count
   →11037655</ContentionCount>
47 | <ContentionCount
                      initialQueueLength="1">
   →1485</ContentionCount>
48 < ContentionCount initialQueueLength="2">0
   </ContentionCount>
49 <ContentionCount initialQueueLength="3">0
   →</ContentionCount>
50 </SMPLockProfilingReport>
51 </ProfilingReport>
```

CONFIGURATION:

When building a custom command set, define CONFIGURE_SHELL_COMMAND_PROFREPORT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_PROFREPORT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The configuration structure for the profreport has the following prototype:

extern rtems_shell_cmd_t rtems_shell_ →PROFREPORT_Command;

6.2.6 wkspace - display information on ex- **PROGRAMMING INFORMATION:** ecutive workspace

SYNOPSYS:

```
1 wkspace
```

DESCRIPTION:

This command prints information on the current state of the RTEMS Executive Workspace reported. This includes the following information:

- Number of free blocks
- · Largest free block
- · Total bytes free
- Number of used blocks
- · Largest used block
- · Total bytes used

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use wkspace:

```
1 SHLL [/] $ wkspace
2 Number of free blocks: 1
3 Largest free block:
                        132336
4 Total bytes free:
                        132336
5 Number of used blocks: 36
6 Largest used block:
                        16408
7 Total bytes used:
                         55344
```

CONFIGURATION:

This command is included in the de-When buildfault shell command set. ing a custom command set, define CONFIGURE_SHELL_COMMAND_WKSPACE have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_WKSPACE when all shell commands have been configured.

The wkspace is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_wkspace(
      int
             argc,
2
     char **argv
 );
```

The configuration structure for the wkspace has the following prototype:

```
rtems_shell_cmd_t
extern
                               rtems_shell_
 →WKSPACE_Command;
```

6.2.7 config - show the system configuration.

SYNOPSYS:

```
ıconfig
```

DESCRIPTION:

This command display information about the RTEMS Configuration.

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

At this time, it does not report every configuration parameter. This is an area in which user submissions or sponsorship of a developer would be appreciated.

EXAMPLES:

The following is an example of how to use config:

```
SHLL [/] $ config
INITIAL (startup) Configuration Info

WORKSPACE start: 0x23d22e0; size:

Ox2dd20

TIME usec/tick: 10000; tick/
Otimeslice: 50; tick/sec: 100

MAXIMUMS tasks: 20; timers: 0;
Osems: 50; que's: 20; ext's: 1

partitions: 0; regions: 0; ports: 0;
Operiods: 0
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_CONFIG to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_CONFIG when all shell commands have been configured.

PROGRAMMING INFORMATION:

The config is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_config(
   int argc,
```

```
char **argv
);
```

The configuration structure for the config has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→CONFIG_Command;
```

6.2.8 itask - list init tasks for the system

extern rtems_shell_cmd_t rtems_shell_ →ITASK_Command;

SYNOPSYS:

```
ı itask
```

DESCRIPTION:

This command prints a report on the set of initialization tasks and threads in the system.

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

At this time, it includes only Classic API Initialization Tasks. This is an area in which user submissions or sponsorship of a developer would be appreciated.

EXAMPLES:

The following is an example of how to use itask:

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_ITASK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_ITASK when all shell commands have been configured.

PROGRAMMING INFORMATION:

The itask is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_itask(
   int argc,
   char **argv
);
```

The configuration structure for the itask has the following prototype:

6.2.9 extension - display information about extensions

SYNOPSYS:

```
extension [id [id ...]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of User Extensions currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the extension command on a system with no user extensions.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_EXTENSION to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_EXTENSION when all shell commands have been configured.

PROGRAMMING INFORMATION:

The extension is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_extension(
    int argc,
    char **argv
4);
```

The configuration structure for the extension has the following prototype:

6.2.10 task - display information about tasks

SYNOPSYS:

```
task [id [id ...]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic API Tasks currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use the task on an application with just two Classic API tasks:

```
SHLL [/] $ task

ID NAME PRIO STAT MODES EVENTS.

WAITID WAITARG NOTES

WAITID WAITARG NOTES

SHUMBER OF THE PRIO STAT MODES EVENTS.

WAITID WAITARG NOTES

SHUMBER OF THE PRIO STAT MODES EVENTS.

WAITID WAITARG NOTES

SHUMBER OF THE PRIO STAT MODES EVENTS.
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_TASK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_TASK when all shell commands have been configured.

PROGRAMMING INFORMATION:

The task is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_task(
   int argc,
```

```
char **argv
);
```

The configuration structure for the task has the following prototype:

6.2.11 queue - display information about message queues

SYNOPSYS:

```
queue [id [id ... ]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic API Message Queues currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the queue command on a system with no Classic API Message Queues.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_QUEUE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_QUEUE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The queue is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_queue(
   int argc,
   char **argv
4);
```

The configuration structure for the queue has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→QUEUE_Command;
```

6.2.12 sema - display information about semaphores

SYNOPSYS:

```
sema [id [id ... ]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic API Semaphores currently active in the system

If invoked with a set of objects ids as arguments, then just those objects are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use sema:

- 1	SHLL [/] ID →CNT HO	NAME A DLDID	ATTR		CURR_
3					
4		LBIO 00000000	PR:BI:IN	0	
5			PR:BI:IN	0	u
	⇔ 1	00000000			
6	1a010003	LBI00	PR:BI:IN	0	_
		00000000			
7			PR:BI:IN	0	_
8	1a010005	00000000 TRoa 00000000	PR:BI:IN	0	u
9	1a010006	TRxa	<assoc.c:< th=""><th>BAD NAME></th><th>0_</th></assoc.c:<>	BAD NAME>	0_
	→ 0 6	99010001			
10	1a010007	LBI01	PR:BI:IN	0	ت ۔
	⇔ 1	00000000			
11			PR:BI:IN	0	
	→ 1	00000000			

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_SEMA to have

this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_SEMA when all shell commands have been configured.

PROGRAMMING INFORMATION:

The sema is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_sema(
   int argc,
   char **argv
);
```

The configuration structure for the sema has the following prototype:

6.2.13 region - display information about regions

SYNOPSYS:

```
region [id [id ... ]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic API Regions currently active in the system.

If invoked with a set of object ids as arguments, then just those object are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the region command on a system with no user extensions.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_REGION to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_REGION when all shell commands have been configured.

PROGRAMMING INFORMATION:

The region is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_region(
   int argc,
   char **argv
4);
```

The configuration structure for the region has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→REGION_Command;
```

6.2.14 part - display information about partitions

SYNOPSYS:

```
part [id [id ... ]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic API Partitions currently active in the system.

If invoked with a set of object ids as arguments, then just those objects are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the part command on a system with no user extensions.

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_PART to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_PART when all shell commands have been configured.

PROGRAMMING INFORMATION:

The part is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_part(
   int argc,
   char **argv
4);
```

The configuration structure for the part has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_PART_

→Command;
```

6.2.15 object - display information about RTEMS objects

SYNOPSYS:

```
object [id [id ...]]
```

DESCRIPTION:

When invoked with a set of object ids as arguments, then a report on those objects is printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use object:

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_OBJECT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_OBJECT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The object is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_object(
   int argc,
```

```
char **argv
);
```

The configuration structure for the object has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→OBJECT_Command;
```

6.2.16 driver - display the RTEMS device driver table

SYNOPSYS:

```
driver [major [major ...]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Device Drivers currently active in the system.

If invoked with a set of major numbers as arguments, then just those Device Drivers are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use driver:

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_DRIVER to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_DRIVER when all shell commands have been configured.

PROGRAMMING INFORMATION:

The driver is implemented by a C language

function which has the following prototype:

```
int rtems_shell_rtems_main_driver(
   int argc,
   char **argv
);
```

The configuration structure for the driver has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→DRIVER_Command;
```

6.2.17 dname - displays information about named drivers

SYNOPSYS:

```
ı dname
```

DESCRIPTION:

WARNING! This command does not appear to work as of 27 February 2008.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use dname:

```
1 EXAMPLE_TBD
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_DNAME to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_DNAME when all shell commands have been configured.

PROGRAMMING INFORMATION:

The dname is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_dname(
    int argc,
    char **argv
}
```

The configuration structure for the dname has the following prototype:

```
extern rtems_shell_cmd_t rtems_shell_

→DNAME_Command;
```

6.2.18 pthread - display information about POSIX threads

SYNOPSYS:

```
pthread [id [id ...]]
```

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of POSIX API threads currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command is only available when the POSIX API is configured.

EXAMPLES:

The following is an example of how to use the task on an application with four POSIX threads:

```
1 SHLL [/] $ pthread
2 ID NAME
              PRI STATE MODES
 →EVENTS WAITID WAITARG NOTES
3
 4 0b010002 Main 133 READY P:T:
 →nA NONE 43010001 0x7b1148
5 0b010003 ISR 133 Wcvar P:T:
 →nA NONE 43010003 0x7b1148
6 0b01000c
           133 READY P:T:
 →nA NONE 33010002 0x7b1148
7 0b01000d
           133 Wmutex P:T:
 →nA NONE 33010002 0x7b1148
```

CONFIGURATION:

This command is part of the monitor commands which are always available in the shell.

PROGRAMMING INFORMATION:

This command is not directly available for invocation.

NETWORK COMMANDS

7.1 Introduction

The RTEMS shell has the following network commands:

- *netstats* (page 116) obtain network statistics
- *ifconfig* (page 118) configure a network interface
- *route* (page 119) show or manipulate the IP routing table
- ping (page 121) ping a host or IP address

7.2 Commands

This section details the Network Commands available. A subsection is dedicated to each of the commands and describes the behavior and configuration of that command as well as providing an example usage.

7.2.1 netstats - obtain network statistics

SYNOPSYS:

```
netstats [-Aimfpcut]
```

DESCRIPTION:

This command is used to display various types of network statistics. The information displayed can be specified using command line arguments in various combinations. The arguments are interpreted as follows:

```
-A
print All statistics
-i
print Inet Routes
-m
print MBUF Statistics
-f
print IF Statistics
```

-p print IP Statistics

-c print ICMP Statistics

-u print UDP Statistics

-t print TCP Statistics

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the netstats command to print the IP routing table:

```
1 [/] $ netstats -i
2 Destination
                Gateway/Mask/Hw
                                 Flags _
              Use Expire Interface
  → Refs
₃ default
               192.168.1.14
                                 UGS
  → 0
                0
                     0 eth1
4 192.168.1.0
                255.255.255.0
  → 0
                0
                      1 eth1
5 192.168.1.14
                00:A0:C8:1C:EE:28
                                 UHL
                    1219 eth1
```

```
6 192.168.1.51 00:1D:7E:0C:D0:7C UHL 

→ 0 840 1202 eth1

7 192.168.1.151 00:1C:23:B2:0F:BB UHL 

→ 1 23 1219 eth1
```

The following is an example of using the netstats command to print the MBUF statistics:

```
1 [/] $ netstats -m
2 ******* MBUF STATISTICS *******
3 mbufs: 2048
                  clusters: 128
  →free: 63
 drops:
          0
                      waits:
  →drains: 0
 free:1967
                       data:79
  →header:2
                     socket:0
                     rtable:0
 pcb:0
                     atable:0
  →htable:0
 soname:0
                     soopts:0

→ftable:0
                     rights:0
 ifaddr:0
                    control:0
  →oobdata:0
```

The following is an example of using the netstats command to print the print the interface statistics:

```
[/] $ netstats -f
  ******
                  INTERFACE
                               STATISTICS
   →*********
  **** eth1 ****
  Ethernet Address: 00:04:9F:00:5B:21
  Address: 192.168.1.244
                          Broadcast Address:
   →192.168.1.255 Net mask:255.255.255.0
  Flags: Up Broadcast Running Active _
   →Multicast
7 Send queue limit:50
                               length:1
          Dropped:0
8 Rx Interrupts:889
                               Not First:0 _
           Not Last:0
9 Giant:0
                               Non-octet:0
10 Bad CRC:0
                               Overrun:0
          Collision:0
11 Tx Interrupts:867
                               Deferred:0
   \hookrightarrow
          Late Collision:0
12 Retransmit Limit:0
                               Underrun:0
          Misaligned:0
```

The following is an example of using the netstats command to print the print IP statistics:

```
4 packets rcvd for unreachable dest
5 datagrams delivered to upper level
6 total ip packets generated here
  →871
```

```
16 bytes acked by rcvd acks

→ 2590

17 times hdr predict ok for acks
18 times hdr predict ok for data pkts
```

The following is an example of using the **CONFIGURATION**: netstats command to print the ICMP statistics:

```
1 [/] $ netstats -c
2 ********* ICMP Statistics ********
₃ Type 0 sent
                             843
4 number of responses
                             843
5 Type 8 received
```

The following is an example of using the netstats command to print the UDP statistics:

```
1 [/] $ netstats -u
 ******* UDP Statistics *******
```

The following is an example of using the netstats command to print the TCP statistics:

```
1 \lceil / \rceil $ netstats -t
2 ******** TCP Statistics ********
3 connections accepted
4 connections established
s | segs where we tried to get rtt
6 times we succeeded
   → 35
7 delayed acks sent
   → 2
8 total packets sent
   → 37
9 data packets sent
   \rightarrow 35
10 data bytes sent
   → 2618
11 ack-only packets sent
   \hookrightarrow 2
12 total packets received
   → 47
packets received in sequence
   → 12
14 bytes received in sequence
   → 307
15 rcvd ack packets
```

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_NETSTATS have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_NETSTATS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The netstats is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_netstats(
     int
            argc,
2
     char **argv
 );
```

The configuration structure for the netstats has the following prototype:

```
{\tt rtems\_shell\_cmd\_t}
extern
                                    rtems_shell_
 →NETSTATS_Command;
```

7.2.2 ifconfig - configure a network interface

SYNOPSYS:

```
ifconfig
ifconfig interface
ifconfig interface \[up|down]
ifconfig interface

→\[netmask|pointtopoint|broadcast]

→IP
```

DESCRIPTION:

This command may be used to display information about the network interfaces in the system or configure them.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Just like its counterpart on GNU/Linux and BSD systems, this command is complicated. More example usages would be a welcome submission.

EXAMPLES:

The following is an example of how to use ifconfig:

```
*******
                  INTERFACE
                              STATISTICS
   →********
2 **** eth1 ****
3 Ethernet Address: 00:04:9F:00:5B:21
4 Address:192.168.1.244
                         Broadcast Address:
   →192.168.1.255 Net mask:255.255.25.0
5 Flags: Up Broadcast Running Active _
   →Multicast
6 Send queue limit:50
                                     length:
   →1
                     Dropped:0
7 Rx Interrupts:5391
                                  Not First:
   →0
                    Not Last:0
8 Giant:0
                                 Non-octet:0
9 Bad CRC:0
                                   Overrun:
   _0
                   Collision:0
                                   Deferred:
10 Tx Interrupts:5256
              Late Collision:0
11 Retransmit Limit:0
                                   Underrun:
                  Misaligned:0
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define

CONFIGURE_SHELL_COMMAND_IFCONFIG to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_IFCONFIG when all shell commands have been configured.

PROGRAMMING INFORMATION:

The ifconfig is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_ifconfig(
   int argc,
   char **argv
4 );
```

The configuration structure for the ifconfig has the following prototype:

7.2.3 route - show or manipulate the ip routing table

SYNOPSYS:

```
route [subcommand] [args]
```

DESCRIPTION:

This command is used to display and manipulate the routing table. When invoked with no arguments, the current routing information is displayed. When invoked with the subcommands add or del, then additional arroute.

Command templates include the following:

```
1 route [add|del] -net IP_ADDRESS gw GATEWAY_
  →ADDRESS [netmask MASK]
2 route [add|del] -host IP_ADDRESS
  →GATEWAY_ADDRES [netmask MASK]
```

When not provided the netmask defaults to 255.255.255.0

EXIT STATUS:

This command returns 0 on success and nonzero if an error is encountered.

NOTES:

Just like its counterpart on GNU/Linux and BSD systems, this command is complicated. More example usages would be a welcome submission.

EXAMPLES:

The following is an example of how to use route to display, add, and delete a new route:

```
1 [/] $ route
2 Destination
                 Gateway/Mask/Hw
                                    Flags _
       Refs
                Use Expire Interface
                192.168.1.14
                                    UGS
3 default
         0
                        0 eth1
4 192.168.1.0
                 255.255.255.0
                                    U
      0
                        1 eth1
  \hookrightarrow
5 192.168.1.14
                 00:A0:C8:1C:EE:28
                                    UHL
                  0 1444 eth1
  → 1
6 192.168.1.51
                 00:1D:7E:0C:D0:7C
                                    UHI
  → 0 10844
                    1202 eth1
7 192.168.1.151
                 00:1C:23:B2:0F:BB
  → 2
                 37 1399 eth1
8 [/] $ route add -net 192.168.3.0 gw 192.
```

```
[/] $ route
                                                                                Flags _
                                           10 Destination
                                                             Gateway/Mask/Hw
                                                           Use Expire Interface
                                                  Refs
                                              \sim
                                           11 default
                                                             192.168.1.14
                                                                                UGS
                                                    0
                                                                    0 eth1
                                           12 192.168.1.0
                                                             255.255.255.0
                                                                                U
                                                    0
                                                                    1 eth1
                                              \hookrightarrow
                                           13 192.168.1.14
                                                             00:A0:C8:1C:EE:28
                                                                               UHI
                                                             0 1498 eth1
                                              → 2
                                           14 192.168.1.51
                                                             00:1D:7E:0C:D0:7C

→ 0 14937

                                                                 1202 eth1
                                           15 192.168.1.151
                                                             00:1C:23:B2:0F:BB UHL
                                              → 2
                                                             96 1399 eth1
                                             192.168.3.0
                                                             192.168.1.14
                                                                                UGS
                                              → 0
                                                                    0 eth1
guments must be provided to describe the 17 [/] $ route del -net 192.168.3.0 gw 192.
                                              →168.1.14
                                           18 [/] $ route
                                           19 Destination
                                                             Gateway/Mask/Hw
                                                                                Flags _
                                                           Use Expire Interface
                                              → Refs
                                           20 default
                                                            192.168.1.14
                                                                                UGS
                                                                    0 eth1
                                              \hookrightarrow
                                           21 192.168.1.0
                                                            255.255.255.0
                                                                                U
                                                                   1 eth1
                                                             0
                                              __
                                                   0
                                           22 192.168.1.14
                                                             00:A0:C8:1C:EE:28
                                                                               UHL
                                              → 1
                                                                1498 eth1
                                                             00:1D:7E:0C:D0:7C UHL
                                           23 192.168.1.51
                                              → 0 15945
                                                                1202 eth1
                                             192.168.1.151
                                                             00:1C:23:B2:0F:BB
                                                            117
                                                                 1399 eth1
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command define set. CONFIGURE_SHELL_COMMAND_ROUTE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_ROUTE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The route is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_route(
2
      int
             argc,
      char **argv
3
 );
```

The configuration structure for the route has the following prototype:

7.2.4 ping - ping a host or IP address

SYNOPSYS:

DESCRIPTION:

The ping utility uses the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams ("pings") have an IP and ICMP header, followed by a "struct timeval" and then an arbitrary number of "pad" bytes used to fill out the packet. The options are as follows:

-A

Audible. Output a bell (ASCII 0x07) character when no packet is received before the next packet is transmitted. To cater for round-trip times that are longer than the interval between transmissions, further missing packets cause a bell only if the maximum number of unreceived packets has increased.

-a

Audible. Include a bell (ASCII 0x07) character in the output when any packet is received. This option is ignored if other format options are present.

-c count

Stop after sending (and receiving) count ECHO_RESPONSE packets. If this option is not specified, ping will operate until interrupted. If this option is specified in conjunction with ping sweeps, each sweep will consist of count packets.

-D

Set the Don't Fragment bit.

-d

Set the SO_DEBUG option on the socket being used.

-f

Flood ping. Outputs packets as fast as they come back or one hundred times per second, whichever is more. For every ECHO_REQUEST sent a period "." is printed, while for every ECHO_REPLY received a backspace is printed. This provides a rapid display of how many packets are being dropped. Only the super-user may use this option. This can be very hard on a network and should be used with caution.

-G sweepmaxsize

Specify the maximum size of ICMP payload when sending sweeping pings. This option is required for ping sweeps.

-g sweepminsize

Specify the size of ICMP payload to start with when sending sweeping pings. The default value is 0.

-h sweepincrsize

Specify the number of bytes to increment the size of ICMP payload after each sweep when sending sweeping pings. The default value is 1.

-I iface

Source multicast packets with the given interface address. This flag only applies if the ping destination is a multicast address.

-i wait

Wait wait seconds between sending each packet. The default is to wait for one second between each packet. The wait time may be fractional, but only the super-user may specify values less than 1 second. This option is incompatible with the -f option.

-L

Suppress loopback of multicast packets. This flag only applies if the ping destination is a multicast address.

-l preload

If preload is specified, ping sends that

many packets as fast as possible before falling into its normal mode of behavior. Only the super-user may use this option.

-M mask | time

Use ICMP_MASKREQ or ICMP_TSTAMP instead of ICMP_ECHO. For mask, print the netmask of the remote machine. Set the net.inet.icmp.maskrepl MIB variable to enable ICMP_MASKREPLY. For time, print the origination, reception and transmission timestamps.

-m ttl

Set the IP Time To Live for outgoing packets. If not specified, the kernel uses the value of the net.inet.ip.ttl MIB variable.

-n

Numeric output only. No attempt will be made to lookup symbolic names for host addresses.

-0

Exit successfully after receiving one reply packet.

-p pattern

You may specify up to 16 "pad" bytes to fill out the packet you send. This is useful for diagnosing data-dependent problems in a network. For example, "-p ff" will cause the sent packet to be filled with all ones.

-Q

Somewhat quiet output. Don't display ICMP error messages that are in response to our query messages. Originally, the -v flag was required to display such errors, but -v displays all ICMP error messages. On a busy machine, this output can be overbear- ing. Without the -Q flag, ping prints out any ICMP error messages caused by its own ECHO_REQUEST messages.

-q

Quiet output. Nothing is displayed except the summary lines at startup time and when finished.

-R

Record route. Includes the RECORD_ROUTE option in the ECHO REQUEST packet and displays

the route buffer on returned packets. Note that the IP header is only large enough for nine such routes; the traceroute(8) command is usually better at determining the route packets take to a particular destination. If more routes come back than should, such as due to an illegal spoofed packet, ping will print the route list and then truncate it at the correct spot. Many hosts ignore or discard the RECORD ROUTE option.

-r

Bypass the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it (e.g., after the interface was dropped).

-S src addr

Use the following IP address as the source address in outgoing packets. On hosts with more than one IP address, this option can be used to force the source address to be something other than the IP address of the interface the probe packet is sent on. If the IP address is not one of this machine's interface addresses, an error is returned and nothing is sent.

-s packetsize

Specify the number of data bytes to be sent. The default is 56, which translates into 64 ICMP data bytes when combined with the 8 bytes of ICMP header data. Only the super-user may specify values more than default. This option cannot be used with ping sweeps.

-T ttl

Set the IP Time To Live for multicasted packets. This flag only applies if the ping destination is a multicast address.

-t timeout

Specify a timeout, in seconds, before ping exits regardless of how many packets have been received.

-ν

Verbose output. ICMP packets other than ECHO RESPONSE that are received are

listed.

-W waittime

Time in milliseconds to wait for a reply for each packet sent. If a reply arrives later, the packet is not printed as replied, but considered as replied when calculating statistics.

-z tos

Use the specified type of service.

EXIT STATUS:

The ping utility exits with one of the following values:

0 At least one response was heard from the specified host.

2 The transmission was successful but no responses were

received.

any other value an error occurred. These values are defined in <sysexits.h>.

NOTES:

When using ping for fault isolation, it should first be run on the local host, to verify that the local network interface is up and running. Then, hosts and gateways further and further away should be "pinged". Roundtrip times and packet loss statistics are computed. If duplicate packets are received, they are not included in the packet loss calculation, although the round trip time of these packets is used in calculating the round-trip time statistics. When the specified number of packets have been sent a brief summary is displayed, showing the number of packets sent and received, and the minimum, mean, maximum, and standard deviation of the round-trip times.

This program is intended for use in network testing, measurement and management. Because of the load it can impose on the network, it is unwise to use ping during normal operations or from automated scripts.

This command can fail if more than the FD_SET size number of file descriptors are open.

EXAMPLES:

The following is an example of how to use

oing to ping:

```
[/] # ping 10.10.10.1
2 PING 10.10.10.1 (10.10.10.1): 56 data bytes
3 64 bytes from 10.10.10.1: icmp_seq=0 _
   \rightarrowttl=63 time=0.356 ms
4 64 bytes from 10.10.10.1: icmp_seq=1 _
   \rightarrowttl=63 time=0.229 ms
  64 bytes from 10.10.10.1: icmp_seq=2 _
   \rightarrowttl=63 time=0.233 ms
  64 bytes from 10.10.10.1: icmp_seq=3 _
   \rightarrowttl=63 time=0.235 ms
7 64 bytes from 10.10.10.1: icmp_seq=4 _
   \rightarrowttl=63 time=0.229 ms
  --- 10.10.10.1 ping statistics ---
9 5 packets transmitted, 5 packets received,
   → 0.0% packet loss
round-trip min/avg/max/stddev = 0.229/0.
   →256/0.356/0.050 ms
11 [/] # ping -f -c 10000 10.10.10.1
12 PING 10.10.10.1 (10.10.10.1): 56 data bytes
13
  --- 10.10.10.1 ping statistics ---
15 10000 packets transmitted, 10000 packets
   →received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.154/0.
   →225/0.533/0.027 ms
```

CONFIGURATION:

This command is included in the default shell command set. When building a custom command set, define CONFIGURE_SHELL_COMMAND_PING to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_NO_COMMAND_PING when all shell commands have been configured.

PROGRAMMING INFORMATION:

The ping is implemented by a C language function which has the following prototype:

```
int rtems_shell_rtems_main_ping(
   int argc,
   char **argv

);
```

The configuration structure for the ping has the following prototype:

FUNCTION AND VARIABLE INDEX

CONCEPT INDEX

- genindex
- search

INDEX

alias, 23	CONFIGURE_SHELL_COMMAND_DRIVER,
blksync, 44	
blksync, 44 cat, 45 cd, 46 chdir, 47 chmod, 48 chroot, 49 cmdchmod, 26 cmdchown, 25 cmdls, 24 config, 101 CONFIGURE_SHELL_COMMAND_ALIAS, 23 CONFIGURE_SHELL_COMMAND_BLKSYNC,	CONFIGURE_SHELL_COMMAND_ECHO, 28 CONFIGURE_SHELL_COMMAND_ EXTENSION, 103 CONFIGURE_SHELL_COMMAND_FDISK, 58 CONFIGURE_SHELL_COMMAND_GETENV, 33 CONFIGURE_SHELL_COMMAND_HEXDUMP, 61 CONFIGURE_SHELL_COMMAND_ID, 30 CONFIGURE_SHELL_COMMAND_IFCONFIG, 118 CONFIGURE_SHELL_COMMAND_ITASK, 102 CONFIGURE_SHELL_COMMAND_LDUMP, 84 CONFIGURE_SHELL_COMMAND_LDUMP, 84 CONFIGURE_SHELL_COMMAND_LN, 62 CONFIGURE_SHELL_COMMAND_LOGOFF, 37 CONFIGURE_SHELL_COMMAND_LS, 64 CONFIGURE_SHELL_COMMAND_MALLOC, 89 CONFIGURE_SHELL_COMMAND_MD5, 65 CONFIGURE_SHELL_COMMAND_MD5, 65 CONFIGURE_SHELL_COMMAND_MDUMP, 82 CONFIGURE_SHELL_COMMAND_MEDIT, 85 CONFIGURE_SHELL_COMMAND_MEDIT, 85 CONFIGURE_SHELL_COMMAND_MEDIT, 85 CONFIGURE_SHELL_COMMAND_MKDIR, 66 CONFIGURE_SHELL_COMMAND_MKDOS, 67 CONFIGURE_SHELL_COMMAND_MKNOD,
CONFIGURE_SHELL_COMMAND_CP, 51 CONFIGURE_SHELL_COMMAND_CPUUSE,	68 CONFIGURE_SHELL_COMMAND_MKRFS, 70 CONFIGURE_SHELL_COMMAND_MMOVE,
95 CONFIGURE_SHELL_COMMAND_DATE, 27 CONFIGURE_SHELL_COMMAND_DD, 54 CONFIGURE_SHELL_COMMAND_	87 CONFIGURE_SHELL_COMMAND_MOUNT, 71 CONFIGURE_SHELL_COMMAND_MV, 73 CONFIGURE_SHELL_COMMAND_NETSTATS,

CONFIGURE SHELL COMMAND PERIODUSE, 97 CONFIGURE SHELL COMMAND PING, 123 CONFIGURE SHELL COMMAND PROFREPORT, 98 CONFIGURE SHELL COMMAND PWD, 74 CONFIGURE SHELL COMMAND QUEUE, CONFIGURE SHELL COMMAND REGION, 107 CONFIGURE SHELL COMMAND RM, 76 CONFIGURE SHELL COMMAND RMDIR, 75 CONFIGURE SHELL COMMAND ROUTE, CONFIGURE SHELL COMMAND RTC, 38 CONFIGURE SHELL COMMAND SEMA, 106 CONFIGURE SHELL COMMAND SETENV, CONFIGURE SHELL COMMAND SHUTDOWN, 94 CONFIGURE SHELL COMMAND SLEEP, 29 CONFIGURE SHELL COMMAND STACKUSE, CONFIGURE SHELL COMMAND TASK, 104 CONFIGURE SHELL COMMAND TIME, 36 CONFIGURE SHELL COMMAND TTY, 31 CONFIGURE SHELL COMMAND UMASK, 77 CONFIGURE SHELL COMMAND UNMOUNT, 78 CONFIGURE SHELL COMMAND UNSETENV, 35 CONFIGURE SHELL COMMAND_WDUMP, CONFIGURE SHELL COMMAND WHOAMI, CONFIGURE SHELL COMMAND WKSPACE, 100 CONFIGURE SHELL NO COMMAND ALIAS, CONFIGURE SHELL NO COMMAND BLKSYNC, 44 CONFIGURE SHELL NO COMMAND CAT, CONFIGURE SHELL NO COMMAND CD, 46 CONFIGURE SHELL NO COMMAND CHDIR, 47 CONFIGURE SHELL NO COMMAND CHMOD, 48 CONFIGURE SHELL NO COMMAND CHROOT, 49

CONFIGURE SHELL NO COMMAND

CMDCHMOD, 26 CONFIGURE SHELL NO COMMAND CMDCHOWN, 25 CONFIGURE SHELL NO_COMMAND_ CMDLS, 24 CONFIGURE SHELL NO COMMAND CONFIG, 101 CONFIGURE SHELL NO COMMAND CP, 51 CONFIGURE SHELL NO COMMAND CPUUSE, 95 CONFIGURE SHELL NO COMMAND DATE, 27 CONFIGURE SHELL NO COMMAND DD, 54 CONFIGURE SHELL NO COMMAND DEBUGRFS, 55 CONFIGURE SHELL NO COMMAND DF, 56 CONFIGURE SHELL NO COMMAND DIR, 57 CONFIGURE SHELL NO COMMAND DNAME, 111 CONFIGURE SHELL NO COMMAND DRIVER, 110 CONFIGURE SHELL_NO_COMMAND_ECHO, CONFIGURE SHELL NO COMMAND EXTENSION, 103 CONFIGURE SHELL NO COMMAND FDISK, 58 CONFIGURE SHELL NO COMMAND GETENV, 33 CONFIGURE_SHELL_NO_COMMAND_ HEXDUMP, 61 CONFIGURE SHELL NO COMMAND ID, 30 CONFIGURE SHELL NO COMMAND IFCONFIG, 118 CONFIGURE SHELL NO COMMAND ITASK, 102 CONFIGURE SHELL NO COMMAND LDUMP, 84 CONFIGURE SHELL NO COMMAND LN, 62 CONFIGURE SHELL NO COMMAND LOGOFF, 37 CONFIGURE SHELL NO COMMAND LS, 64 CONFIGURE SHELL_NO_COMMAND_ MALLOC, 89 CONFIGURE SHELL NO COMMAND MD5, CONFIGURE SHELL NO COMMAND MDUMP, 82

CONFIGURE SHELL NO COMMAND

MEDIT, 85

CONFIGURE_SHELL_NO_COMMAND_MFILL,	104
86	CONFIGURE_SHELL_NO_COMMAND_TIME,
CONFIGURE SHELL NO COMMAND	36
MKDIR, 66	CONFIGURE SHELL NO COMMAND TTY,
CONFIGURE SHELL NO COMMAND	31
MKDOS, 67	CONFIGURE SHELL NO COMMAND
CONFIGURE SHELL NO COMMAND	UMASK, 77
MKNOD, 68	CONFIGURE_SHELL_NO_COMMAND_
CONFIGURE_SHELL_NO_COMMAND_	UNMOUNT, 78
MKRFS, 70	CONFIGURE_SHELL_NO_COMMAND_
CONFIGURE_SHELL_NO_COMMAND_	UNSETENV, 35
MMOVE, 87	CONFIGURE_SHELL_NO_COMMAND_
CONFIGURE_SHELL_NO_COMMAND_	WDUMP, 83
MOUNT, 71	CONFIGURE_SHELL_NO_COMMAND_
CONFIGURE_SHELL_NO_COMMAND_MV, 73	WHOAMI, 32
CONFIGURE SHELL NO COMMAND	CONFIGURE SHELL NO COMMAND
NETSTATS, 117	WKSPACE, 100
CONFIGURE SHELL NO COMMAND	cp, 50
OBJECT, 109	cpuuse, 95
CONFIGURE SHELL NO COMMAND PART,	crypt_add_format, 15
108	crypt_add_format, 15
	date, 27
CONFIGURE_SHELL_NO_COMMAND_	dd, 52
PERIODUSE, 97	debugrfs, 55
CONFIGURE_SHELL_NO_COMMAND_PING,	df, 56
123	dir, 57
CONFIGURE_SHELL_NO_COMMAND_	
PROFREPORT, 98	dname, 111
CONFIGURE_SHELL_NO_COMMAND_PWD,	driver, 110
74	echo, 28
CONFIGURE SHELL NO COMMAND	•
QUEUE, 105	exit, 39
CONFIGURE SHELL NO COMMAND	extension, 103
REGION, 107	fdisk, 58
CONFIGURE_SHELL_NO_COMMAND_RM, 76	luisk, 50
CONFIGURE SHELL NO COMMAND	geteny, 33
RMDIR, 75	8
	help, 22
CONFIGURE_SHELL_NO_COMMAND_	hexdump, 59
ROUTE, 119	•
CONFIGURE_SHELL_NO_COMMAND_RTC,	id, 30
38	ifconfig, 118
CONFIGURE_SHELL_NO_COMMAND_SEMA,	initialization, 17, 18
106	itask, 102
CONFIGURE_SHELL_NO_COMMAND_	,
SETENV, 34	ldump, 84
CONFIGURE SHELL NO COMMAND	ln, 62
SHUTDOWN, 94	logoff, 37
CONFIGURE SHELL NO COMMAND SLEEP,	ls, 64
29	•
CONFIGURE SHELL NO COMMAND	malloc, 88
STACKUSE, 96	md5, 65
CONFIGURE SHELL NO COMMAND TASK,	mdump, 82
COLULISORE DI LEE IVO COMMEND INDE	medit, 85

mfill, 86 rtems shell rtems main ifconfig, 118 mkdir, 66 rtems shell rtems main itask, 102 mkdos, 67 rtems shell rtems main ldump, 84 mknod, 68 rtems shell rtems main ln, 62 mkrfs, 70 rtems shell rtems main logoff, 37 mmove, 87 rtems shell rtems main ls, 64 mount, 71 rtems shell rtems main malloc, 89 mv, 73 rtems shell rtems main md5, 65 rtems shell rtems main mdump, 82 netstats, 116 rtems shell rtems main medit, 85 rtems shell rtems main mfill, 86 object, 109 rtems shell rtems main mkdir, 66 rtems shell rtems main mkdos, 67 part, 108 rtems shell rtems main mknod, 69 perioduse, 97 rtems shell rtems main mkrfs, 70 ping, 121 rtems shell rtems main mmove, 87 profreport, 98 rtems shell rtems main mount, 71 pthread, 112 rtems shell rtems main netstats, 117 pwd, 74 rtems shell rtems main object, 109 queue, 105 rtems shell rtems main part, 108 rtems shell rtems main perioduse, 97 region, 107 rtems shell rtems main ping, 123 rm, 76 rtems shell rtems main pwd, 74 rmdir, 75 rtems shell rtems main queue, 105 route, 119 rtems shell rtems main region, 107 rtc, 38 rtems shell rtems main rmdir, 75 rtems shell init, 17 rtems shell rtems main route, 119 rtems shell login check, 18 rtems shell rtems main sema, 106 rtems shell main cp, 51 rtems shell rtems main setenv, 34 rtems shell main mv, 73 rtems shell rtems main sleep, 29 rtems shell main rm, 76 rtems shell rtems main stackuse, 96 rtems shell rtems main alias, 23 rtems shell rtems main task, 104 rtems shell rtems main blksync, 44 rtems shell rtems main time, 36 rtems shell rtems main cat, 45 rtems shell rtems main tty, 31 rtems shell rtems main cd, 46 rtems shell rtems main umask, 77 rtems shell rtems main chdir, 47 rtems shell rtems main unmount, 78 rtems shell rtems main chmod, 48 rtems shell rtems main unseteny, 35 rtems shell rtems main chroot, 49 rtems shell rtems main wdump, 83 rtems shell rtems main config, 101 rtems shell rtems main whoami, 32 rtems shell rtems main cpuuse, 95 rtems shell rtems main wkspace, 100 rtems shell rtems main date, 27 rtems shell rtems main dd, 54 sema, 106 rtems shell rtems main debugrfs, 55 setenv, 34 rtems shell rtems main df, 56 shutdown, 94 rtems shell rtems main dir, 57 sleep, 29 rtems shell rtems main dname, 111 stackuse, 96 rtems shell rtems main driver, 110 task, 104 rtems shell rtems main echo, 28 time, 36 rtems shell rtems main extension, 103 tty, 31 rtems shell rtems main getenv, 33 rtems shell rtems main hexdump, 61 umask, 77 rtems shell rtems main id, 30

unmount, 78 unseteny, 35

wdump, 83 whoami, 32 wkspace, 100