
RTEMS Source Builder
Release 4.11.3

©Copyright 2016, RTEMS Project (built 15th February 2018)

CONTENTS

I Table of Contents 3

1 RTEMS Source Builder 5
1.1 Why Build from Source? . 7
1.2 History . 8

2 Quick Start 9
2.1 Setup . 10
2.2 Checking . 11
2.3 Build Sets . 12
2.4 Building . 13
2.5 Deployment . 16
2.6 Controlling the Build . 18

3 Hosts 19
3.1 Linux . 20

3.1.1 ArchLinux . 20
3.1.2 CentOS . 20
3.1.3 Fedora . 20
3.1.4 Raspbian . 20
3.1.5 Ubuntu . 20
3.1.6 Linux Mint . 20
3.1.7 openSUSE . 20

3.2 FreeBSD . 21
3.3 NetBSD . 22
3.4 MacOS . 23

3.4.1 Mavericks . 23
3.4.2 Serria . 23

3.5 Windows . 24
3.5.1 MSYS2 . 24
3.5.2 Cygwin . 24

4 Project Sets 27
4.1 Bare Metal . 28
4.2 RTEMS . 29
4.3 Patches . 30

5 Cross and Canadian Cross Building 33
5.1 Cross Building . 34

i

5.2 Canadian Cross Building . 35

6 RTEMS 3rd Party Packages 37
6.1 Vertical Integration . 38
6.2 Building . 39
6.3 Adding . 40
6.4 BSP Support . 41
6.5 RTEMS BSP Configuration . 44

7 Configuration 45
7.1 Source and Patches . 46

7.1.1 HTTP, HTTPS, and FTP . 46
7.1.2 GIT . 47
7.1.3 CVS . 47

7.2 Macros and Defaults . 48
7.2.1 Macro Maps and Files . 48
7.2.2 Personal Macros . 49

7.3 Report Mailing . 50
7.4 Build Set Files . 51
7.5 Configuration Control . 52
7.6 Personal Configurations . 53
7.7 New Configurations . 54

7.7.1 Layering by Including . 54
7.7.2 Configuration File Numbering . 54
7.7.3 Common Configuration Scripts . 54
7.7.4 DTC Example . 54
7.7.5 Debugging . 57

7.8 Scripting . 58
7.8.1 Expanding . 59
7.8.2 %prep . 59
7.8.3 %build . 60
7.8.4 %install . 61
7.8.5 %clean . 61
7.8.6 %include . 61
7.8.7 %name . 62
7.8.8 %summary . 62
7.8.9 %release . 62
7.8.10 %version . 62
7.8.11 %buildarch . 62
7.8.12 %source . 62
7.8.13 %patch . 63
7.8.14 %hash . 63
7.8.15 %echo . 64
7.8.16 %warning . 64
7.8.17 %error . 64
7.8.18 %select . 64
7.8.19 %define . 64
7.8.20 %undefine . 65
7.8.21 %if . 65
7.8.22 %ifn . 66
7.8.23 %ifarch . 66
7.8.24 %ifnarch . 66

ii

7.8.25 %ifos . 66
7.8.26 %else . 66
7.8.27 %endfi . 66
7.8.28 %bconf_with . 66
7.8.29 %bconf_without . 66

8 Commands 67
8.1 Checker (sb-check) . 68
8.2 Defaults (sb-defaults) . 69
8.3 Set Builder (sb-set-builder) . 70
8.4 Set Builder (sb-builder) . 73

9 Bugs, Crashes, and Build Failures 75

10 Contributing 77

iii

iv

Chapter 0 Section 0.0 RTEMS Source Builder, Release 4.11.3

COPYRIGHT (c) 2012 - 2016.
Chris Johns <chrisj@rtems.org>

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.org/. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the Community Project
hosted at http://www.rtems.org/.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documentation https://docs.rtems.org/
Bug Reporting https://devel.rtems.org/query
Mailing Lists https://lists.rtems.org/
Git Repositories https://git.rtems.org/

CONTENTS 1

mailto:chrisj@rtems.org
http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS Source Builder, Release 4.11.3 Chapter 0 Section 0.0

2 CONTENTS

Chapter 0 Section 0.0 RTEMS Source Builder, Release 4.11.3

Part I

Table of Contents

3

CHAPTER

ONE

RTEMS SOURCE BUILDER

The RTEMS Source Builder or RSB is a tool to
build packages from source. It is used by the
RTEMS project to build it’s compilers and OS.
The RSB helps consolidate the details you need
to build a package from source in a controlled
and verifiable way. The tool is aimed at de-
velopers of software who use tool sets for em-
bedded development. The RSB is not limited
to building tools just for RTEMS, you can build
bare metal development environments.

Embedded development typically uses cross-
compiling tool chains, debuggers, and debug-
ging aids. Together we call these a tool set.
The RTEMS Source Builder is designed to fit
this specific niche but is not limited to it. The
RSB can be used outside of the RTEMS project
and we welcome this.

The RTEMS Source Builder is typically used to
build a set of tools or a build set. A build set
is a collection of packages and a package is a
specific tool, for example gcc or gdb, or library.
The RTEMS Source Builder attempts to sup-
port any host environment that runs Python
and you can build the package on. The RSB is
not some sort of magic that can take any piece
of source code and make it build. Someone
at some point in time has figured out how to
build that package from source and taught this
tool.

The RTEMS Source Builder has been tested on:

• ArchLinux

• CentOS

• Fedora

• Raspbian

• Ubuntu (includes XUbuntu)

• Linux Mint

• openSUSE

• FreeBSD

• NetBSD

• MacOS

• Windows

Setting up your Host

Chapter 3 - Hosts (page 19) details setting up
hosts.

The RTEMS Source Builder has two types of
configuration data. The first is the build set.
A build set describes a collection of packages
that define a set of tools you would use when
developing software for RTEMS. For example
the basic GNU tool set is binutils, gcc, and
gdb and is the typical base suite of tools you
need for an embedded cross-development type
project. The second type of configuration data
is the configuration files and they define how a
package is built. Configuration files are scripts
loosely based on the RPM spec file format and
they detail the steps needed to build a pack-
age. The steps are preparation, building, and
installing. Scripts support macros, shell expan-
sion, logic, includes plus many more features
useful when build packages.

The RTEMS Source Builder does not interact
with any host package management systems.
There is no automatic dependence checking
between various packages you build or pack-
ages and software your host system you may
have installed. We assume the build sets and
configuration files you are using have been cre-
ated by developers who do. Support is pro-
vided for package config or pkgconfg type files
so you can check and use standard libraries if
present. If you have a problem please ask on
our Developers Mailing List.

5

https://lists.rtems.org/mailman/listinfo/devel/

RTEMS Source Builder, Release 4.11.3 Chapter 1 Section 1.0

This documentation caters for a range of users
from new to experienced RTEMS developers.
New users can follow the Quick Start section
up to the “Installing and Tar Files” to get a
working tools and RTEMS. Users building a bi-
nary tool set for release can read the “Installing
and Tar Files”. Users wanting to run and test
bleeding edge tools or packages, or wanting
update or extend the RSB’s configuration can
read the remaining sections.

Bug Reporting

If you think you have found a problem
please see Chapter 9 - Bugs, Crashes, and
Build Failures (page 75).

6 Chapter 1. RTEMS Source Builder

Chapter 1 Section 1.1 RTEMS Source Builder, Release 4.11.3

1.1 Why Build from Source?

The RTEMS Source Builder is not a replace-
ment for the binary install systems you have
with commercial operating systems or open
source operating system distributions. Those
products and distributions are critically impor-
tant and are the base that allows the RSB
to work. The RTEMS Source Builder sits
somewhere between you manually entering
the commands to build a tool set and a tool
such as yum or apt-get to install binary pack-
ages made specifically for your host operat-
ing system. Building manually or installing a
binary package from a remote repository are
valid and real alternatives. The RSB provides
the specific service of repeatably being able to
build tool sets from source code. The process
leaves you with the source code used to build
the tools and the ability to rebuilt it.

If you are developing a system or product that
has a long shelf life or is used in a critical piece
of infrastructure that has a long life cycle be-
ing able to build from source is important. It
insulates the project from the fast ever chang-
ing world of the host development machines.
If your tool set is binary and you have lost the
ability to build it you have lost a degree of con-
trol and flexibility open source gives you. Fast
moving host environments are fantastic. We
have powerful multi-core computers with huge
amounts of memory and state of the art op-
erating systems to run on them however the
product or project you are part of may need to
be maintained well past the life time of these
host. Being able to build from source an im-
portant and critical part of this process because
you can move to a newer host and create an
equivalent tool set.

Building from source provides you with con-
trol over the configuration of the package you
are building. If all or the most important de-
pendent parts are built from source you limit
the exposure to host variations. For exam-
ple the GNU C compiler (gcc) currently uses a
number of 3rd party libraries internally (gmp,
mpfr, etc). If your validated compiler generat-
ing code for your target processor is dynami-
cally linked against the host’s version of these
libraries any change in the host’s configuration

may effect you. The changes the host’s pack-
age management system makes may be per-
fectly reasonable in relation to the distribution
being managed however this may not extend
to you and your tools. Building your tools from
source and controlling the specific version of
these dependent parts means you are not ex-
posing yourself to unexpected and often diffi-
cult to resolve problems. On the other side you
need to make sure your tools build and work
with newer versions of the host operating sys-
tem. Given the stability of standards based li-
braries like libc and ever improving support
for standard header file locations this task is
becoming easier.

The RTEMS Source Builder is designed to be
audited and incorporated into a project’s veri-
fication and validation process. If your project
is developing critical applications that needs to
be traced from source to executable code in the
target, you need to also consider the tools and
how to track them.

If your IT department maintains all your com-
puters and you do not have suitable rights to
install binary packages, building from source
lets you create your own tool set that you in-
stall under your home directory. Avoiding in-
stalling any extra packages as a super user is
always helpful in maintaining a secure com-
puting environment.

1.1. Why Build from Source? 7

RTEMS Source Builder, Release 4.11.3 Chapter 1 Section 1.2

1.2 History

The RTEMS Source Builder is a stand
alone tool based on another tool called the
SpecBuilder written by Chris Johns. The
SpecBuilder was written around 2010 for the
RTEMS project to provide Chris with a way to
build tools on hosts that did not support RPMs.
At the time the RTEMS tools maintainer only
supported spec files and these files held all the
vital configuration data needed to create suit-
able tool sets. The available SRPM and spec
files by themselves where of little use because
a suitable rpm tool was needed to use them.
At the time the available versions of rpm for
a number of non-RPM hosts were broken and
randomly maintained. The solution Chris set-
tled on was to use the spec files and to write a
Python based tool that parsed the spec file for-
mat creating a shell script that could be run to
build the package. The approach proved suc-
cessful and Chris was able to track the RPM
version of the RTEMS tools on a non-RPM host
for a number of years.

The SpecBuilder tool did not build tools or
packages unrelated to the RTEMS Project
where no suitable spec file was available so an-
other tool was needed. Rather than start again
Chris decided to take the parsing code for the
spec file format and build a new tool called the
RTEMS Source Builder.

8 Chapter 1. RTEMS Source Builder

CHAPTER

TWO

QUICK START

The quick start will show you how to build
a set of RTEMS tools for a supported archi-
tecture. The tools are installed into a build
prefix. The prefix is the top of a group of di-
rectories containing all the files needed to de-
velop RTEMS applications. Building an RTEMS
build set will build all that you need. This in-
cludes autoconf, automake, assemblers, link-
ers, compilers, debuggers, standard libraries
and RTEMS itself.

There is no need to become root or the ad-
ministrator and we recommend you avoid
doing this. You can build and install the
tools anywhere on the host’s file system you,
as a standard user, have read and write
access too. I recommend you use your
home directory and work under the directory
~/development/rtems. The examples shown
here will do this.

You can use the build prefix to install and
maintain different versions of the tools. Doing
this lets you try a new set of tools while not
touching your proven working production set
of tools. Once you have proven the new tools
are working rebuild with the production prefix
switching your development to them.

We recommend you keep your environment to
the bare minimum, particularly the path vari-
able. Using environment variables has been
proven over the years to be difficult to manage
in production systems.

Warning: The RSB assumes your host
is set up and the needed packages are in-
stalled and configured to work. If your host
has not been set up please refer to Chapter
3 - Hosts (page 19) and your host’s section
for packages you need to install.

Path to use when building applications:

Do not forget to set the path before you use
the tools, for example to build the RTEMS
kernel.

The RSB by default will install (copy)
the executables to a directory tree under
the prefix you supply. To use the tools
once finished just set your path to the
bin directory under the prefix you use.
In the examples that follow the prefix is
$HOME/development/rtems/4.11 and is set
using the --prefix option so the path you
need to configure to build applications can
be set with the following in a BASH shell:

1 $ export PATH=$HOME/development/rtems/4.
→˓11/bin:$PATH

Make sure you place the RTEMS tool path at
the front of your path so they are searched
first. RTEMS can provide newer versions
of some tools your operating system pro-
vides and placing the RTEMS tools path
at the front means it is searched first and
the RTEMS needed versions of the tools are
used.

Note: RSB and RTEMS have a matching git
branch for each version of RTEMS. For exam-
ple, if you want to build a toolchain for 4.11,
then you should checkout the 4.11 branch of
the RSB:

1 $ git checkout -t origin/4.11

Branches are available for the 4.9, 4.10, and
4.11 versions of RTEMS.

9

RTEMS Source Builder, Release 4.11.3 Chapter 2 Section 2.1

2.1 Setup

Setup a development work space:

1 $ cd
2 $ mkdir -p development/rtems/src
3 $ cd development/rtems/src

The RTEMS Source Builder is distributed as
source. It is Python code so all you need to do
is download the release’s RSB tarball or clone
the code directly from the RTEMS GIT reposi-
tory:

1 $ git clone git://git.rtems.org/rtems-
→˓source-builder.git

2 $ cd rtems-source-builder

Workspaces

The examples in the Quick Start Guide build
and install tools in your home directory.
Please refer to the RTEMS User Manual for
more detail about Sandboxing and the prefix.

10 Chapter 2. Quick Start

Chapter 2 Section 2.2 RTEMS Source Builder, Release 4.11.3

2.2 Checking

The next step is to check if your host is set up
correctly. The RTEMS Source Builder provides
a tool to help:

1 $ source-builder/sb-check
2 warning: exe: absolute exe found in path: (_

→˓_objcopy) /usr/local/bin/objcopy <1>
3 warning: exe: absolute exe found in path: (_

→˓_objdump) /usr/local/bin/objdump
4 error: exe: not found: (_xz) /usr/local/bin/

→˓xz <2>
5 RTEMS Source Builder environment is not ␣

→˓correctly set up
6 $ source-builder/sb-check
7 RTEMS Source Builder environment is ok <3>

Items:

1. A tool is in the environment path but
it does not match the expected path.

2. The executable xz is not found.

3. The host’s environment is set up cor-
rect.

The checking tool will output a list of exe-
cutable files not found if problems are de-
tected. Locate those executable files and install
them. You may also be given a list of warn-
ings about executable files not in the expected
location however the executable was located
somewhere in your environment’s path. You
will need to check each tool to determine if this
is an issue. An executable not in the standard
location may indicate it is not the host operat-
ing system’s standard tool. It maybe ok or it
could be buggy, only you can determine this.

The Chapter 3 - Hosts (page 19) section lists
packages you should install for common host
operating systems. It maybe worth checking if
you have those installed.

2.2. Checking 11

RTEMS Source Builder, Release 4.11.3 Chapter 2 Section 2.3

2.3 Build Sets

The RTEMS tools can be built within the
RTEMS Source Builder’s source tree. We rec-
ommend you do this so lets change into the
RTEMS directory in the RTEMS Source Builder
package:

1 $ cd rtems

If you are unsure how to specify the build set
for the architecture you wish to build ask the
tool:

1 $../source-builder/sb-set-builder --list-
→˓bsets <1>

2 RTEMS Source Builder - Set Builder, v4.11.0
3 Examining: config
4 Examining: ../source-builder/config <2>
5 4.10/rtems-all.bset <3>
6 4.10/rtems-arm.bset <4>
7 4.10/rtems-autotools.bset
8 4.10/rtems-avr.bset
9 4.10/rtems-bfin.bset

10 4.10/rtems-h8300.bset
11 4.10/rtems-i386.bset
12 4.10/rtems-lm32.bset
13 4.10/rtems-m32c.bset
14 4.10/rtems-m32r.bset
15 4.10/rtems-m68k.bset
16 4.10/rtems-mips.bset
17 4.10/rtems-nios2.bset
18 4.10/rtems-powerpc.bset
19 4.10/rtems-sh.bset
20 4.10/rtems-sparc.bset
21 4.11/rtems-all.bset
22 4.11/rtems-arm.bset
23 4.11/rtems-autotools.bset
24 4.11/rtems-avr.bset
25 4.11/rtems-bfin.bset
26 4.11/rtems-h8300.bset
27 4.11/rtems-i386.bset
28 4.11/rtems-lm32.bset
29 4.11/rtems-m32c.bset
30 4.11/rtems-m32r.bset
31 4.11/rtems-m68k.bset
32 4.11/rtems-microblaze.bset
33 4.11/rtems-mips.bset
34 4.11/rtems-moxie.bset
35 4.11/rtems-nios2.bset
36 4.11/rtems-powerpc.bset
37 4.11/rtems-sh.bset
38 4.11/rtems-sparc.bset
39 4.11/rtems-sparc64.bset
40 4.11/rtems-v850.bset
41 4.9/rtems-all.bset

42 4.9/rtems-arm.bset
43 4.9/rtems-autotools.bset
44 4.9/rtems-i386.bset
45 4.9/rtems-m68k.bset
46 4.9/rtems-mips.bset
47 4.9/rtems-powerpc.bset
48 4.9/rtems-sparc.bset
49 gnu-tools-4.6.bset
50 rtems-4.10-base.bset <5>
51 rtems-4.11-base.bset
52 rtems-4.9-base.bset
53 rtems-base.bset <5>

Items:

1. Only option required is --list-bsets

2. The paths inspected. See Chapter 7 -
Configuration (page 45).

3. A build set to build all RTEMS 4.10
supported architectures.

4. The build set for the ARM architecture
on RTEMS 4.10.

5. Support build set file with common
functionality included by other build
set files.

12 Chapter 2. Quick Start

Chapter 2 Section 2.4 RTEMS Source Builder, Release 4.11.3

2.4 Building

The quick start builds a SPARC tool set:

1 $../source-builder/sb-set-builder --log=l-
→˓sparc.txt \ <1>

2 --prefix=$HOME/development/rtems/4.11␣
→˓\ <2>

3 4.11/rtems-sparc <3>
4 Source Builder - Set Builder, v0.2.0
5 Build Set: 4.11/rtems-sparc
6 config: expat-2.1.0-1.cfg <4>
7 package: expat-2.1.0-x86_64-freebsd9.1-1
8 building: expat-2.1.0-x86_64-freebsd9.1-1
9 config: tools/rtems-binutils-2.22-1.cfg ␣

→˓ <5>
10 package: sparc-rtems4.11-binutils-2.22-1
11 building: sparc-rtems4.11-binutils-2.22-1
12 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-

→˓1.cfg <6>
13 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.

→˓20.0-1
14 building: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
15 config: tools/rtems-gdb-7.5.1-1.cfg <7>
16 package: sparc-rtems4.11-gdb-7.5.1-1
17 building: sparc-rtems4.11-gdb-7.5.1-1
18 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11 <8>
19 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11
20 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11
21 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11
22 cleaning: expat-2.1.0-x86_64-freebsd9.1-1 ␣

→˓ <9>
23 cleaning: sparc-rtems4.11-binutils-2.22-1
24 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
25 cleaning: sparc-rtems4.11-gdb-7.5.1-1
26 Build Set: Time 0:13:43.616383 <10>

Items

1. Providing a log file redirects the build
output into a file. Logging the build
output provides a simple way to report
problems.

2. The prefix is the location on your file
system the tools are installed into. Pro-
vide a prefix to a location you have
read and write access. You can use
the prefix to install different versions

or builds of tools. Just use the path to
the tools you want to use when build-
ing RTEMS.

3. The build set. This is the SPARC build
set. First a specifically referenced file
is checked for and if not found the
%{_configdir} path is searched. The
set builder will first look for files with
a .bset extension and then for a con-
figuration file with a .cfg extension.

4. The SPARC build set first builds the ex-
pat library as it is used in GDB. This is
the expat configuration used.

5. The binutils build configuration.

6. The GCC and Newlib build configura-
tion.

7. The GDB build configuration.

8. Installing the built packages to the in-
stall prefix.

9. All the packages built are cleaned at
the end. If the build fails all the
needed files are present. You may have
to clean up by deleting the build direc-
tory if the build fails.

10. The time to build the package. This
lets you see how different host hard-
ware or configurations perform.

Your SPARC RTEMS 4.11 tool set will be in-
stalled and ready to build RTEMS and RTEMS
applications. When the build runs you will no-
tice the tool fetch the source code from the
internet. These files are cached in directies
called source and patches. If you run the build
again the cached files are used. This is what
happened in the shown example. Archiving
these directories archives the source you need
to recreate the build.

RTEMS Releases

The RSB found in a release will automat-
ically build and install RTEMS. If you do
not want a released version of the RSB
to build RTEMS add --without-rtems to
the command line. The development ver-

2.4. Building 13

RTEMS Source Builder, Release 4.11.3 Chapter 2 Section 2.4

sion requires adding --with-rtems to build
RTEMS. Use this option to create a single
command to build the tools and RTEMS.

The source used in release builds is down-
loaded from the RTEMS FTP server. This en-
sures the source is always available for a re-
lease.

The installed tools:

1 $ ls $HOME/development/rtems/4.11
2 bin include lib libexec ␣

→˓ share sparc-rtems4.11
3 $ ls $HOME/development/rtems/4.11/bin
4 sparc-rtems4.11-addr2line sparc-rtems4.

→˓11-cpp
5 sparc-rtems4.11-gcc-ar sparc-rtems4.

→˓11-gprof
6 sparc-rtems4.11-objdump sparc-rtems4.

→˓11-size
7 sparc-rtems4.11-ar sparc-rtems4.

→˓11-elfedit
8 sparc-rtems4.11-gcc-nm sparc-rtems4.

→˓11-ld
9 sparc-rtems4.11-ranlib sparc-rtems4.

→˓11-strings
10 sparc-rtems4.11-as sparc-rtems4.

→˓11-g++
11 sparc-rtems4.11-gcc-ranlib sparc-rtems4.

→˓11-ld.bfd
12 sparc-rtems4.11-readelf sparc-rtems4.

→˓11-strip
13 sparc-rtems4.11-c++ sparc-rtems4.

→˓11-gcc
14 sparc-rtems4.11-gcov sparc-rtems4.

→˓11-nm
15 sparc-rtems4.11-run xmlwf
16 sparc-rtems4.11-c++filt sparc-rtems4.

→˓11-gcc-4.7.2
17 sparc-rtems4.11-gdb sparc-rtems4.

→˓11-objcopy
18 sparc-rtems4.11-sis
19 $ $HOME/development/rtems/4.11/bin/sparc-

→˓rtems4.11-gcc -v
20 Using built-in specs.
21 COLLECT_GCC=/home/chris/development/rtems/4.

→˓11/bin/sparc-rtems4.11-gcc
22 COLLECT_LTO_WRAPPER=/usr/home/chris/

→˓development/rtems/4.11/bin/../ \
23 libexec/gcc/sparc-rtems4.11/4.7.2/lto-

→˓wrapper
24 Target: sparc-rtems4.11 ␣

→˓ <1>
25 Configured with: ../gcc-4.7.2/configure ␣

→˓ <2>
26 --prefix=/home/chris/development/rtems/4.11

27 --bindir=/home/chris/development/rtems/4.11/
→˓bin

28 --exec_prefix=/home/chris/development/rtems/
→˓4.11

29 --includedir=/home/chris/development/rtems/
→˓4.11/include

30 --libdir=/home/chris/development/rtems/4.11/
→˓lib

31 --libexecdir=/home/chris/development/rtems/
→˓4.11/libexec

32 --mandir=/home/chris/development/rtems/4.11/
→˓share/man

33 --infodir=/home/chris/development/rtems/4.
→˓11/share/info

34 --datadir=/home/chris/development/rtems/4.
→˓11/share

35 --build=x86_64-freebsd9.1 --host=x86_64-
→˓freebsd9.1 --target=sparc-rtems4.11

36 --disable-libstdcxx-pch --with-gnu-as --
→˓with-gnu-ld --verbose --with-newlib

37 --with-system-zlib --disable-nls --without-
→˓included-gettext

38 --disable-win32-registry --enable-version-
→˓specific-runtime-libs --disable-lto

39 --enable-threads --enable-plugin --enable-
→˓newlib-io-c99-formats

40 --enable-newlib-iconv --enable-languages=c,
→˓c++

41 Thread model: rtems <3>
42 gcc version 4.7.2 20120920 <4>
43 (RTEMS 4.11 RSB ␣

→˓cb12e4875c203f794a5cd4b3de36101ff9a88403)-
→˓1 newlib 2.0.0) (GCC)

Items

1. The target the compiler is built for.

2. The configure options used to build
GCC.

3. The threading model is always
RTEMS. This makes using the RTEMS
tools for bare metal development
more difficult.

4. The version string. It contains the Git
hash of the RTEMS Source Builder you
are using. If your local clone has been
modifed that state is also recorded in
the version string. The hash allows
you to track from a GCC executable
back to the original source used to
build it.

14 Chapter 2. Quick Start

Chapter 2 Section 2.4 RTEMS Source Builder, Release 4.11.3

Note: The RTEMS thread model enables spe-
cific hooks in GCC so applications built with
RTEMS tools need the RTEMS runtime to op-
erate correctly. You can use RTEMS tools to
build bare metal component but it is more dif-
ficult than with a bare metal tool chain and
you need to know what you are doing at a low
level. The RTEMS Source Builder can build
bare metal tool chains as well. Look in the top
level bare directory.

2.4. Building 15

RTEMS Source Builder, Release 4.11.3 Chapter 2 Section 2.5

2.5 Deployment

If you wish to create and distribute your build
or you want to archive a build you can create a
tar file. We term this deploying a build. This is
a more advanced method for binary packaging
and installing of tools.

By default the RTEMS Source Builder installs
the built packages directly and optionally it
can also create a build set tar file or a pack-
age tar file per package built. The normal and
default behaviour is to let the RTEMS Source
Builder install the tools. The source will be
downloaded, built, installed and cleaned up.

The tar files are created with the full build
prefix present and if you follow the examples
given in this documentation the path is abso-
lute. This can cause problems if you are in-
stalling on a host you do not have super user
or administrator rights on because the pre-
fix path may references part you do not have
write access too and tar will not extract the
files. You can use the --strip-components op-
tion in tar if your host tar application sup-
ports it to remove the parts you do not have
write access too or you may need to un-
pack the tar file somewhere and copy the
file tree from the level you have write ac-
cess from. Embedding the full prefix path
in the tar files lets you know what the pre-
fix is and is recommended. For example if
/home/chris/development/rtems/4.11 is the
prefix used you cannot change directory to
the root (/) and untar the file because the
/home is root access only. To install a tar file
you have downloaded into your new machine’s
Downloads directory in your home directoty
you would enter:

1 $ cd /somewhere
2 $ tar --strip-components=3 -xjf \
3 $HOME/Downloads/rtems-4.11-sparc-

→˓rtems4.11-1.tar.bz2

A build set tar file is created by
adding --bset-tar-file option to the
sb-set-builder command:

1 $../source-builder/sb-set-builder --log=l-
→˓sparc.txt \

2 --prefix=$HOME/development/rtems/4.
→˓11 \

3 --bset-tar-file \ <1>
4 4.11/rtems-sparc
5 Source Builder - Set Builder, v0.2.0
6 Build Set: 4.11/rtems-sparc
7 config: expat-2.1.0-1.cfg
8 package: expat-2.1.0-x86_64-freebsd9.1-1
9 building: expat-2.1.0-x86_64-freebsd9.1-1

10 config: tools/rtems-binutils-2.22-1.cfg
11 package: sparc-rtems4.11-binutils-2.22-1
12 building: sparc-rtems4.11-binutils-2.22-1
13 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-

→˓1.cfg
14 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.

→˓20.0-1
15 building: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
16 config: tools/rtems-gdb-7.5.1-1.cfg
17 package: sparc-rtems4.11-gdb-7.5.1-1
18 building: sparc-rtems4.11-gdb-7.5.1-1
19 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11 <2>
20 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11
21 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11
22 installing: rtems-4.11-sparc-rtems4.11-1 ->␣

→˓/home/chris/development/rtems/4.11
23 tarball: tar/rtems-4.11-sparc-rtems4.11-1.

→˓tar.bz2 <3>
24 cleaning: expat-2.1.0-x86_64-freebsd9.1-1
25 cleaning: sparc-rtems4.11-binutils-2.22-1
26 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
27 cleaning: sparc-rtems4.11-gdb-7.5.1-1
28 Build Set: Time 0:15:25.92873

Items

1. The option to create a build set tar file.

2. The installation still happens unless
you specify --no-install.

3. Creating the build set tar file.

You can also suppress installing the files us-
ing the --no-install option. This is useful
if your prefix is not accessiable, for example
when building Canadian cross compiled tool
sets:

1 $../source-builder/sb-set-builder --log=l-
→˓sparc.txt \

2 --prefix=$HOME/development/rtems/
→˓4.11 \

16 Chapter 2. Quick Start

Chapter 2 Section 2.5 RTEMS Source Builder, Release 4.11.3

3 --bset-tar-file \
4 --no-install \ <1>
5 4.11/rtems-sparc
6 Source Builder - Set Builder, v0.2.0
7 Build Set: 4.11/rtems-sparc
8 config: expat-2.1.0-1.cfg
9 package: expat-2.1.0-x86_64-freebsd9.1-1

10 building: expat-2.1.0-x86_64-freebsd9.1-1
11 config: tools/rtems-binutils-2.22-1.cfg
12 package: sparc-rtems4.11-binutils-2.22-1
13 building: sparc-rtems4.11-binutils-2.22-1
14 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-

→˓1.cfg
15 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.

→˓20.0-1
16 building: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
17 config: tools/rtems-gdb-7.5.1-1.cfg
18 package: sparc-rtems4.11-gdb-7.5.1-1
19 building: sparc-rtems4.11-gdb-7.5.1-1
20 tarball: tar/rtems-4.11-sparc-rtems4.11-1.

→˓tar.bz2 <2>
21 cleaning: expat-2.1.0-x86_64-freebsd9.1-1
22 cleaning: sparc-rtems4.11-binutils-2.22-1
23 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
24 cleaning: sparc-rtems4.11-gdb-7.5.1-1
25 Build Set: Time 0:14:11.721274
26 $ ls tar
27 rtems-4.11-sparc-rtems4.11-1.tar.bz2

Items

1. The option to supressing installing the
packages.

2. Create the build set tar.

A package tar file can be created by adding the
--pkg-tar-files to the sb-set-builder com-
mand. This creates a tar file per package built
in the build set:

1 $../source-builder/sb-set-builder --log=l-
→˓sparc.txt \

2 --prefix=$HOME/development/rtems/4.
→˓11 \

3 --bset-tar-file \
4 --pkg-tar-files \ <1>
5 --no-install 4.11/rtems-sparc
6 Source Builder - Set Builder, v0.2.0
7 Build Set: 4.11/rtems-sparc
8 config: expat-2.1.0-1.cfg
9 package: expat-2.1.0-x86_64-freebsd9.1-1

10 building: expat-2.1.0-x86_64-freebsd9.1-1

11 config: tools/rtems-binutils-2.22-1.cfg
12 package: sparc-rtems4.11-binutils-2.22-1
13 building: sparc-rtems4.11-binutils-2.22-1
14 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-

→˓1.cfg
15 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.

→˓20.0-1
16 building: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
17 config: tools/rtems-gdb-7.5.1-1.cfg
18 package: sparc-rtems4.11-gdb-7.5.1-1
19 building: sparc-rtems4.11-gdb-7.5.1-1
20 tarball: tar/rtems-4.11-sparc-rtems4.11-1.

→˓tar.bz2
21 cleaning: expat-2.1.0-x86_64-freebsd9.1-1
22 cleaning: sparc-rtems4.11-binutils-2.22-1
23 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-

→˓1.20.0-1
24 cleaning: sparc-rtems4.11-gdb-7.5.1-1
25 Build Set: Time 0:14:37.658460
26 $ ls tar
27 expat-2.1.0-x86_64-freebsd9.1-1.tar.bz2 ␣

→˓ sparc-rtems4.11-binutils-2.22-1.tar.
→˓bz2

28 sparc-rtems4.11-gdb-7.5.1-1.tar.bz2 <2> ␣
→˓ rtems-4.11-sparc-rtems4.11-1.tar.
→˓bz2 <3>

29 sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1.
→˓tar.bz2

Items

1. The option to create packages tar files.

2. The GDB package tar file.

3. The build set tar file. All the others in
a single tar file.

2.5. Deployment 17

RTEMS Source Builder, Release 4.11.3 Chapter 2 Section 2.6

2.6 Controlling the Build

Build sets can be controlled via the command
line to enable and disable various features.
There is no definitive list of build options that
can be listed because they are implemented
with the configuration scripts. The best way
to find what is available is to grep the configu-
ration files. for with and without.

Following are currentlt available:

--without-rtems
Do not build RTEMS when building an
RTEMS build set.

--without-cxx
Do not build a C++ compiler.

--with-objc
Attempt to build a C++ compiler.

--with-fortran
Attempt to build a Fortran compiler.

18 Chapter 2. Quick Start

CHAPTER

THREE

HOSTS

The known supported hosts are listed in the
following sections. If a host or a new version
of a host is known to work and it not listed
please lets us know.

19

RTEMS Source Builder, Release 4.11.3 Chapter 3 Section 3.1

3.1 Linux

A number of different Linux distrubutions are
known to work. The following have been
tested and report as working.

3.1.1 ArchLinux

The following packages are required on a fresh
Archlinux 64bit installation:

1 # pacman -S base-devel gdb xz unzip ncurses␣
→˓git zlib

Archlinux, by default installs texinfo-5 which
is incompatible for building GCC 4.7 tree. You
will have to obtain texinfo-legacy from AUR
and provide a manual override:

1 # pacman -R texinfo
2 $ yaourt -S texinfo-legacy
3 # ln -s /usr/bin/makeinfo-4.13a /usr/bin/

→˓makeinfo

3.1.2 CentOS

The following packages are required on a min-
imal CentOS 6.3 64bit installation:

1 # yum install autoconf automake binutils gcc␣
→˓gcc-c++ gdb make patch \

2 bison flex xz unzip ncurses-devel texinfo ␣
→˓zlib-devel python-devel git

The minimal CentOS distribution is a specific
DVD that installs a minimal system. If you use
a full system some of these packages may have
been installed.

3.1.3 Fedora

The RTEMS Source Builder has been tested on
Fedora 19 64bit with the following packages:

1 # yum install ncurses-devel python-devel git␣
→˓bison gcc cvs gcc-c++ \

2 flex texinfo patch perl-Text-ParseWords␣
→˓zlib-devel

3.1.4 Raspbian

The is the Debian distribution for the Rasp-
berry Pi. The following packages are required:

1 $ sudo apt-get install autoconf automake ␣
→˓bison flex binutils gcc g++ gdb \

2 texinfo unzip ncurses-dev python-dev git

It is recommended you get Model B of the Pi
with 512M of memory and to mount a remote
disk over the network. The tools can be built
on the network disk with a prefix under your
home directory as recommended and end up
on the SD card.

3.1.5 Ubuntu

The latest version is Ubuntu 16.04.1 LTS 64bit.
This section also includes Xubuntu. A minimal
installation was used and the following pack-
ages installed:

1 $ sudo apt-get build-dep binutils gcc g++␣
→˓gdb unzip git

2 $ sudo apt-get install python2.7-dev

3.1.6 Linux Mint

zlib package is required on Linux Mint. It has a
different name (other than the usual zlib-dev):

1 # sudo apt-get install zlib1g-dev

3.1.7 openSUSE

This has been reported to work but no instruc-
tions were provided. This is an opportunity
to contribute. Please submit any guidance you
can provide.

20 Chapter 3. Hosts

Chapter 3 Section 3.2 RTEMS Source Builder, Release 4.11.3

3.2 FreeBSD

The RTEMS Source Builder has been tested on
FreeBSD 9.1, 10.3 and 11 64bit version. You
need to install some ports. They are:

1 # cd /usr/ports
2 # portinstall --batch lang/python27

If you wish to build Windows (mingw32) tools
please install the following ports:

1 # cd /usr/ports
2 # portinstall --batch devel/mingw32-binutils␣

→˓devel/mingw32-gcc
3 # portinstall --batch devel/mingw32-zlib ␣

→˓devel/mingw32-pthreads

The +zlip+ and +pthreads+ ports for
MinGW32 are used for builiding a Windows
QEMU.

If you are on FreeBSD 10.0 and you have
pkgng installed you can use ‘pkg install’ rather
than ‘portinstall’.

3.2. FreeBSD 21

RTEMS Source Builder, Release 4.11.3 Chapter 3 Section 3.3

3.3 NetBSD

The RTEMS Source Builder has been tested on
NetBSD 6.1 i386. Packages to add are:

1 # pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/
→˓packages/NetBSD/i386/6.1/devel/gmake-3.
→˓82nb7.tgz

2 # pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/
→˓packages/NetBSD/i386/6.1/devel/bison-2.7.
→˓1.tgz

3 # pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/
→˓packages/NetBSD/i386/6.1/archivers/xz-5.
→˓0.4.tgz

22 Chapter 3. Hosts

Chapter 3 Section 3.4 RTEMS Source Builder, Release 4.11.3

3.4 MacOS

The RTEMS Source Builder has been tested
on Mountain Lion. You will need to install
the Xcode app using the App Store tool, run
Xcode and install the Developers Tools pack-
age within Xcode.

3.4.1 Mavericks

The RSB works on Mavericks and the GNU
tools can be built for RTEMS using the Mav-
ericks clang LLVM tool chain. You will need to
build and install a couple of packages to make
the RSB pass the sb-check. These are CVS and
XZ. You can get these tools from a packaging
tool for MacOS such as MacPorts or HomeBrew.

I do not use 3rd party packaging on Ma-
cOS and prefer to build the packages from
source using a prefix of /usr/local. There
are good 3rd party packages around however
they sometimes bring in extra dependence and
that complicates my build environment and I
want to know the minimal requirements when
building tools. The following are required:

1. The XZ package’s home page is http://
tukaani.org/xz/ and I use version 5.0.5.
XZ builds and installs cleanly.

3.4.2 Serria

The RSB works on Serria with the latest Xcode.

3.4. MacOS 23

http://tukaani.org/xz/
http://tukaani.org/xz/

RTEMS Source Builder, Release 4.11.3 Chapter 3 Section 3.5

3.5 Windows

Windows tool sets are supported. The tools are
native Windows executable which means they
do not need an emulation layer to run once
built. The tools understand and use standard
Windows paths and integrate easily into Win-
dows IDE environments because they under-
stand and use standard Windows paths. Na-
tive Windows tools have proven over time to
be stable and reliable with good performance.
If you are a Windows user or you are required
to use Windows you can still develop RTEMS
application as easily as a Unix operating sys-
tem. Some debugging experiences may vary
and if this is an issue please raised the topic on
the RTEMS Users mailing list.

Building the tools or some other packages may
require a Unix or POSIX type shell. There are
a few options, Cygwin and MSYS2. I recom-
mend MSYS2.

3.5.1 MSYS2

This is a new version of the MinGW project’s
original MSYS. MSYS2 is based around the
Arch Linux pacman packager. MSYS and
MSYS2 are a specific fork of the Cygwin project
with some fundamental changes in the han-
dling of paths and mounts that allow easy
interaction between the emulated POSIX en-
vironment and the native Windows environ-
ment.

Install MSYS2 using the installer you can
download from https://msys2.github.io/. Fol-
low the instructions on the install page and
make sure you remove any global path entries
to any other Cygwin, MinGW, MSYS or pack-
ages that may uses a Cygwin DLL, for example
some ports of Git.

To build the tools you need install the follow-
ing packages using pacman:

1 $ pacman -S git cvs bison make texinfo patch␣
→˓unzip diffutils tar \

2 mingw64/mingw-w64-x86_64-gcc mingw64/
→˓mingw-w64-x86_64-binutils

To build make sure you add ‘–without-python

–jobs=none’ to the standard RSB command
line. MSYS2 has a temp file name issue and
so the GNU AR steps on itself when running
in parallel on SMP hardware which means we
have to set the jobs option to none.

Install a suitable version of Python from http:
//www.python.org/ and add it to the start of
your path. The MSYS2 python does not work
with waf.

3.5.2 Cygwin

Building on Windows is a little more compli-
cated because the Cygwin shell is used rather
than the MSYS2 shell. The MSYS2 shell is sim-
pler because the detected host triple is MinGW
so the build is a standard cross-compiler build.
A Canadian cross-build using Cygwin is sup-
ported if you would like native tools or you can
use a Cygwin built set of tools.

Install a recent Cygwin version using the Cyg-
win setup tool. Select and install the groups
and packages listed:

24 Chapter 3. Hosts

https://msys2.github.io/
http://www.python.org/
http://www.python.org/

Chapter 3 Section 3.5 RTEMS Source Builder, Release 4.11.3

Table 3.1: Cygwin Packages

Group Package
Archive bsdtar
Archive unzip
Archive xz
Devel autoconf
Devel autoconf2.1
Devel autoconf2.5
Devel automake
Devel binutils
Devel bison
Devel flex
Devel gcc4-core
Devel gcc4-g++
Devel git
Devel make
Devel mingw64-x86_64-binutils
Devel mingw64-x86_64-gcc-core
Devel mingw64-x86_64-g++
Devel mingw64-x86_64-runtime
Devel mingw64-x86_64-zlib
Devel patch
Devel zlib-devel
MinGW mingw-zlib-devel
Python python

The setup tool will add a number of dependent
package and it is ok to accept them.

Disabling Windows Defender improves perfor-
mance if you have another up to date virus de-
tection tool installed and enabled. The excel-
lent Process Hacker 2 tool can monitor the
performance and the Windows Defender ser-
vice contributed a high load. In this case a 3rd
party virus tool was installed so the Windows
Defender service was not needed.

To build a MinGW tool chain a Canadian
cross-compile (Cxc) is required on Cygwin be-
cause the host is Cygwin therefore a traditional
cross-compile will result in Cygiwn binaries.
With a Canadian cross-compile a Cygwin cross-
compiler is built as well as the MinGW RTEMS
cross-compiler. The Cygwin cross-compiler is
required to build the C runtime for the RTEMS
target because we are building under Cygiwn.
The build output for an RTEMS 4.10 ARM tool
set is:

1 chris@cygthing ~/development/rtems/src/
→˓rtems-source-builder/rtems

2 $../source-builder/sb-set-builder --log=l-
→˓arm.txt --prefix=$HOME/development/rtems/
→˓4.10 4.10/rtems-arm

3 RTEMS Source Builder - Set Builder, v0.2
4 Build Set: 4.10/rtems-arm
5 config: expat-2.1.0-1.cfg
6 package: expat-2.1.0-x86_64-w64-mingw32-1
7 building: expat-2.1.0-x86_64-w64-mingw32-1
8 reporting: expat-2.1.0-1.cfg -> expat-2.1.0-

→˓x86_64-w64-mingw32-1.html
9 config: tools/rtems-binutils-2.20.1-1.cfg

10 package: arm-rtems4.10-binutils-2.20.1-1 ␣
→˓<1>

11 building: arm-rtems4.10-binutils-2.20.1-1
12 package: (Cxc) arm-rtems4.10-binutils-2.20.

→˓1-1 <2>
13 building: (Cxc) arm-rtems4.10-binutils-2.20.

→˓1-1
14 reporting: tools/rtems-binutils-2.20.1-1.

→˓cfg ->
15 arm-rtems4.10-binutils-2.20.1-1.html
16 config: tools/rtems-gcc-4.4.7-newlib-1.18.0-

→˓1.cfg
17 package: arm-rtems4.10-gcc-4.4.7-newlib-1.

→˓18.0-1
18 building: arm-rtems4.10-gcc-4.4.7-newlib-1.

→˓18.0-1
19 package: (Cxc) arm-rtems4.10-gcc-4.4.7-

→˓newlib-1.18.0-1
20 building: (Cxc) arm-rtems4.10-gcc-4.4.7-

→˓newlib-1.18.0-1
21 reporting: tools/rtems-gcc-4.4.7-newlib-1.

→˓18.0-1.cfg ->
22 arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1.html
23 config: tools/rtems-gdb-7.3.1-1.cfg
24 package: arm-rtems4.10-gdb-7.3.1-1
25 building: arm-rtems4.10-gdb-7.3.1-1
26 reporting: tools/rtems-gdb-7.3.1-1.cfg -> ␣

→˓arm-rtems4.10-gdb-7.3.1-1.html
27 config: tools/rtems-kernel-4.10.2.cfg
28 package: arm-rtems4.10-kernel-4.10.2-1
29 building: arm-rtems4.10-kernel-4.10.2-1
30 reporting: tools/rtems-kernel-4.10.2.cfg ->␣

→˓arm-rtems4.10-kernel-4.10.2-1.html
31 installing: expat-2.1.0-x86_64-w64-mingw32-

→˓1 -> /cygdrive/c/Users/chris/development/
→˓rtems/4.10

32 installing: arm-rtems4.10-binutils-2.20.1-
→˓1 -> /cygdrive/c/Users/chris/development/
→˓rtems/4.10 <3>

33 installing: arm-rtems4.10-gcc-4.4.7-newlib-
→˓1.18.0-1 -> /cygdrive/c/Users/chris/
→˓development/rtems/4.10

34 installing: arm-rtems4.10-gdb-7.3.1-1 -> /
→˓cygdrive/c/Users/chris/development/rtems/
→˓4.10

3.5. Windows 25

RTEMS Source Builder, Release 4.11.3 Chapter 3 Section 3.5

35 installing: arm-rtems4.10-kernel-4.10.2-1 ␣
→˓-> /cygdrive/c/Users/chris/development/
→˓rtems/4.10

36 cleaning: expat-2.1.0-x86_64-w64-mingw32-1
37 cleaning: arm-rtems4.10-binutils-2.20.1-1
38 cleaning: arm-rtems4.10-gcc-4.4.7-newlib-1.

→˓18.0-1
39 cleaning: arm-rtems4.10-gdb-7.3.1-1
40 cleaning: arm-rtems4.10-kernel-4.10.2-1
41 Build Set: Time 10:09:42.810547 <4>

Items:

1. The Cygwin version of the ARM cross-
binutils.

2. The +(Cxc)+ indicates this is the
MinGW build of the package.

3. Only the MinGW version is installed.

4. Cygwin is slow so please be patient.
This time was on an AMD Athlon 64bit
Dual Core 6000+ running at 3GHz
with 4G RAM running Windows 7
64bit.

Warning: Cygwin documents the ‘Big
List Of Dodgy Apps’ or ‘BLODA’. The
link is http://cygwin.com/faq/faq.html#
faq.using.bloda and it is worth a look. You
will see a large number of common pieces
of software found on Windows systems that
can cause problems. My testing has been
performed with NOD32 running and I have
seen some failures. The list is for all of Cyg-
win so I am not sure which of the listed
programs effect the RTEMS Source Biulder.
The following FAQ item talks about fork
failures and presents some technical rea-
sons they cannot be avoided in all cases.
Cygwin and it’s fork MSYS are fantastic
pieces of software in a difficult environ-
ment. I have found building a single tool
tends to work, building all at once is harder.

26 Chapter 3. Hosts

http://cygwin.com/faq/faq.html#faq.using.bloda
http://cygwin.com/faq/faq.html#faq.using.bloda

CHAPTER

FOUR

PROJECT SETS

The RTEMS Source Builder supports project
configurations. Project configurations can be
public or private and can be contained in
the RTEMS Source Builder project if suitable,
other projects they use the RTEMS Source
Builder or privately on your local file system.

The configuration file loader searches the
macro _configdir and by default this is
set to %{_topdir}/config:%{_sbdir}/config
where _topdir is the your current working
direct, in other words the directory you in-
voke the RTEMS Source Builder command in,
and _sbdir is the directory where the RTEMS
Source Builder command resides. Therefore
the config directory under each of these is
searched so all you need to do is create a
config in your project and add your config-
uration files. They do not need to be under
the RTEMS Source Builder source tree. Pub-
lic projects are included in the main RTEMS
Source Builder such as RTEMS.

You can also add your own patches di-
rectory next to your config directory as
the %patch command searches the _patchdir
macro variable and it is by default set to
%{_topdir}/patches:%{_sbdir}/patches.

The source-builder/config directory pro-
vides generic scripts for building various tools.
You can specialise these in your private config-
urations to make use of them. If you add new
generic configurations please contribute them
back to the project

27

RTEMS Source Builder, Release 4.11.3 Chapter 4 Section 4.1

4.1 Bare Metal

The RSB contains a ‘bare’ configuration tree
and you can use this to add packages you use
on the hosts. For example ‘qemu’ is supported
on a range of hosts. RTEMS tools live in the
rtems/config directory tree. RTEMS packages
include tools for use on your host computer
as well as packages you can build and run on
RTEMS.

The bare metal support for GNU Tool chains.
An example is the lang/gcc491 build set. You
need to provide a target via the command line
--target option and this is in the standard 2
or 3 tuple form. For example for an ARM com-
piler you would use arm-eabi or ‘‘arm-eabihf‘,
and for SPARC you would use sparc-elf :

1 $ cd rtems-source-builder/bare
2 $../source-builder/sb-set-builder --

→˓log=log_arm_eabihf \
3 --prefix=$HOME/development/bare --

→˓target=arm-eabihf lang/gcc491
4 RTEMS Source Builder - Set Builder, v0.3.0
5 Build Set: lang/gcc491
6 config: devel/expat-2.1.0-1.cfg
7 package: expat-2.1.0-x86_64-apple-darwin13.

→˓2.0-1
8 building: expat-2.1.0-x86_64-apple-darwin13.

→˓2.0-1
9 config: devel/binutils-2.24-1.cfg

10 package: arm-eabihf-binutils-2.24-1
11 building: arm-eabihf-binutils-2.24-1
12 config: devel/gcc-4.9.1-newlib-2.1.0-1.cfg
13 package: arm-eabihf-gcc-4.9.1-newlib-2.1.0-1
14 building: arm-eabihf-gcc-4.9.1-newlib-2.1.0-

→˓1
15 config: devel/gdb-7.7-1.cfg
16 package: arm-eabihf-gdb-7.7-1
17 building: arm-eabihf-gdb-7.7-1
18 installing: expat-2.1.0-x86_64-apple-

→˓darwin13.2.0-1 -> /Users/chris/
→˓development/bare

19 installing: arm-eabihf-binutils-2.24-1 -> /
→˓Users/chris/development/bare

20 installing: arm-eabihf-gcc-4.9.1-newlib-2.1.
→˓0-1 -> /Users/chris/development/bare

21 installing: arm-eabihf-gdb-7.7-1 -> /Users/
→˓chris/development/bare

22 cleaning: expat-2.1.0-x86_64-apple-darwin13.
→˓2.0-1

23 cleaning: arm-eabihf-binutils-2.24-1
24 cleaning: arm-eabihf-gcc-4.9.1-newlib-2.1.0-

→˓1
25 cleaning: arm-eabihf-gdb-7.7-1

28 Chapter 4. Project Sets

Chapter 4 Section 4.2 RTEMS Source Builder, Release 4.11.3

4.2 RTEMS

The RTEMS Configurations found in the rtems
directory. The configurations are grouped by
RTEMS version. In RTEMS the tools are spe-
cific to a specific version because of varia-
tions between Newlib and RTEMS. Restructur-
ing in RTEMS and Newlib sometimes moves
libc functionality between these two parts and
this makes existing tools incompatible with
RTEMS.

RTEMS allows architectures to have different
tool versions and patches. The large number of
architectures RTEMS supports can make it dif-
ficult to get a common stable version of all the
packages. An architecture may require a recent
GCC because an existing bug has been fixed,
however the more recent version may have a
bug in other architecture. Architecture specific
patches should be limited to the architecture
it relates to. The patch may fix a problem on
the effect architecture however it could intro-
duce a problem in another architecture. Limit
exposure limits any possible crosstalk between
architectures.

If you are building a released version of
RTEMS the release RTEMS tar file will be
downloaded and built as part of the build pro-
cess. If you are building a tool set for use with
the development branch of RTEMS, the devel-
opment branch will be cloned directly from the
RTEMS GIT repository and built.

When building RTEMS within the RTEMS
Source Builder it needs a suitable working
autoconf and automake. These packages need
to built and installed in their prefix in order for
them to work. The RTEMS Source Builder in-
stalls all packages only after they have been
built so if you host does not have a recent
enough version of autoconf and automake you
first need to build them and install them then
build your tool set. The commands are:

1 $../source-builder/sb-set-builder --log=l-
→˓4.11-at.txt \

2 --prefix=$HOME/development/rtems/4.11 4.
→˓11/rtems-autotools

3 $ export PATH=~/development/rtems/4.11/bin:
→˓$PATH <1>

4 $../source-builder/sb-set-builder --log=l-
→˓4.11-sparc.txt \

5 --prefix=$HOME/development/rtems/4.11 4.
→˓11/rtems-sparc

Items:

1. Setting the path.

If this is your first time building the tools and
RTEMS it pays to add the --dry-run option.
This will run through all the configuration files
and if any checks fail you will see this quickly
rather than waiting for until the build fails a
check.

To build snapshots for testing purposes you use
the available macro maps passing them on the
command line using the --macros option. For
RTEMS these are held in config/snapshots di-
rectory. The following builds newlib from CVS:

1 $../source-builder/sb-set-builder --log=l-
→˓4.11-sparc.txt \

2 --prefix=$HOME/development/rtems/4.11 \
3 --macros=snapshots/newlib-head.mc \
4 4.11/rtems-sparc

and the following uses the version control
heads for binutils, gcc, newlib, gdb and
RTEMS:

1 $../source-builder/sb-set-builder --log=l-
→˓heads-sparc.txt \

2 --prefix=$HOME/development/rtems/4.11-
→˓head \

3 --macros=snapshots/binutils-gcc-newlib-
→˓gdb-head.mc \

4 4.11/rtems-sparc

4.2. RTEMS 29

RTEMS Source Builder, Release 4.11.3 Chapter 4 Section 4.3

4.3 Patches

Packages being built by the RSB need
patches from time to time and the RSB
supports patching upstream packages. The
patches are held in a seperate directory
called patches relative to the configura-
tion directory you are building. For exam-
ple %{_topdir}/patches:%{_sbdir}/patches.
Patches are declared in the configuration files
in a similar manner to the package’s source
so please refer to the %source documentation.
Patches, like the source, are to be made pub-
lically available for configurations that live in
the RSB package and are downloaded on de-
mand.

If a package has a patch management tool it
is recommended you reference the package’s
patch management tools directly. If the RSB
does not support the specific patch manage
tool please contact the mailing list to see if sup-
port can be added.

Patches for packages developed by the RTEMS
project can be placed in the RTEMS Tools Git
repository. The tools directory in the reposi-
tory has various places a patch can live. The
tree is broken down in RTEMS releases and
then tools within that release. If the package
is not specific to any release the patch can be
added closer to the top under the package’s
name. Patches to fix specific tool related issues
for a specific architecture should be grouped
under the specific architecture and only ap-
plied when building that architecture avoiding
a patch breaking an uneffected architecture.

Patches in the RTEMS Tools repository need to
be submitted to the upstream project. It should
not be a clearing house for patches that will
not be accepted upstream.

Patches are added to a component’s name
and in the %prep: section the patches can be
set up, meaning they are applied to source.
The patches are applied in the order they are
added. If there is a dependency make sure
you order the patches correctly when you add
them. You can add any number of patches and
the RSB will handle them efficently.

Patches can have options. These are added be-

fore the patch URL. If no options are provided
the patch’s setup default options are used.

Patches can be declared in build set up files.

This examples shows how to declare a patch
for gdb in the lm32 architecture:

1 %patch add <1> gdb <2> %{rtems_gdb_patches}/
→˓lm32/gdb-sim-lm32uart.diff <3>

Items:

1. The patch’s add command.

2. The group of patches this patch be-
longs too.

3. The patch’s URL. It is downloaded
from here.

Patches require a checksum to avoid a warn-
ing. The %hash directive can be used to add a
checksum for a patch that is used to verify the
patch:

1 %hash md5 <1> gdb-sim-lm32uart.diff <2> ␣
→˓77d070878112783292461bd6e7db17fb <3>

Items:

1. The type of checksum, in the case an
MD5 hash.

2. The patch file the checksum is for.

3. The MD5 hash.

The patches are applied when a patch setup
command is issued in the %prep: section. All
patches in the group are applied. To apply the
GDB patch above use:

1 %patch setup <1> gdb <2> -p1 <3>

Items:

1. The patch’s setup command.

2. The group of patches to apply.

3. The patch group’s default options. If
no option is given with the patch these

30 Chapter 4. Project Sets

Chapter 4 Section 4.3 RTEMS Source Builder, Release 4.11.3

options are used.

Architecture specific patches live in the archi-
tecture build set file isolating the patch to that
specific architecture. If a patch is common to
a tool it resides in the RTEMS tools configu-
ration file. Do not place patches for tools in
the source-builder/config template configu-
ration files.

To test a patch simply copy it to your local
patches directory. The RSB will see the patch
is present and will not attempt to download it.
Once you are happy with the patch submit it
to the project and a core developer will review
it and add it to the RTEMS Tools git repository.
For example, to test a local patch for newlib,
add the following two lines to the .cfg file in
rtems/config/tools/ that is included by the
bset you use:

1 %patch add newlib file://0001-this-is-a-
→˓newlib-patch.patch <1>

2 %hash md5 0001-this-is-a-newlib-patch.diff ␣
→˓77d070878112783292461bd6e7db17fb <2>

Items:

1. The diff file prepended with file://
to tell RSB this is a local file.

2. The output from md5sum on the diff
file.

4.3. Patches 31

RTEMS Source Builder, Release 4.11.3 Chapter 4 Section 4.3

32 Chapter 4. Project Sets

CHAPTER

FIVE

CROSS AND CANADIAN CROSS
BUILDING

Cross building and Canadian Cross building is
the process of building on one machine an ex-
ecutable that runs on another machine. An
example is building a set of RTEMS tools on
Linux to run on Windows. The RSB supports
cross building and Canadian cross building.

This sections details how to the RSB to cross
and Canadian cross build.

33

RTEMS Source Builder, Release 4.11.3 Chapter 5 Section 5.1

5.1 Cross Building

Cross building is where the _build_ machine
and _host_ are different. The _build_ machine
runs the RSB and the _host_ machine is where
the output from the build runs. An example is
building a package such as NTP for RTEMS on
your development machine.

To build the NTP package for RTEMS you enter
the RSB command:

1 $../source-builder/sb-set-builder \
2 --log=log_ntp_arm.txt \
3 --prefix=$HOME/development/rtems/4.11 \

→˓<1>
4 --host=arm-rtems4.11 \ <2>
5 --with-rtems-bsp=xilinx_zynq_zc706 \ <3>
6 4.11/net/ntp

Items:

1. The tools and the RTEMS BSP are in-
stalled under the same prefix.

2. The --host command is the RTEMS ar-
chitecture and version.

3. The BSP is built and installed in the
prefix. The arhcitecture must match
the --host architecture.

34 Chapter 5. Cross and Canadian Cross Building

Chapter 5 Section 5.2 RTEMS Source Builder, Release 4.11.3

5.2 Canadian Cross Building

A Canadian cross builds are where the build,
host and target machines all differ. For exam-
ple building an RTEMS compiler for an ARM
processor that runs on Windows is built us-
ing a Linux machine. The process is controlled
by setting the build triplet to the host you are
building, the host triplet to the host the tools
will run on and the target to the RTEMS archi-
tecture you require. The tools needed by the
RSB are:

• Build host C and C++ compiler

• Host C and C++ cross compiler

The RTEMS Source Builder requires you pro-
vide the build host C and C++ compiler and
the final host C and C++ cross-compiler. The
RSB will build the build host RTEMS compiler
and the final host RTEMS C and C++ com-
piler, the output of this process.

The Host C and C++ compiler is a cross-
compiler that builds executables for the host
you want the tools for. You need to provide
these tools. For Windows a number of Unix
operating systems provide MinGW tool sets as
packages.

The RSB will build an RTEMS tool set for the
build host. This is needed when building the
final host’s RTEMS compiler as it needs to build
RTEMS runtime code such as libc on the build
host.

TIP: Make sure the host’s cross-compiler tools
are in your path before run the RSB build com-
mand.

TIP: Canadian Cross built tools will not run
on the machine being used to build them so
you should provide the --bset-tar-files and
--no-install options. The option to not in-
stall the files lets you provide a prefix that does
not exist or you cannot access.

To perform a cross build add --host= to
the command line. For example to build
a MinGW tool set on FreeBSD for Windows
add --host=mingw32 if the cross compiler is
mingw32-gcc:

1 $../source-builder/sb-set-builder --
→˓host=mingw32 \

2 --log=l-mingw32-4.11-sparc.txt \
3 --prefix=$HOME/development/rtems/4.11 \
4 4.11/rtems-sparc

If you are on a Linux Fedora build host with
the MinGW packages installed the command
line is:

1 $../source-builder/sb-set-builder --
→˓host=i686-w64-mingw32 \

2 --log=l-mingw32-4.11-sparc.txt \
3 --prefix=$HOME/development/rtems/4.11 \
4 4.11/rtems-sparc

5.2. Canadian Cross Building 35

RTEMS Source Builder, Release 4.11.3 Chapter 5 Section 5.2

36 Chapter 5. Cross and Canadian Cross Building

CHAPTER

SIX

RTEMS 3RD PARTY PACKAGES

This section describes how to build and add an
RTEMS 3rd party package to the RSB.

A 3rd party package is a library or software
package built to run on RTEMS, examples are
NTP, Net-Snmp, libjpeg or Python. These
pieces of software can be used to help build
RTEMS applications. The package is built for a
specific BSP and so requires a working RTEMS
tool chain and an installed RTEMS Board Sup-
port Package (BSP).

The RSB support for building 3rd party pack-
ages is based around the pkconfig files (PC)
installed with the BSP. The pkgconfig support
in RTEMS is considered experimental and can
have some issues for some BSPs. This issue is
rooted deep in the RTEMS build system. If you
have any issues with this support please ask on
the RTEMS developers mailing list.

37

RTEMS Source Builder, Release 4.11.3 Chapter 6 Section 6.1

6.1 Vertical Integration

The RSB supports horizontal integration with
support for multiple architectures. Adding
packages to the RSB as libraries is vertical inte-
gration. Building the GCC tool chain requires
you build an assembler before you build a com-
piler. The same can be done for 3rd party li-
braries, you can crate build sets that stack li-
brary dependences vertically to create a stack.

38 Chapter 6. RTEMS 3rd Party Packages

Chapter 6 Section 6.2 RTEMS Source Builder, Release 4.11.3

6.2 Building

To build a package you need to have a suit-
able RTEMS tool chain and RTEMS BSP in-
stalled. The set builder command line requires
you provide the tools path, the RTEMS host,
and the prefix path to the installed RTEMS
BSP. The prefix needs to be the same as the
prefix used to build RTEMS.

To build Net-SNMP the command is:

1 $ cd rtems-source-builder/rtems
2 $../source-builder/sb-set-builder --

→˓log=log_sis_net_snmp \
3 --prefix=$HOME/development/rtems/bsps/4.

→˓11 \
4 --with-tools=$HOME/development/rtems/4.

→˓11 \
5 --host=sparc-rtems4.11 --with-rtems-

→˓bsp=sis 4.11/net-mgmt/net-snmp
6 RTEMS Source Builder - Set Builder, v0.3.0
7 Build Set: 4.11/net-mgmt/net-snmp
8 config: net-mgmt/net-snmp-5.7.2.1-1.cfg
9 package: net-snmp-5.7.2.1-sparc-rtems4.11-1

10 building: net-snmp-5.7.2.1-sparc-rtems4.11-1
11 installing: net-snmp-5.7.2.1-sparc-rtems4.

→˓11-1 -> /Users/chris/development/rtems/
→˓bsps/4.11

12 cleaning: net-snmp-5.7.2.1-sparc-rtems4.11-1
13 Build Set: Time 0:01:10.651926

6.2. Building 39

RTEMS Source Builder, Release 4.11.3 Chapter 6 Section 6.3

6.3 Adding

Adding a package requires you first build it
manually by downloading the source for the
package and building it for RTEMS using the
command line of a standard shell. If the pack-
age has not been ported to RTEMS you will
need to port it and this may require you ask-
ing questions on the package’s user or devel-
opment support lists as well as RTEMS’s devel-
opers list. Your porting effort may end up with
a patch. RTEMS requires a patch be submitted
upstream to the project’s community as well as
RTEMS so it can be added to the RTEMS Tools
git repository. A patch in the RTEMS Tools git
reposiitory can then be referenced by an RSB
configuration file.

A package may create executables, for exam-
ple NTP normally creates executables such as
ntdp, ntpupdate, or ntpdc. These executables
can be useful when testing the package how-
ever they are of limited use by RTEMS users
because they cannot be directly linked into a
user application. Users need to link to the
functions in these executables or even the exe-
cutable as a function placed in libraries. If the
package does not export the code in a suitable
manner please contact the project’s commuin-
ity and see if you can work them to provide
a way for the code to be exported. This may
be difficult because exporting internal headers
and functions opens the project up to API com-
patibility issues they did not have before. In
the simplest case attempting to get the code
into a static library with a single call entry
point exported in a header would give RTEMS
user’s access to the package’s main functional-
ity.

A package requires 3 files to be created:

• The first file is the RTEMS build
set file and it resides in the
rtems/config/%{rtems_version}
path in a directory tree based on
the FreeBSD ports collection. For the
NTP package and RTEMS 4.11 this is
rtems/config/4.11/net/ntp.bset. If
you do not know the FreeBSD port
path for the package you are adding
please ask. The build set file references

a specific configuration file therefore
linking the RTEMS version to a specific
version of the package you are adding.
Updating the package to a new version
requires changing the build set to the
new configuration file.

• The second file is an RTEMS version
specific configuration file and it in-
cludes the RSB RTEMS BSP support.
These configuration files reside in the
rtems/config tree again under the
FreeBSD port’s path name. For exam-
ple the NTP package is found in the
net directory of the FreeBSD ports
tree so the NTP configuration path is
rtems/config/net/ntp-4.2.6p5-1.cfg
for that specific version. The configura-
tion file name typically provides version
specific references and the RTEMS build
set file references a specific version. This
configuration file references the build
configuration file held in the common
configuration file tree.

• The build configuration. This is a com-
mon script that builds the package. It re-
sides in the source-builder/config di-
rectory and typically has the packages’s
name with the major version number. If
the build script does not change for each
major version number a common base
script can be created and included by
each major version configuration script.
The gcc compiler configuration is an ex-
ample. This approach lets you branch
a version if something changes that is
not backwards compatible. It is impor-
tant to keep existing versions building.
The build configuration should be able
to build a package for the build host as
well as RTEMS as the RSB abstracts the
RTEMS specific parts. See Chapter 7 -
Configuration (page 45) for more details.

40 Chapter 6. RTEMS 3rd Party Packages

Chapter 6 Section 6.4 RTEMS Source Builder, Release 4.11.3

6.4 BSP Support

The RSB provides support to help build pack-
ages for RTEMS. RTEMS applications can be
viewed as statically linked executables oper-
ating in a single address space. As a result
only the static libraries a package builds are re-
quired and these libraries need to be ABI com-
patible with the RTEMS kernel and applica-
tion code meaning compiler ABI flags cannot
be mixed when building code. The 3rd party
package need to use the same compiler flags
as the BSP used to build RTEMS.

Note: RTEMS’s dynamic loading support does
not use the standard shared library support
found in Unix and the ELF standard. RTEMS’s
loader uses static libraries and the runtime link
editor performs a similar function to a host
based static linker. RTEMS will only refer-
ence static libraries even if dynamic libraries
are created and installed.

The RSB provides the configuration file
rtems/config/rtems-bsp.cfg to support
building 3rd party packages and you need
to include this file in your RTEMS ver-
sion specific configuration file. For ex-
ample the Net-SNMP configuration file
rtems/config/net-mgmt/net-snmp-5.7.2.1-1.cfg:

1 #
2 # NetSNMP 5.7.2.1
3 #
4 %if %{release} == %{nil}
5 %define release 1 <1>
6 %endif
7

8 %include %{_configdir}/rtems-bsp.cfg <2>
9

10 #
11 # NetSNMP Version
12 #
13 %define net_snmp_version 5.7.2.1 <3>
14

15 #
16 # We need some special flags to build this␣

→˓version.
17 #
18 %define net_snmp_cflags <4> -DNETSNMP_CAN_

→˓USE_SYSCTL=1 -DARP_SCAN_FOUR_ARGUMENTS=1␣
→˓-DINP_IPV6=0

19

20 #
21 # Patch for RTEMS support.
22 #
23 %patch add net-snmp %{rtems_git_tools}/

→˓net-snmp/rtems-net-snmp-5.7.2.1-20140623.
→˓patch <5>

24

25 #
26 # NetSNMP Build configuration
27 #
28 %include %{_configdir}/net-snmp-5-1.cfg <6>

Items:

1. The release number.

2. Include the RSB RTEMS BSP support.

3. The Net-SNMP package’s version.

4. Add specific CFLAGS to the build pro-
cess. See the

net-snmp-5.7.2.1-1.cfg for de-
tails.

5. The RTEMS Net-SNMP patch down-
loaded from the RTEMS Tools git repo.

6. The Net-SNMP standard build config-
uration.

The RSB RTEMS BSP support file
rtems/config/rtems-bsp.cfg checks to
make sure standard command line options
are provided. These include --host and
--with-rtems-bsp. If the --with-tools com-
mand line option is not given the ${_prefix}
is used:

1 %if %{_host} == %{nil} <1>
2 %error No RTEMS target specified: --

→˓host=host
3 %endif
4

5 %ifn %{defined with_rtems_bsp} <2>
6 %error No RTEMS BSP specified: --with-rtems-

→˓bsp=bsp
7 %endif
8

9 %ifn %{defined with_tools} <3>
10 %define with_tools %{_prefix}
11 %endif
12

13 #

6.4. BSP Support 41

RTEMS Source Builder, Release 4.11.3 Chapter 6 Section 6.4

14 # Set the path to the tools.
15 #
16 %{path prepend %{with_tools}/bin} <4>

Items:

1. Check the host has been set.

2. Check a BSP has been specified.

3. If no tools path has been provided as-
sume they are under the %{_prefix}.

4. Add the tools bin path to the system
path.

RTEMS exports the build flags used in pkgcon-
fig (.pc) files and the RSB can read and man-
age them even when there is no pkgconfig sup-
port installed on your build machine. Using
this support we can obtain a BSP’s configura-
tion and set some standard macros variables
(rtems/config/rtems-bsp.cfg):

1 %{pkgconfig prefix %{_prefix}/lib/pkgconfig}
→˓ <1>

2 %{pkgconfig crosscompile yes} <2>
3 %{pkgconfig filter-flags yes} <3>
4

5 #
6 # The RTEMS BSP Flags
7 #
8 %define rtems_bsp %{with_rtems_bsp}
9 %define rtems_bsp_ccflags %{pkgconfig ␣

→˓ccflags %{_host}-%{rtems_bsp}} <4>
10 %define rtems_bsp_cflags %{pkgconfig ␣

→˓cflags %{_host}-%{rtems_bsp}}
11 %define rtems_bsp_ldflags %{pkgconfig ␣

→˓ldflags %{_host}-%{rtems_bsp}}
12 %define rtems_bsp_libs %{pkgconfig libs␣

→˓ %{_host}-%{rtems_bsp}}

Items:

1. Set the path to the BSP’s pkgconfig file.

2. Let pkgconfig know this is a cross-
compile build.

3. Filter flags such as warnings. Warning
flags are specific to a package.

4. Ask pkgconfig for the various items we
require.

The flags obtain by pkgconfig and given a
rtems_bsp_ prefix and we uses these to set
the RSB host support CFLAGS, LDFLAGS and
LIBS flags. When we build a 3rd party
library your host computer is the _build_
machine and RTEMS is the _host_ ma-
chine therefore we set the host variables
(rtems/config/rtems-bsp.cfg):

1 %define host_cflags %{rtems_bsp_cflags}
2 %define host_ldflags %{rtems_bsp_ldflags}
3 %define host_libs %{rtems_bsp_libs}

Finally we provide all the paths you may re-
quire when configuring a package. Pack-
ages by default consider the _prefix the base
and install various files under this tree. The
package you are building is specific to a BSP
and so needs to install into the specific BSP
path under the _prefix. This allows more
than BSP build of this package to be install
under the same _prefix at the same time
(rtems/config/rtems-bsp.cfg):

1 %define rtems_bsp_prefix %{_prefix}/%{_
→˓host}/%{rtems_bsp} <1>

2 %define _exec_prefix %{rtems_bsp_prefix}
3 %define _bindir %{_exec_prefix}/bin
4 %define _sbindir %{_exec_prefix}/

→˓sbin
5 %define _libexecdir %{_exec_prefix}/

→˓libexec
6 %define _datarootdir %{_exec_prefix}/

→˓share
7 %define _datadir %{_datarootdir}
8 %define _sysconfdir %{_exec_prefix}/etc
9 %define _sharedstatedir %{_exec_prefix}/com

10 %define _localstatedir %{_exec_prefix}/var
11 %define _includedir %{_libdir}/include
12 %define _lib lib
13 %define _libdir %{_exec_prefix}/%

→˓{_lib}
14 %define _libexecdir %{_exec_prefix}/

→˓libexec
15 %define _mandir %{_datarootdir}/man
16 %define _infodir %{_datarootdir}/

→˓info
17 %define _localedir %{_datarootdir}/

→˓locale
18 %define _localedir %{_datadir}/locale
19 %define _localstatedir %{_exec_prefix}/var

42 Chapter 6. RTEMS 3rd Party Packages

Chapter 6 Section 6.4 RTEMS Source Builder, Release 4.11.3

Items:

1. The path to the BSP.

When you configure a package you can refer-
ence these paths and the RSB will provide sen-
sible default or in this case map them to the
BSP (source-builder/config/ntp-4-1.cfg):

1 ../${source_dir_ntp}/configure \ <1>
2 --host=%{_host} \
3 --prefix=%{_prefix} \
4 --bindir=%{_bindir} \
5 --exec_prefix=%{_exec_prefix} \
6 --includedir=%{_includedir} \
7 --libdir=%{_libdir} \
8 --libexecdir=%{_libexecdir} \
9 --mandir=%{_mandir} \

10 --infodir=%{_infodir} \
11 --datadir=%{_datadir} \
12 --disable-ipv6 \
13 --disable-HOPFPCI

Items:

1. The configure command for NTP.

6.4. BSP Support 43

RTEMS Source Builder, Release 4.11.3 Chapter 6 Section 6.5

6.5 RTEMS BSP Configuration

To build a package for RTEMS you need to
build it with the matching BSP configuration.
A BSP can be built with specific flags that re-
quire all code being used needs to be built with
the same flags.

44 Chapter 6. RTEMS 3rd Party Packages

CHAPTER

SEVEN

CONFIGURATION

The RTEMS Source Builder has two types of
configuration data:

• Build Sets

• Package Build Configurations

By default these files can be located in two sep-
arate directories and searched. The first di-
rectory is config in your current working di-
rectory (_topdir) and the second is config
located in the base directory of the RTEMS
Source Builder command you run (_sbdir).
The RTEMS directory rtems` located at the top
of the RTEMS Source Builder source code is
an example of a specific build configuration
directory. You can create custom or private
build configurations and if you run the RTEMS
Source Builder command from that directory
your configurations will be used.

The configuration search path is a macro vari-
able and is reference as %{_configdir}. It’s de-
fault is defined as:

1 _configdir : dir optional<2> %{_topdir}/
→˓config:%{_sbdir}/config <1>

Items:

1. The _topdir is the directory you run
the command from and _sbdir is the
location of the RTEMS Source Builder
command.

2. A macro definition in a macro file has
4 fields, the label, type, constraint and
the definition.

Build set files have the file extension .bset and
the package build configuration files have the
file extension of .cfg. The sb-set-builder
command will search for build sets and the
sb-builder commands works with package

build configuration files.

Both types of configuration files use the # char-
acter as a comment character. Anything after
this character on the line is ignored. There is
no block comment.

45

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.1

7.1 Source and Patches

The RTEMS Source Builder provides a flexible
way to manage source. Source and patches are
declare in configurations file using the source
and patch directives. These are a single line
containing a Universal Resource Location or
URL and can contain macros and shell ex-
pansions. The Chapter 7 Section 8.2 - %prep
(page 59) section details the source and patch
directives

The URL can reference remote and local source
and patch resources. The following schemes
are provided:

http:
Remote access using the HTTP protocol.

https:
Remote access using the Secure HTTP proto-
col.

ftp:
Remote access using the FTP protocol.

git:
Remote access to a GIT repository.

pm:
Remote access to a patch management
repository.

file:
Local access to an existing source directory.

7.1.1 HTTP, HTTPS, and FTP

Remote access to TAR or ZIP files is provided
using HTTP, HTTPS and FTP protocols. The
full URL provided is used to access the remote
file including any query components. The URL
is parsed to extract the file component and the
local source directory is checked for that file. If
the file is located locally the remote file is not
downloaded. Currently no other checks are
made. If a download fails you need to man-
ually remove the file from the source directory
and start the build process again.

The URL can contain macros. These are ex-
panded before issuing the request to down-
load the file. The standard GNU GCC compiler
source URL is:

1 %source set<1> gcc<2> ftp://ftp.gnu.org/gnu/
→˓gcc/gcc-%{gcc_version}/gcc-%{gcc_version}
→˓.tar.bz2

Items:

1. The %source command’s set command
sets the source. The first is set and fol-
lowing sets are ignored.

2. The source is part of the gcc group.

The type of compression is automatically de-
tected from the file extension. The supported
compression formats are:

gz:
GNU ZIP

bzip2:
BZIP2

zip:
ZIP

xy:
XY

The output of the decompression tool is feed to
the standard tar utility if not a ZIP file and un-
packed into the build directory. ZIP files are
unpacked by the decompression tool and all
other files must be in the tar file format.

The %source directive typically supports a sin-
gle source file tar or zip file. The set command
is used to set the URL for a specific source
group. The first set command encoutner is reg-
istered and any further set commands are ig-
nored. This allows you to define a base stan-
dard source location and override it in build
and architecture specific files. You can also
add extra source files to a group. This is typ-
ically done when a collection of source is bro-
ken down in a number of smaller files and you
require the full package. The source’s setup
command must reide in the %prep: section and
it unpacks the source code ready to be built.

If the source URL references the GitHub API
server https://api.github.com/ a tarball of the
specified version is download. For example the
URL for the STLINK project on GitHub and ver-
sion is:

46 Chapter 7. Configuration

https://api.github.com/

Chapter 7 Section 7.1 RTEMS Source Builder, Release 4.11.3

1 %define stlink_version 3494c11
2 %source set stlink https://api.github.

→˓com/repos/texane/stlink/texane-stlink-%
→˓{stlink_version}.tar.gz

7.1.2 GIT

A GIT repository can be cloned and used as
source. The GIT repository resides in the
‘source’ directory under the git directory. You
can edit, update and use the repository as you
normally do and the results will used to build
the tools. This allows you to prepare and test
patches in the build environment the tools are
built in. The GIT URL only supports the GIT
protocol. You can control the repository via
the URL by appending options and arguments
to the GIT path. The options are delimited by
? and option arguments are delimited from the
options with =. The options are:

protocol:
Use a specific protocol. The supported val-
ues are ssh, git, http, https, ftp, ftps,
rsync, and none.

branch:
Checkout the specified branch.

pull:
Perform a pull to update the repository.

fetch:
Perform a fetch to get any remote updates.

reset:
Reset the repository. Useful to remove any
local changes. You can pass the hard argu-
ment to force a hard reset.

An example is:

1 %source set gcc git://gcc.gnu.org/git/gcc.
→˓git?branch=gcc-4_7-branch?reset=hard

This will clone the GCC git repository and
checkout the 4.7-branch and perform a hard
reset. You can select specific branches and ap-
ply patches. The repository is cleaned up be-
fore each build to avoid various version control
errors that can arise.

The protocol option lets you set a specific pro-
tocol. The git:// prefix used by the RSB to

select a git repository can be removed using
none or replaced with one of the standard git
protcols.

7.1.3 CVS

A CVS repository can be checked out. CVS is
more complex than GIT to handle because of
the modules support. This can effect the paths
the source ends up in. The CVS URL only sup-
ports the CVS protocol. You can control the
repository via the URL by appending options
and arguments to the CVS path. The options
are delimited by ? and option arguments are
delimited from the options with =. The options
are:

module:
The module to checkout.

src-prefix:
The path into the source where the module
starts.

tag:
The CVS tag to checkout.

date:
The CVS date to checkout.

The following is an example of checking out
from a CVS repository:

1 %source set newlib cvs://pserver:
→˓anoncvs@sourceware.org/cvs/src?
→˓module=newlib?src-prefix=src

7.1. Source and Patches 47

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.2

7.2 Macros and Defaults

The RTEMS Source Builder uses tables of
macros read in when the tool runs. The
initial global set of macros is called the de-
faults. These values are read from a file called
defaults.mc and modified to suite your host.
This host specific adaption lets the Source
Builder handle differences in the build hosts.

Build set and configuration files can define
new values updating and extending the global
macro table. For example builds are given a re-
lease number. This is typically a single number
at the end of the package name. For example:

1 %define release 1

Once defined if can be accessed in a build set
or package configuration file with:

1 %{release}

The sb-defaults command lists the defaults
for your host. I will not include the output of
this command because of its size:

1 $../source-builder/sb-defaults

A nested build set is given a separate copy of
the global macro maps. Changes in one change
set are not seen in other build sets. That same
happens with configuration files unless inline
includes are used. Inline includes are seen as
part of the same build set and configuration
and changes are global to that build set and
configuration.

7.2.1 Macro Maps and Files

Macros are read in from files when the tool
starts. The default settings are read from the
defaults macro file called defaults.mc located
in the top level RTEMS Source Builder com-
mand directory. User macros can be read in at
start up by using the --macros command line
option.

The format for a macro in macro files is:

1 Name Type Attribute String

where Name is a case insensitive macro name,
the Type field is:

none:
Nothing, ignore.

dir:
A directory path.

exe:
An executable path.

triplet:
A GNU style architecture, platform, operat-
ing system string.

the Attribute field is:

none:
Nothing, ignore

required:
The host check must find the executable or
path.

optional:
The host check generates a warning if not
found.

override:
Only valid outside of the global map to in-
dicate this macro overrides the same one in
the global map when the map containing it
is selected.

undefine:
Only valid outside of the global map to un-
define the macro if it exists in the global
map when the map containing it is selected.
The global map’s macro is not visible but
still exists.

and the String field is a single or tripled mul-
tiline quoted string. The ‘String’ can contain
references to other macros. Macro that loop
are not currently detected and will cause the
tool to lock up.

Maps are declared anywhere in the map using
the map directive:

1 # Comments
2 [my-special-map] <1>
3 _host: none, override, 'abc-xyz'
4 multiline: none, override, '''First line,
5 second line,
6 and finally the last line'''

48 Chapter 7. Configuration

Chapter 7 Section 7.2 RTEMS Source Builder, Release 4.11.3

Items:

1. The map is set to my-special-map.

Any macro defintions following a map dec-
laration are placed in that map and the de-
fault map is global when loading a file. Maps
are selected in configuration files by using the
%select directive:

1 %select my-special-map

Selecting a map means all requests for a
macro first check the selected map and if
present return that value else the global map
is used. Any new macros or changes update
only the global map. This may change in fu-
ture releases so please make sure you use the
override attribute.

The macro files specificed on the command
line are looked for in the _configdir paths.
See <<X1,‘‘_configdir‘‘>> variable for details.
Included files need to add the %{_configdir}
macro to the start of the file.

Macro map files can include other macro map
files using the %include directive. The macro
map to build binutils, gcc, newlib, gdb and
RTEMS from version control heads is:

1 # <1>
2 # Build all tool parts from version control␣

→˓head.
3 #
4 %include %{_configdir}/snapshots/binutils-

→˓head.mc
5 %include %{_configdir}/snapshots/gcc-head.mc
6 %include %{_configdir}/snapshots/newlib-

→˓head.mc
7 %include %{_configdir}/snapshots/gdb-head.mc

Items:

1. The file is
config/snapshots/binutils-gcc-newlib-gdb-head.mc.

The macro map defaults to global at the start
of each included file and the map setting of the
macro file including the other macro files does
not change.

7.2.2 Personal Macros

When the tools start to run they will load per-
sonal macros. Personal macros are in the stan-
dard format for macros in a file. There are two
places personal macros can be configured. The
first is the environment variable RSB_MACROS. If
present the macros from the file the environ-
ment variable points to are loaded. The sec-
ond is a file called .rsb_macros in your home
directory. You need to have the environment
variable HOME defined for this work.

7.2. Macros and Defaults 49

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.3

7.3 Report Mailing

The build reports can be mailed to a spe-
cific email address to logging and monitoring.
Mailing requires a number of parameters to
function. These are:

• To mail address

• From mail address

• SMTP host

The to mail address is taken from the macro
%{_mail_tools_to} and the default is rtems-
tooltestresults at rtems.org. You can override
the default with a personal or user macro file
or via the command line option --mail-to.
The from mail address is taken from:

• GIT configuration

• User .mailrc file

• Command line

If you have configured an email and name in
git it will be used used. If you do not a check is
made for a .mailrc file. The environment vari-
able MAILRC is used if present else your home
directory is check. If found the file is scanned
for the from setting:

1 set from="Foo Bar <foo@bar>"

You can also support a from address on the
command line with the --mail-from option.

The SMTP host is taken from the macro
%{_mail_smtp_host} and the default is
localhost. You can override the default
with a personal or user macro file or via the
command line option --smtp-host.

50 Chapter 7. Configuration

Chapter 7 Section 7.4 RTEMS Source Builder, Release 4.11.3

7.4 Build Set Files

Build set files lets you list the packages in the
build set you are defining and have a file ex-
tension of .bset. Build sets can define macro
variables, inline include other files and refer-
ence other build set or package configuration
files.

Defining macros is performed with the %define
macro:

1 %define _target m32r-rtems4.11

Inline including another file with the %include
macro continues processing with the specified
file returning to carry on from just after the
include point:

1 %include rtems-4.11-base.bset

This includes the RTEMS 4.11 base set of de-
fines and checks. The configuration paths as
defined by _configdir are scanned. The file
extension is optional.

You reference build set or package configura-
tion files by placing the file name on a single
line:

1 tools/rtems-binutils-2.22-1

The _configdir path is scanned for
tools/rtems-binutils-2.22-1.bset or
tools/rtems-binutils-2.22-1.cfg. Build set
files take precedent over package configura-
tion files. If tools/rtems-binutils-2.22-1
is a build set a new instance of the build set
processor is created and if the file is a package
configuration the package is built with the
package builder. This all happens once the
build set file has finished being scanned.

7.4. Build Set Files 51

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.5

7.5 Configuration Control

The RTEMS Souce Builder is designed to fit
within most verification and validation pro-
cesses. All of the RTEMS Source Builder is
source code. The Python code is source and
comes with a commercial friendly license. All
configuration data is text and can be read or
parsed with standard text based tools.

File naming provides configuration man-
agement. A specific version of a package
is captured in a specific set of configura-
tion files. The top level configuration file
referenced in a build set or passed to the
sb-builder command relates to a specific
configuration of the package being built.
For example the RTEMS configuration file
rtems-gcc-4.7.2-newlib-2.0.0-1.cfg cre-
ates an RTEMS GCC and Newlib package
where the GCC version is 4.7.2, the Newlib
version is 2.0.0, plus any RTEMS specific
patches that related to this version. The
configuration defines the version numbers of
the various parts that make up this package:

1 %define gcc_version 4.7.2
2 %define newlib_version 2.0.0
3 %define mpfr_version 3.0.1
4 %define mpc_version 0.8.2
5 %define gmp_version 5.0.5

The package build options, if there are any are
also defined:

1 %define with_threads 1
2 %define with_plugin 0
3 %define with_iconv 1

The generic configuration may provide de-
faults in case options are not specified. The
patches this specific version of the package re-
quires can be included:

1 Patch0: gcc-4.7.2-rtems4.11-20121026.diff

Finally including the GCC 4.7 configuration
script:

1 %include %{_configdir}/gcc-4.7-1.cfg

The gcc-4.7-1.cfg file is a generic script to
build a GCC 4.7 compiler with Newlib. It is not

specific to RTEMS. A bare no operating system
tool set can be built with this file.

The -1 part of the file names is a revision. The
GCC 4.7 script maybe revised to fix a problem
and if this fix effects an existing script the file
is copied and given a -2 revision number. Any
dependent scripts referencing the earlier revi-
sion number will not be effected by the change.
This locks down a specific configuration over
time.

52 Chapter 7. Configuration

Chapter 7 Section 7.6 RTEMS Source Builder, Release 4.11.3

7.6 Personal Configurations

The RSB supports personal configurations. You
can view the RTEMS support in the rtems di-
rectory as a private configuration tree that re-
sides within the RSB source. There is also the
bare set of configurations. You can create your
own configurations away from the RSB source
tree yet use all that the RSB provides.

To create a private configuration change to a
suitable directory:

1 $ cd ~/work
2 $ mkdir test
3 $ cd test
4 $ mkdir config

and create a config directory. Here you can
add a new configuration or build set file. The
section ‘Adding New Configurations’ details
how to add a new confguration.

7.6. Personal Configurations 53

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.7

7.7 New Configurations

This section describes how to add a new con-
figuration to the RSB. We will add a configura-
tion to build the Device Tree Compiler. The
Device Tree Compiler or DTC is part of the
Flattened Device Tree project and compiles De-
vice Tree Source (DTS) files into Device Tree
Blobs (DTB). DTB files can be loaded by op-
erating systems and used to locate the vari-
ous resources such as base addresses of de-
vices or interrupt numbers allocated to de-
vices. The Device Tree Compiler source code
can be downloaded from http://www.jdl.com/
software. The DTC is supported in the RSB and
you can find the configuration files under the
bare/config tree. I suggest you have a brief
look over these files.

7.7.1 Layering by Including

Configurations can be layered using the
%include directive. The user invokes the outer
layers which include inner layers until all the
required configuration is present and the pack-
age can be built. The outer layers can provide
high level details such as the version and the
release and the inner layers provide generic
configuration details that do not change from
one release to another. Macro variables are
used to provide the specific configuration de-
tails.

7.7.2 Configuration File Numbering

Configuration files have a number at the end.
This is a release number for that configuration
and it gives us the ability to track a specific
configuration for a specific version. For exam-
ple lets say the developers of the DTC package
change the build system from a single make-
file to autoconf and automake between version
1.3.0 and version 1.4.0. The configuration file
used to build the package would change have
to change. If we did not number the configu-
ration files the ability to build 1.1.0, 1.2.0 or
1.3.0 would be lost if we update a common
configuration file to build an autoconf and au-
tomake version. For version 1.2.0 the same
build script can be used so we can share the

same configuration file between version 1.1.0
and version 1.2.0. An update to any previous
release lets us still build the package.

7.7.3 Common Configuration Scripts

Common configuration scripts that are inde-
pendent of version, platform and architecture
are useful to everyone. These live in the
Source Builder’s configuration directory. Cur-
rently there are scripts to build binutils, expat,
DTC, GCC, GDB and libusb. These files contain
the recipes to build these package without the
specific details of the versions or patches being
built. They expect to be wrapped by a config-
uration file that ties the package to a specific
version and optionally specific patches.

7.7.4 DTC Example

We will be building the DTC for
your host rather than a package for
RTEMS. We will create a file called
source-builder/config/dtc-1-1.cfg. This
is a common script that can be used to build
a specific version using a general recipe.
The file name is dtc-1-1.cfg where the cfg
extension indicates this is a configuration file.
The first 1 says this is for the major release
1 of the package and the last 1 is the build
configuration version.

The file starts with some comments that detail
the configuration. If there is anything unusual
about the configuration it is a good idea to add
something in the comments here. The com-
ments are followed by a check for the release.
In this case if a release is not provided a default
of 1 is used:

1 #
2 # DTC 1.x.x Version 1.
3 #
4 # This configuration file configure's, make

→˓'s and install's DTC.
5 #
6

7 %if %{release} == %{nil}
8 %define release 1
9 %endif

54 Chapter 7. Configuration

http://www.jdl.com/software
http://www.jdl.com/software

Chapter 7 Section 7.7 RTEMS Source Builder, Release 4.11.3

The next section defines some information
about the package. It does not effect the build
and is used to annotate the reports. It is recom-
mended this information is kept updated and
accurate:

1 Name: dtc-%{dtc_version}-%{_host}-%
→˓{release}

2 Summary: Device Tree Compiler v%{dtc_
→˓version} for target %{_target} on host ␣
→˓%{_host}

3 Version: %{dtc_version}
4 Release: %{release}
5 URL: http://www.jdl.com/software/
6 BuildRoot: %{_tmppath}/%{name}-root-%(%{__

→˓id_u} -n)

The next section defines the source and any
patches. In this case there is a single source
package and it can be downloaded using
the HTTP protocol. The RSB knows this is
GZip’ped tar file. If more than one package
package is needed add them increasing the in-
dex. The gcc-4.8-1.cfg configuration con-
tains examples of more than one source pack-
age as well as conditionally including source
packages based on the outer configuration op-
tions:

1 #
2 # Source
3 #
4 %source set dtc http://www.jdl.com/software/

→˓dtc-v%{dtc_version}.tgz

The remainder of the script is broken in to the
various phases of a build. They are:

. Preperation . Bulding . Installing, and .
Cleaning

Preparation is the unpacking of the source, ap-
plying any patches as well as any package spe-
cific set ups. This part of the script is a stan-
dard Unix shell script. Be careful with the use
of % and $. The RSB uses % while the shell
scripts use $.

A standard pattern you will observe is the sav-
ing of the build’s top directory. This is used in-
stead of changing into a subdirectory and then
changing to the parent when finished. Some
hosts will change in a subdirectory that is a
link however changing to the parent does not
change back to the parent of the link rather

it changes to the parent of the target of the
link and that is something the RSB nor you can
track easily. The RSB configuration script’s are
a collection of various subtle issues so please
ask if you are unsure why something is being
done a particular way.

The preparation phase will often include
source and patch setup commands. Outer lay-
ers can set the source package and add patches
as needed while being able to use a common
recipe for the build. Users can override the
standard build and supply a custom patch for
testing using the user macro command line in-
terface:

1 #
2 # Prepare the source code.
3 #
4 %prep
5 build_top=$(pwd)
6

7 %source setup dtc -q -n dtc-v%{dtc_version}
8 %patch setup dtc -p1
9

10 cd ${build_top}

The configuration file gcc-common-1.cfg is a
complex example of source preparation. It
contains a number of source packages and
patches and it combines these into a single
source tree for building. It uses links to map
source into the GCC source tree so GCC can
be built using the single source tree method. It
also shows how to fetch source code from ver-
sion control. Newlib is taken directly from its
CVS repository.

Next is the building phase and for the DTC ex-
ample this is simply a matter of running make.
Note the use of the RSB macros for commands.
In the case of %{__make} it maps to the correct
make for your host. In the case of BSD sys-
tems we need to use the GNU make and not
the GNU make.

If your package requires a configuration stage
you need to run this before the make stage.
Again the GCC common configuration file pro-
vides a detailed example:

1 %build
2 build_top=$(pwd)
3

4 cd dtc-v%{dtc_version}

7.7. New Configurations 55

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.7

5

6 %{build_build_flags}
7

8 %{__make} PREFIX=%{_prefix}
9

10 cd ${build_top}

You can invoke make with the macro
%{?_smp_flags} as a command line argument.
This macro is controlled by the --jobs com-
mand line option and the host CPU detection
support in the RSB. If you are on a multicore
host you can increase the build speed using
this macro. It also lets you disabled building
on multicores to aid debugging when testing.

Next is the install phase. This phase is a lit-
tle more complex because you may be build-
ing a tar file and the end result of the build
is never actually installed into the prefix on
the build host and you may not even have per-
missions to perform a real install. Most pack-
ages install to the prefix and the prefix is typ-
ically supplied via the command to the RSB or
the package’s default is used. The default can
vary depending on the host’s operating system.
To install to a path that is not the prefix the
DESTDIRmake variable is used. Most packages
should honour the DISTDIR make variables and
you can typically specify it on the command
line to make when invoking the install target.
This results in the package being installed to
a location that is not the prefix but one you
can control. The RSB provides a shell variable
called SB_BUILD_ROOT you can use. In a build
set where you are building a number of pack-
ages you can collect all the built packages in a
single tree that is captured in the tar file.

Also note the use of the macro %{__rmdir}.
The use of these macros allow the RSB to vary
specific commands based on the host. This can
help on hosts like Windows where bugs can ef-
fect the standard commands such as rm. There
are many many macros to help you. You can
find these listed in the defaults.mc file and in
the trace output. If you are new to creating
and editing configurations learning these can
take a little time:

1 %install
2 build_top=$(pwd)
3

4 %{__rmdir} -rf $SB_BUILD_ROOT
5

6 cd dtc-v%{dtc_version}
7 %{__make} DESTDIR=$SB_BUILD_ROOT PREFIX=%

→˓{_prefix} install
8

9 cd ${build_top}

Finally there is an optional clean section. The
RSB will run this section if --no-clean has not
been provided on the command line. The RSB
does clean up for you.

Once we have the configuration files we can
execute the build using the sb-builder com-
mand. The command will perform the build
and create a tar file in the tar directory:

1 $../source-builder/sb-builder --prefix=/
→˓usr/local \

2 --log=log_dtc devel/dtc-1.2.0
3 RTEMS Source Builder, Package Builder v0.2.0
4 config: devel/dtc-1.2.0
5 package: dtc-1.2.0-x86_64-freebsd9.1-1
6 download: http://www.jdl.com/software/dtc-

→˓v1.2.0.tgz -> sources/dtc-v1.2.0.tgz
7 building: dtc-1.2.0-x86_64-freebsd9.1-1
8 $ ls tar
9 dtc-1.2.0-x86_64-freebsd9.1-1.tar.bz2

If you want to have the package installed au-
tomatically you need to create a build set. A
build set can build one or more packages from
their configurations at once to create a single
package. For example the GNU tools is typ-
ically seen as binutils, GCC and GDB and a
build set will build each of these packages and
create a single build set tar file or install the
tools on the host into the prefix path.

The DTC build set file is called dtc.bset and
contains:

1 #
2 # Build the DTC.
3 #
4

5 %define release 1
6

7 devel/dtc-1.2.0.cfg

To build this you can use something similar to:

1 $../source-builder/sb-set-builder --
→˓prefix=/usr/local --log=log_dtc \

2 --trace --bset-tar-file --no-install dtc

56 Chapter 7. Configuration

Chapter 7 Section 7.7 RTEMS Source Builder, Release 4.11.3

3 RTEMS Source Builder - Set Builder, v0.2.0
4 Build Set: dtc
5 config: devel/dtc-1.2.0.cfg
6 package: dtc-1.2.0-x86_64-freebsd9.1-1
7 building: dtc-1.2.0-x86_64-freebsd9.1-1
8 tarball: tar/x86_64-freebsd9.1-dtc-set.tar.

→˓bz2
9 cleaning: dtc-1.2.0-x86_64-freebsd9.1-1

10 Build Set: Time 0:00:02.865758
11 $ ls tar
12 dtc-1.2.0-x86_64-freebsd9.1-1.tar.bz2 x86_

→˓64-freebsd9.1-dtc-set.tar.bz2

The build is for a FreeBSD host and the pre-
fix is for user installed packages. In this ex-
ample I cannot let the source builder perform
the install because I never run the RSB with
root priviledges so a build set or bset tar file is
created. This can then be installed using root
privildges.

The command also supplies the --trace op-
tion. The output in the log file will contian
all the macros.

7.7.5 Debugging

New configuration files require debugging.
There are two types of debugging. The first
is debugging RSB script bugs. The --dry-run
option is used here. Suppling this option will
result in most of the RSB processing to be per-
formed and suitable output placed in the log
file. This with the --trace option should help
you resolve any issues.

The second type of bug to fix are related to
the execution of one of phases. These are usu-
ally a mix of shell script bugs or package set
up or configuration bugs. Here you can use
any normal shell script type debug technique
such as set +x to output the commands or
echo statements. Debugging package related
issues may require you start a build with teh
RSB and supply --no-clean option and then
locate the build directories and change direc-
tory into them and manually run commands
until to figure what the package requires.

7.7. New Configurations 57

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.8

7.8 Scripting

Configuration files specify how to build a pack-
age. Configuration files are scripts and have
a .cfg file extension. The script format is
based loosely on the RPM spec file format how-
ever the use and purpose in this tool does not
compare with the functionality and therefore
the important features of the spec format RPM
needs and uses.

The script language is implemented in terms of
macros. The built-in list is:

%{}:
Macro expansion with conditional logic.

%():
Shell expansion.

%prep:
The source preparation shell commands.

%build:
The build shell commands.

%install:
The package install shell commands.

%clean:
The package clean shell commands.

%include:
Inline include another configuration file.

%name:
The name of the package.

%summary:
A brief package description. Useful when re-
porting about a build.

%release:
The package release. A number that is the
release as built by this tool.

%version:
The package’s version string.

%buildarch:
The build architecture.

%source:
Define a source code package. This macro
has a number appended.

%patch:
Define a patch. This macro has a is number

appended.

%hash:
Define a checksum for a source or patch file.

%echo:
Print the following string as a message.

%warning:
Print the following string as a warning and
continue.

%error:
Print the following string as an error and
exit.

%select:
Select the macro map. If there is no map
nothing is reported.

%define:
Define a macro. Macros cannot be redefined,
you must first undefine it.

%undefine:
Undefine a macro.

%if:
Start a conditional logic block that ends with
a %endif.

%ifn:
Inverted start of a conditional logic block.

%ifarch:
Test the architecture against the following
string.

%ifnarch:
Inverted test of the architecture

%ifos:
Test the host operating system.

%else:
Start the else conditional logic block.

%endfi:
End the conditional logic block.

%bconf_with:
Test the build condition with setting. This is
the --with-* command line option.

%bconf_without:
Test the build condition without setting. This
is the --without-* command line option.

58 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.3

7.8.1 Expanding

A macro can be %{string} or the equivalent
of %string. The following macro expansions
supported are:

%{string}:
Expand the ‘string’ replacing the entire
macro text with the text in the table for the
entry ‘string . For example if ‘var’ is ‘foo’ then
${var} would become foo.

%{expand: string}:
Expand the ‘string’ and then use it as a
string to the macro expanding the macro.
For example if foo is set to bar and bar is set
to foobar then %{expand:foo} would result
in foobar. Shell expansion can also be used.

%{with string}:
Expand the macro to 1 if the macro
with_string is defined else expand to 0.
Macros with the name with_string can be
define with command line arguments to the
RTEMS Source Builder commands.

%{defined string}:
Expand the macro to 1 if a macro of name
string is defined else expand to ‘0’.

%{?string: expression}:
Expand the macro to expression if a macro
of name string is defined else expand to
%{nil}.

%{!?string: expression}:
Expand the macro to expression if a macro
of name string is not defined. If the macro
is define expand to %{nil}.

%(expression):
Expand the macro to the result of running
the expression in a host shell. It is as-
sumed this is a Unix type shell. For example
%(whoami) will return your user name and
%(date) will return the current date string.

7.8.2 %prep

The +%prep+ macro starts a block that con-
tinues until the next block macro. The prep
or preparation block defines the setup of the
package’s source and is a mix of RTEMS Source

Builder macros and shell scripting. The se-
quence is typically +%source+ macros for
source, +%patch+ macros to patch the source
mixed with some shell commands to correct
any source issues:

1 <1> <2> <3>
2 %source setup gcc -q -c -T -n %{name}-%

→˓{version}

Items:

1. The source group to set up.

2. The source’s name.

3. The version of the source.

The source set up are declared with the source
set and add commands. For example:

1 %source set gdb http://ftp.gnu.org/gnu/gdb/
→˓gdb-%{gdb_version}.tar.bz2

This URL is the primary location of the GNU
GDB source code and the RTEMS Source
Builder can download the file from this loca-
tion and by inspecting the file extension use
bzip2 decompression with +tar+. When the
%prep section is processed a check of the local
source directory is made to see if the file has
already been downloaded. If not found in the
source cache directory the package is down-
loaded from the URL. You can append other
base URLs via the command line option --url.
This option accepts a comma delimited list of
sites to try.

You could optionally have a few source files
that make up the package. For example GNU’s
GCC was a few tar files for a while and it is
now a single tar file. Support for multiple
source files can be conditionally implemented
with the following scripting:

1 %source set gcc ftp://ftp.gnu.org/gnu/
→˓gcc/gcc-%{gcc_version}/gcc-code-%{gcc_
→˓version}.tar.bz2

2 %source add gcc ftp://ftp.gnu.org/gnu/gcc/
→˓gcc-%{gcc_version}/gcc-g++-%{gcc_version}
→˓.tar.bz2

3 %source setup gcc -q -T -D -n gcc-%{gcc_
→˓version}

7.8. Scripting 59

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.8

Separate modules use separate source groups.
The GNU GCC compiler for RTEMS uses
Newlib, MPFR, MPC, and GMP source pack-
ages. You define the source with:

1 %source set gcc ftp://ftp.gnu.org/gnu/gcc/
→˓gcc-%{gcc_version}/gcc-%{gcc_version}.
→˓tar.bz2

2 %source set newlib ftp://sourceware.org/pub/
→˓newlib/newlib-%{newlib_version}.tar.gz

3 %source set mpfr http://www.mpfr.org/mpfr-%
→˓{mpfr_version}/mpfr-%{mpfr_version}.tar.
→˓bz2

4 %source set mpc http://www.multiprecision.
→˓org/mpc/download/mpc-%{mpc_version}.tar.
→˓gz

5 %source set gmp ftp://ftp.gnu.org/gnu/gmp/
→˓gmp-%{gmp_version}.tar.bz2

and set up with:

1 %source setup gcc -q -n gcc-%{gcc_version}
2 %source setup newlib -q -D -n newlib-%

→˓{newlib_version}
3 %source setup mpfr -q -D -n mpfr-%{mpfr_

→˓version}
4 %source setup mpc -q -D -n mpc-%{mpc_version}
5 %source setup gmp -q -D -n gmp-%{gmp_version}

Patching also occurs during the preparation
stage. Patches are handled in a similar
way to the source packages except you only
add patches. Patches are applied using the
+setup+ command. The +setup+ command
takes the default patch option. You can provide
options with each patch by adding them as ar-
guments before the patch URL. Patches with no
options uses the +setup+ default.

1 %patch add gdb %{rtems_gdb_patches}/gdb-sim-
→˓arange-inline.diff

2 %patch add gdb -p0 <1> %{rtems_gdb_patches}/
→˓gdb-sim-cgen-inline.diff

Items:

1. This patch has a custom option.

To apply these patches:

1 %patch setup gdb -p1 <1>

Items:

1. The default options.

7.8.3 %build

The %build macro starts a block that continues
until the next block macro. The build block
is a series of shell commands that execute to
build the package. It assumes all source code
has been unpacked, patch and adjusted so the
build will succeed.

The following is an example take from the
GutHub STLink project. The STLink is a JTAG
debugging device for the ST ARM family of
processors:

1 %build
2 export PATH="%{_bindir}:${PATH}" <1>
3

4 cd texane-stlink-%{stlink_version} <2>
5

6 ./autogen.sh <3>
7

8 %if "%{_build}" != "%{_host}"
9 CFLAGS_FOR_BUILD="-g -O2 -Wall" \ <4>

10 %endif
11 CPPFLAGS="-I $SB_TMPPREFIX/include/libusb-

→˓1.0" \ <5>
12 CFLAGS="$SB_OPT_FLAGS" \
13 LDFLAGS="-L $SB_TMPPREFIX/lib" \
14 ./configure \ <6>
15 --build=%{_build} --host=%{_host} \
16 --verbose \
17 --prefix=%{_prefix} --bindir=%{_bindir}␣

→˓\
18 --exec-prefix=%{_exec_prefix} \
19 --includedir=%{_includedir} --libdir=%{_

→˓libdir} \
20 --mandir=%{_mandir} --infodir=%{_infodir}
21

22 %{__make} %{?_smp_mflags} all <7>
23

24 cd ..

Items:

1. Setup the PATH environment variable.
This is not always needed.

2. This package builds in the source tree
so enter it.

60 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.3

3. The package is actually checked di-
rectly out from the github project and
so it needs its autoconf and automake
files generated.

4. Flags for a cross-compiled build.

5. Various settings passed to configure to
customise the build. In this example
an include path is being set to the in-
stall point of libusb. This package re-
quires libusb is built before it.

6. The configure command. The RTEMS
Source Builder provides all the needed
paths as macro variables. You just
need to provide them to configure.

7. Running make. Do not use make di-
rectly, use the RTEMS Source Builder’s
defined value. This value is specific to
the host. A large number of packages
need GNU make and on BSD systems
this is gmake. You can optionally add
the SMP flags if the packages build sys-
tem can handle parallel building with
multiple jobs. The _smp_mflags value
is automatically setup for SMP hosts
to match the number of cores the host
has.

7.8.4 %install

The %install macro starts a block that con-
tinues until the next block macro. The install
block is a series of shell commands that exe-
cute to install the package. You can assume
the package has build correctly when this block
starts executing.

Never install the package to the actual prefix
the package was built with. Always install to
the RTEMS Source Builder’s temporary path
defined in the macro variable __tmpdir. The
RTEMS Source Builder sets up a shell envi-
ronment variable called SB_BUILD_ROOT as the
standard install point. Most packages support
adding DESTDIR= to the make install com-
mand.

Looking at the same example as in Chapter 7
Section 8.3 - %build (page 60):

1 %install
2 export PATH="%{_bindir}:${PATH}" <1>
3 rm -rf $SB_BUILD_ROOT <2>
4

5 cd texane-stlink-%{stlink_version} <3>
6 %{__make} DESTDIR=$SB_BUILD_ROOT install␣

→˓<4>
7

8 cd ..

Items:

1. Setup the PATH environment variable.
This is not always needed.

2. Clean any installed files. This make
sure the install is just what the pack-
age installs and not any left over files
from a broken build or install.

3. Enter the build directory. In this ex-
ample it just happens to be the source
directory.

4. Run make install to install the pack-
age overriding the DESTDIR make vari-
able.

7.8.5 %clean

The %clean macro starts a block that continues
until the next block macro. The clean block
is a series of shell commands that execute to
clean up after a package has been built and in-
stall. This macro is currenly not been used be-
cause the RTEMS Source Builder automatically
cleans up.

7.8.6 %include

The %include macro inline includes the spe-
cific file. The __confdir path is searched. Any
relative path component of the include file is
appended to each part of the __configdir.
Adding an extension is optional as files with
.bset and .cfg are automatically searched for.

Inline including means the file is processed
as part of the configuration at the point it
is included. Parsing continues from the next

7.8. Scripting 61

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.8

line in the configuration file that contains the
%include macro.

Including files allow a kind of configuration
file reuse. The outer configuration files pro-
vide specific information such as package ver-
sion numbers and patches and then include a
generic configuration script which builds the
package:

1 %include %{_configdir}/gcc-4.7-1.cfg

7.8.7 %name

The name of the package being built. The
name typically contains the components of the
package and their version number plus a revi-
sion number. For the GCC with Newlib config-
uration the name is typically:

1 Name: %{_target}-gcc-%{gcc_version}-newlib-%
→˓{newlib_version}-%{release}

7.8.8 %summary

The %summary is a brief description of the pack-
age. It is useful when reporting. This in-
formation is not capture in the package any-
where. For the GCC with Newlib configuration
the summary is typically:

1 Summary: GCC v%{gcc_version} and Newlib v%
→˓{newlib_version} for target %{_target} on␣
→˓host %{_host}

7.8.9 %release

The %release is packaging number that allows
revisions of a package to happen where none
package versions change. This value typically
increases when the configuration building the
package changes:

1 %define release 1

7.8.10 %version

The %version macro sets the version the pack-
age. If the package is a single component

it tracks that component’s version number.
For example in the libusb configuration the
%version is the same as %libusb_version,
however in a GCC with Newlib configuration
there is no single version number. In this case
the GCC version is used:

1 Version: %{gcc_version}

7.8.11 %buildarch

The %buildarch macro is set to the architec-
ture the package contains. This is currently
not used in the RTEMS Source Builder and
may go away. This macro is more important
in a real packaging system where the package
could end up on the wrong architecture.

7.8.12 %source

The %source macro has 3 commands that con-
trols what it does. You can set the source
files, add source files to a source group, and
setup the source file group getting it ready to
be used.

Source files are source code files in tar or zip
files that are unpacked, copied or symbolically
linked into the package’s build tree. Building a
package requires one or more dependent pack-
ages. These are typically the packages source
code plus dependent libraries or modules. You
can create any number of these source groups
and set each of them up with a separe source
group for each needed library or module. Each
source group normally has a single tar, zip
or repository and the set defines this. Some
projects split the source code into separate tar
or zip files and you install them by using the
add command.

The first instance of a set command creates
the source group and sets the source files to
be set up. Subsequence set commands for the
same source group are ignored. this lets you
define the standard source files and override
them for specific releases or snapshots. To set
a source file group:

1 %source set gcc <1> ftp://ftp.gnu.org/gnu/
→˓gcc/gcc-%{gcc_version}/gcc-%{gcc_version}
→˓.tar.bz2

62 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.3

Items:

1. The source group is gcc.

To add another source package to be installed
into the same source tree you use the add com-
mand:

1 %source add gcc ftp://ftp.gnu.org/gnu/gcc/
→˓gcc-%{gcc_version}/g++-%{gcc_version}.
→˓tar.bz2

The source setup command can only be issued
in the %prep: section. The setup is:

1 %source gcc setup -q -T -D -n %{name}-%
→˓{version}

Accepted options are:

-n:
The -n option is used to set the name of
the software’s build directory. This is nec-
essary only when the source archive un-
packs into a directory named other than
<name>-<version>.

-c:
The -c option is used to direct %setup to cre-
ate the top-level build directory before un-
packing the sources.

-D:
The -D option is used to direct %setup to not
delete the build directory prior to unpacking
the sources. This option is used when more
than one source archive is to be unpacked
into the build directory, normally with the
-b or -a options.

-T:
The -T option is used to direct %setup to not
perform the default unpacking of the source
archive specified by the first Source: macro.
It is used with the -a or -b options.

-b <n>:
The -b option is used to direct %setup to un-
pack the source archive specified on the nth
Source: macro line before changing direc-
tory into the build directory.

7.8.13 %patch

The %patch macro has the same 3 command as
the %source command however the set com-
mands is not really that useful with the with
command. You add patches with the add com-
mand and setup applies the patches. Patch
options can be added to each patch by plac-
ing them before the patch URL. If no patch op-
tion is provided the default options passed to
the setup command are used. An option starts
with a -. The setup command must reside in-
side the %prep section.

Patches are grouped in a similar way to the
%source macro so you can control applying a
group of patches to a specific source tree.

The __patchdir path is search.

To add a patch:

1 %patch add gcc <1> gcc-4.7.2-rtems4.11-
→˓20121026.diff

2 %patch add gcc -p0 <2> gcc-4.7.2-rtems4.11-
→˓20121101.diff

Items:

1. The patch group is gcc.

2. Option for this specific patch.

Placing %patch setup in the %prep section will
apply the groups patches:

1 %patch setup gcc <1> -p1 <2>
2

3 1. The patch group.
4

5 2. The default option used to apply the ␣
→˓patch.

7.8.14 %hash

The %hash macro requires 3 arguments and de-
fines a checksum for a specific file. The check-
sum is not applied until the file is checked be-
fore downloading and once downloaded. A
patch or source file that does not has a hash
defined generates a warning.

7.8. Scripting 63

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.8

A file to be checksum must be unqiue in the
any of the source and patch directories. The
basename of the file is used as the key for the
hash.

The hash algorthim can be md5, sha1, sha224,
sha256, sha384, and sha512 and we typically
use md5.

To add a hash:

1 %hash md5 <1> net-snmp-%{net_
→˓snmp_version}.tar.gz <2> ␣
→˓7db683faba037249837b226f64d566d4 <3>
→˓

Items:

1. The type of checksum.

2. The file to checksum. It can contain
macros that are expanded for you.

3. The MD5 hash for the Net-SNMP file
net-snmp-5.7.2.1.tar.gz.

Do not include a path with the file name.
Only the basename is required. Files can be
searched for from a number of places and
having a path conponent would create confu-
sion. This does mean files with hashes must be
unique.

Downloading of repositories such as git and
cvs cannot be checksumed. It is assumed those
protocols and tools manage the state of the
files.

7.8.15 %echo

The %echo macro outputs the following string
to stdout. This can also be used as %{echo:
message}.

7.8.16 %warning

The %warning macro outputs the following
string as a warning. This can also be used as
%{warning: message}.

7.8.17 %error

The %error macro outputs the follow string as
an error and exits the RTEMS Source Builder.
This can also be used as %{error: message}.

7.8.18 %select

The %select macro selects the map specified.
If there is no map no error or warning is gener-
ated. Macro maps provide a simple way for a
user to override the settings is a configuration
file without having to edit it. The changes are
recorded in the build report so can be traced.

Configuration use different maps so macro
overrides can target a specific package.

The default map is global:

1 %select gcc-4.8-snapshot <1>
2 %define one_plus_one 2 <2>

Items:

1. The map switches to
gcc-4.8-snapshot. Any overrides
in this map will be used.

2. Defining macros only updates the
global map and not the selected map.

7.8.19 %define

The %define macro defines a new macro or up-
dates an existing one. If no value is given it is
assumed to be 1:

1 %define foo bar
2 %define one_plus_one 2
3 %define one <1>

Items:

1. The macro _one_ is set to 1.

64 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.3

7.8.20 %undefine

The %undefine macro removes a macro if it ex-
ists. Any further references to it will result in
an undefine macro error.

7.8.21 %if

The %if macro starts a conditional logic block
that can optionally have a else section. A test
follows this macro and can have the following
operators:

%{} Check the macro is set
or true, ie non-zero:

1 %if ${foo}
2 %warning The test

passes, must
not be empty
or is
non-zero

→˓

→˓

→˓

→˓

3 %else
4 %error The test

fails, must
be empty or
zero

→˓

→˓

→˓

5 %endif

! The not operator in-
verts the test of the
macro:

1 %if ! ${foo}
2 %warning The test

passes, must
be empty or
zero

→˓

→˓

→˓

3 %else
4 %error The test

fails, must
not be empty
or is
non-zero

→˓

→˓

→˓

→˓

5 %endif

== The left hand size
must equal the right
hand side. For exam-
ple:

1 %define one 1
2 %if ${one} == 1
3 %warning The test

passes→˓

4 %else
5 %error The test

fails→˓

6 %endif
You can also check
to see if a macro is
empty:

1 %if ${nothing} ==
%{nil}→˓

2 %warning The test
passes→˓

3 %else
4 %error The test

fails→˓

!= The left hand size
does not equal the
right hand side. For
example:

1 #
2 # Check a value

not being
equal.

→˓

→˓

3 #
4 %define one 1
5 %if ${one} != 2
6 %warning The test

passes→˓

7 %else
8 %error The test

fails→˓

9 %endif
10 #
11 # Check if a macro

is set.→˓

12 #
13 %if ${something}

!= %{nil}→˓

14 %warning The
test passes→˓

15 %else
16 %error The test

fails→˓

17 %endif

> The left hand side
is numerically greater
than the right hand
side.

> The left hand side
is numerically greater
than or equal to the
right hand side.

< The left hand side is
numerically less than
the right hand side.

<= The left hand side is
numerically less than
or equal to the right
hand side.

7.8. Scripting 65

RTEMS Source Builder, Release 4.11.3 Chapter 7 Section 7.8

7.8.22 %ifn

The %ifn macro inverts the normal %if logic. It
avoids needing to provide empty if blocks fol-
lowed by else blocks. It is useful when checking
if a macro is defined:

1 %ifn %{defined foo}
2 %define foo bar
3 %endif

7.8.23 %ifarch

The %ifarch is a short cut for %if %{_arch} ==
i386. Currently not used.

7.8.24 %ifnarch

The %ifnarch is a short cut for %if %{_arch}
!= i386. Currently not used.

7.8.25 %ifos

The %ifos is a short cut for %if %{_os} !=
mingw32. It allows conditional support for var-
ious operating system differences when build-
ing packages.

7.8.26 %else

The %else macro starts the conditional else
block.

7.8.27 %endfi

The %endif macro ends a conditional logic
block.

7.8.28 %bconf_with

The %bconf_with macro provides a way to test
if the user has passed a specific option on the
command line with the --with-<label> op-
tion. This option is only available with the
sb-builder command.

7.8.29 %bconf_without

The %bconf_without macro provides a way to
test if the user has passed a specific option on
the command line with the --without-<label>
option. This option is only available with the
sb-builder command.

66 Chapter 7. Configuration

CHAPTER

EIGHT

COMMANDS

67

RTEMS Source Builder, Release 4.11.3 Chapter 8 Section 8.1

8.1 Checker (sb-check)

This commands checks your system is set up
correctly. Most options are ignored:

1 $../source-builder/sb-check --help
2 sb-check: [options] [args]
3 RTEMS Source Builder, an RTEMS Tools Project␣

→˓(c) 2012-2013 Chris Johns
4 Options and arguments:
5 --force : Force the build to␣

→˓proceed
6 --quiet : Quiet output (not␣

→˓used)
7 --trace : Trace the execution
8 --dry-run : Do everything but␣

→˓actually run the build
9 --warn-all : Generate warnings

10 --no-clean : Do not clean up the␣
→˓build tree

11 --always-clean : Always clean the␣
→˓build tree, even with an error

12 --jobs : Run with specified␣
→˓number of jobs, default: num CPUs.

13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target␣

→˓triplet
16 --prefix path : Tools build prefix,

→˓ ie where they are installed
17 --topdir path : Top of the build␣

→˓tree, default is $PWD
18 --configdir path : Path to the ␣

→˓configuration directory, default: ./config
19 --builddir path : Path to the build␣

→˓directory, default: ./build
20 --sourcedir path : Path to the source␣

→˓directory, default: ./source
21 --tmppath path : Path to the temp␣

→˓directory, default: ./tmp
22 --macros file[,[file] : Macro format files␣

→˓to load after the defaults
23 --log file : Log file where all␣

→˓build out is written too
24 --url url[,url] : URL to look for␣

→˓source
25 --no-download : Disable the source␣

→˓downloader
26 --targetcflags flags : List of C flags for␣

→˓the target code
27 --targetcxxflags flags : List of C++ flags␣

→˓for the target code
28 --libstdcxxflags flags : List of C++ flags␣

→˓to build the target libstdc++ code
29 --with-<label> : Add the --with-

→˓<label> to the build
30 --without-<label> : Add the --without-

→˓<label> to the build

31 --regression : Set --no-install, -
→˓-keep-going and --always-clean

32 $../source-builder/sb-check
33 RTEMS Source Builder - Check, v0.2.0
34 Environment is ok

68 Chapter 8. Commands

Chapter 8 Section 8.2 RTEMS Source Builder, Release 4.11.3

8.2 Defaults (sb-defaults)

This commands outputs and the default
macros for your when given no arguments.
Most options are ignored:

1 $../source-builder/sb-defaults --help
2 sb-defaults: [options] [args]
3 RTEMS Source Builder, an RTEMS Tools Project␣

→˓(c) 2012-2013 Chris Johns
4 Options and arguments:
5 --force : Force the build to␣

→˓proceed
6 --quiet : Quiet output (not␣

→˓used)
7 --trace : Trace the execution
8 --dry-run : Do everything but␣

→˓actually run the build
9 --warn-all : Generate warnings

10 --no-clean : Do not clean up the␣
→˓build tree

11 --always-clean : Always clean the␣
→˓build tree, even with an error

12 --jobs : Run with specified␣
→˓number of jobs, default: num CPUs.

13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target␣

→˓triplet
16 --prefix path : Tools build prefix,

→˓ ie where they are installed
17 --topdir path : Top of the build␣

→˓tree, default is $PWD
18 --configdir path : Path to the ␣

→˓configuration directory, default: ./config
19 --builddir path : Path to the build␣

→˓directory, default: ./build
20 --sourcedir path : Path to the source␣

→˓directory, default: ./source
21 --tmppath path : Path to the temp␣

→˓directory, default: ./tmp
22 --macros file[,[file] : Macro format files␣

→˓to load after the defaults
23 --log file : Log file where all␣

→˓build out is written too
24 --url url[,url] : URL to look for␣

→˓source
25 --no-download : Disable the source␣

→˓downloader
26 --targetcflags flags : List of C flags for␣

→˓the target code
27 --targetcxxflags flags : List of C++ flags␣

→˓for the target code
28 --libstdcxxflags flags : List of C++ flags␣

→˓to build the target libstdc++ code
29 --with-<label> : Add the --with-

→˓<label> to the build

30 --without-<label> : Add the --without-
→˓<label> to the build

31 --regression : Set --no-install, -
→˓-keep-going and --always-clean

8.2. Defaults (sb-defaults) 69

RTEMS Source Builder, Release 4.11.3 Chapter 8 Section 8.3

8.3 Set Builder (sb-set-builder)

This command builds a set:

1 $../source-builder/sb-set-builder --help
2 RTEMS Source Builder, an RTEMS Tools Project␣

→˓(c) 2012-2013 Chris Johns
3 Options and arguments:
4 --force : Force the build to␣

→˓proceed
5 --quiet : Quiet output (not␣

→˓used)
6 --trace : Trace the execution
7 --dry-run : Do everything but␣

→˓actually run the build
8 --warn-all : Generate warnings
9 --no-clean : Do not clean up the␣

→˓build tree
10 --always-clean : Always clean the␣

→˓build tree, even with an error
11 --regression : Set --no-install, -

→˓-keep-going and --always-clean
12 ---jobs : Run with specified␣

→˓number of jobs, default: num CPUs.
13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target␣

→˓triplet
16 --prefix path : Tools build prefix,

→˓ ie where they are installed
17 --topdir path : Top of the build␣

→˓tree, default is $PWD
18 --configdir path : Path to the ␣

→˓configuration directory, default: ./config
19 --builddir path : Path to the build␣

→˓directory, default: ./build
20 --sourcedir path : Path to the source␣

→˓directory, default: ./source
21 --tmppath path : Path to the temp␣

→˓directory, default: ./tmp
22 --macros file[,[file] : Macro format files␣

→˓to load after the defaults
23 --log file : Log file where all␣

→˓build out is written too
24 --url url[,url] : URL to look for␣

→˓source
25 --no-download : Disable the source␣

→˓downloader
26 --no-install : Do not install the␣

→˓packages to the prefix
27 --targetcflags flags : List of C flags for␣

→˓the target code
28 --targetcxxflags flags : List of C++ flags␣

→˓for the target code
29 --libstdcxxflags flags : List of C++ flags␣

→˓to build the target libstdc++ code
30 --with-<label> : Add the --with-

→˓<label> to the build

31 --without-<label> : Add the --without-
→˓<label> to the build

32 --mail-from : Email address the␣
→˓report is from.

33 --mail-to : Email address to␣
→˓send the email too.

34 --mail : Send email report␣
→˓or results.

35 --smtp-host : SMTP host to send␣
→˓via.

36 --no-report : Do not create a␣
→˓package report.

37 --report-format : The report format␣
→˓(text, html, asciidoc).

38 --bset-tar-file : Create a build set␣
→˓tar file

39 --pkg-tar-files : Create package tar␣
→˓files

40 --list-bsets : List available␣
→˓build sets

41 --list-configs : List available ␣
→˓configurations

42 --list-deps : List the dependent␣
→˓files.

The arguments are a list of build sets to build.

Options:

--force:
Force the build to proceed even if the host
check fails. Typically this happens if exe-
cutable files are found in the path at a dif-
ferent location to the host defaults.

--trace:
Trace enable printing of debug information
to stdout. It is really only of use to RTEMS
Source Builder’s developers.

--dry-run:
Do everything but actually run the build
commands. This is useful when checking a
new configuration parses cleanly.

--warn-all:
Generate warnings.

--no-clean:
Do not clean up the build tree during the
cleaning phase of the build. This leaves the
source and the build output on disk so you
can make changes, or amend or generate
new patches. It also allows you to review
configure type output such as config.log.

70 Chapter 8. Commands

Chapter 8 Section 8.3 RTEMS Source Builder, Release 4.11.3

--always-clean:
Clean away the results of a build even if
the build fails. This is normally used with
--keep-going when regression testing to see
which build sets fail to build. It keeps the
disk usage down.

--jobs:
Control the number of jobs make is given.
The jobs can be none for only 1 job, half so
the number of jobs is half the number of de-
tected cores, a fraction such as 0.25 so the
number of jobs is a quarter of the number
of detected cores and a number such as 25
which forces the number of jobs to that num-
ber.

--host:
Set the host triplet value. Be careful with
this option.

--build:
Set the build triplet. Be careful with this op-
tion.

--target:
Set the target triplet. Be careful with this op-
tion. This is useful if you have a generic con-
figuration script that can work for a range of
architectures.

--prefix path:
Tools build prefix, ie where they are in-
stalled.

--topdir path:
Top of the build tree, that is the current di-
rectory you are in.

--configdir path:
Path to the configuration directory. This
overrides the built in defaults.

--builddir path:
Path to the build directory. This overrides
the default of +build+.

--sourcedir path:
Path to the source directory. This overrides
the default of +source+.

--tmppath path:
Path to the temporary directory. This over-
rides the default of +tmp+.

--macros files:
Macro files to load. The configuration direc-

tory path is searched.

--log file:
Log all the output from the build process.
The output is directed to +stdout+ if no log
file is provided.

--url url:
URL to look for source when downloading.
This is can be comma separate list.

--no-download:
Disable downloading of source and patches.
If the source is not found an error is raised.

--targetcflags flags:
List of C flags for the target code. This allows
for specific local customisation when testing
new variations.

--targetcxxflags flags:
List of C++ flags for the target code. This
allows for specific local customisation when
testing new variations.

--libstdcxxflags flags:
List of C++ flags to build the target lib-
stdc++ code. This allows for specific local
customisation when testing new variations.

--with-<label>:
Add the --with-<label> to the build. This
can be tested for in a script with the
%bconf_with macro.

--without-<label>:
Add the --without-<label> to the build.
This can be tested for in a script with the
%bconf_without macro.

--mail-from:
Set the from mail address if report mailing is
enabled.

--mail-to:
Set the to mail address if report mailing is
enabled. The report is mailed to this ad-
dress.

--mail:
Mail the build report to the mail to address.

--smtp-host:
The SMTP host to use to send the email. The
default is localhost.

--no-report:
Do not create a report format.

8.3. Set Builder (sb-set-builder) 71

RTEMS Source Builder, Release 4.11.3 Chapter 8 Section 8.3

--report-format format:
The report format can be text or html. The
default is html.

--keep-going:
Do not stop on error. This is useful if your
build sets performs a large number of testing
related builds and there are errors.

--always-clean:
Always clean the build tree even with a fail-
ure.

--no-install:
Do not install the packages to the prefix. Use
this if you are only after the tar files.

--regression:
A convenience option which is the same
as --no-install, --keep-going and
--always-clean.

--bset-tar-file:
Create a build set tar file. This is a single tar
file of all the packages in the build set.

--pkg-tar-files:
Create package tar files. A tar file will be
created for each package built in a build set.

--list-bsets:
List available build sets.

--list-configs:
List available configurations.

--list-deps:
Print a list of dependent files used by a build
set. Dependent files have a dep[?]` prefix
where ``? is a number. The files are listed
alphabetically.

72 Chapter 8. Commands

Chapter 8 Section 8.4 RTEMS Source Builder, Release 4.11.3

8.4 Set Builder (sb-builder)

This command builds a configuration as de-
scribed in a configuration file. Configuration
files have the extension of .cfg:

1 $./source-builder/sb-builder --help
2 sb-builder: [options] [args]
3 RTEMS Source Builder, an RTEMS Tools Project␣

→˓(c) 2012 Chris Johns
4 Options and arguments:
5 --force : Force the build to␣

→˓proceed
6 --quiet : Quiet output (not␣

→˓used)
7 --trace : Trace the execution
8 --dry-run : Do everything but␣

→˓actually run the build
9 --warn-all : Generate warnings

10 --no-clean : Do not clean up the␣
→˓build tree

11 --always-clean : Always clean the␣
→˓build tree, even with an error

12 --jobs : Run with specified␣
→˓number of jobs, default: num CPUs.

13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target␣

→˓triplet
16 --prefix path : Tools build prefix,

→˓ ie where they are installed
17 --topdir path : Top of the build␣

→˓tree, default is $PWD
18 --configdir path : Path to the ␣

→˓configuration directory, default: ./config
19 --builddir path : Path to the build␣

→˓directory, default: ./build
20 --sourcedir path : Path to the source␣

→˓directory, default: ./source
21 --tmppath path : Path to the temp␣

→˓directory, default: ./tmp
22 --macros file[,[file] : Macro format files␣

→˓to load after the defaults
23 --log file : Log file where all␣

→˓build out is written too
24 --url url[,url] : URL to look for␣

→˓source
25 --targetcflags flags : List of C flags for␣

→˓the target code
26 --targetcxxflags flags : List of C++ flags␣

→˓for the target code
27 --libstdcxxflags flags : List of C++ flags␣

→˓to build the target libstdc++ code
28 --with-<label> : Add the --with-

→˓<label> to the build
29 --without-<label> : Add the --without-

→˓<label> to the build

30 --list-configs : List available ␣
→˓configurations

8.4. Set Builder (sb-builder) 73

RTEMS Source Builder, Release 4.11.3 Chapter 8 Section 8.4

74 Chapter 8. Commands

CHAPTER

NINE

BUGS, CRASHES, AND BUILD FAILURES

The RTEMS Source Builder is a Python pro-
gram and every care is taken to test the code
however bugs, crashes, and build failures can
and do happen. If you find a bug please re-
port it via the Developer Site or email on the
RTEMS Users list.

Please include the generated RSB report. If
you see the following a report has been gen-
erated:

1 ...
2 ...
3 Build FAILED <1>
4 See error report: rsb-report-4.11-rtems-

→˓lm32.txt <2>

Items:

1. The build has failed.

2. The report’s file name.

The generated report contains the command
line, version of the RSB, your host’s uname de-
tails, the version of Python and the last 200
lines of the log.

If for some reason there is no report please
send please report the following:

• Command line,

• The git hash,

• Host details with the output of the uname
-a command,

• If you have made any modifications.

If there is a Python crash please cut and paste
the Python backtrace into the bug report. If
the tools fail to build please locate the first er-
ror in the log file. This can be difficult to find
on hosts with many cores so it sometimes pays

to re-run the command with the --jobs=none
option to get a log that is correctly sequenced.
If searching the log file seach for error: and
the error should be just above it.

75

https://devel.rtems.org

RTEMS Source Builder, Release 4.11.3 Chapter 9 Section 9.0

76 Chapter 9. Bugs, Crashes, and Build Failures

CHAPTER

TEN

CONTRIBUTING

We welcome all users adding, fixing, updating
and upgrading packages and their configura-
tions. The RSB is open source and open to
contributions. These can be bug fixes, new
features or new configurations. Please break
patches down into changes to the core Python
code, configuration changes or new configura-
tions.

Please email patches generated using git so
your commit messages and you are acknowl-
edged as the contributor.

• genindex

• search

77

	I Table of Contents
	RTEMS Source Builder
	Why Build from Source?
	History

	Quick Start
	Setup
	Checking
	Build Sets
	Building
	Deployment
	Controlling the Build

	Hosts
	Linux
	ArchLinux
	CentOS
	Fedora
	Raspbian
	Ubuntu
	Linux Mint
	openSUSE

	FreeBSD
	NetBSD
	MacOS
	Mavericks
	Serria

	Windows
	MSYS2
	Cygwin

	Project Sets
	Bare Metal
	RTEMS
	Patches

	Cross and Canadian Cross Building
	Cross Building
	Canadian Cross Building

	RTEMS 3rd Party Packages
	Vertical Integration
	Building
	Adding
	BSP Support
	RTEMS BSP Configuration

	Configuration
	Source and Patches
	HTTP, HTTPS, and FTP
	GIT
	CVS

	Macros and Defaults
	Macro Maps and Files
	Personal Macros

	Report Mailing
	Build Set Files
	Configuration Control
	Personal Configurations
	New Configurations
	Layering by Including
	Configuration File Numbering
	Common Configuration Scripts
	DTC Example
	Debugging

	Scripting
	Expanding
	%prep
	%build
	%install
	%clean
	%include
	%name
	%summary
	%release
	%version
	%buildarch
	%source
	%patch
	%hash
	%echo
	%warning
	%error
	%select
	%define
	%undefine
	%if
	%ifn
	%ifarch
	%ifnarch
	%ifos
	%else
	%endfi
	%bconf_with
	%bconf_without

	Commands
	Checker (sb-check)
	Defaults (sb-defaults)
	Set Builder (sb-set-builder)
	Set Builder (sb-builder)

	Bugs, Crashes, and Build Failures
	Contributing

