Embedded With

RTEMS

www.rtems.org

RTEMS Networking User Documentation

Release 4.11.3
©Copyright 2016, RTEMS Project (built 15th February 2018)

I

II

Preface

Network Task Structure and Data Flow

III Networking Driver

1

2

8

9

Introduction

Learn about the network device

Understand the network scheduling conventions
Network Driver Makefile

Write the Driver Attach Function

Write the Driver Start Function.

Write the Driver Initialization Function.

Write the Driver Transmit Task

Write the Driver Receive Task

10 Write the Driver Interrupt Handler

11 Write the Driver IOCTL Function

12 Write the Driver Statistic-Printing Function

IV Using Networking in an RTEMS Application

13 Makefile changes

13.1 Including the required managers
13.2 Increasing the size of theheap

14 System Configuration

CONTENTS

11
13
15
17
19
21
23
25
27
29
31

33

35

37

................ 38
................ 39

41

15 Initialization
15.1 Additional include files
15.2 Network Configuration i
15.3 Network device configuration
15.4 Network initialization oo o oo

16 Application Programming Interface
16.1 Network Statistics i e
16.2 TappingIntoanlInterface
16.3 SOCKEt OPLiONS . . .« v v v v vt e e e e e e e e e e
16.4 AddinganIP Alias e e e e
16.5 AddingaDefaultRoute e
16.6 Time Synchronization Using NTP

V Testing the Driver

17 Preliminary Setup

18 Debug Output

19 Monitor Commands

20 Driver basic operation
21 BOOTP/DHCP operation

22 Stress Tests
22.1 Giantpackets i e e e e e e e
22.2 Resource Exhaustion e e
22.3 CableFaults e e e e
22.4 Throughput. e

VI Network Servers

23 RTEMS FTP Daemon
23.1 Configuration Parameters v v v i i it e e e
23.2 Initializing FTPD (Starting the daemon)
23.3 Using Hooks o o e e e e

VII DEC 21140 Driver

24 DEC 21240 Driver Introduction
25 Document Revision History

26 DEC21140 PCI Board Generalities

27 RTEMS Driver Software Architecture
27.1 Initializationphase. L e e e
27.2 MemoryBuffer e
27.3 Receiver Thread e e e

43
44
45
48
49

51
52
53
54
55
56
60

61
63
65
67
69
71

73
74
75
76
77

79

81
82
83
84

85
87
89

91

ii

27.4 Transmitter Thread 0 0 i o e e e e e e e e
28 Encountered Problems
29 Netboot DEC driver

30 List of Ethernet cards using the DEC chip

VIII Command and Variable Index

99
101

103

105

iii

iv

Chapter 0 Section 0.0 RTEMS Networking User Documentation, Release 4.11.3

COPYRIGHT (c) 1988 - 2015.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at . Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the Community Project
hosted at

RTEMS Online Resources

Home
Developers
Documentation
Bug Reporting
Mailing Lists

Git Repositories

CONTENTS 1

http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS Networking User Documentation, Release 4.11.3 Chapter 0 Section 0.0

2 CONTENTS

Chapter 0 Section 0.0 RTEMS Networking User Documentation, Release 4.11.3

Part 1

Preface

Chapter 0 Section 0.0 RTEMS Networking User Documentation, Release 4.11.3

This document describes the RTEMS specific
parts of the FreeBSD TCP/IP stack. Much of
this documentation was written by Eric Norum
() of the Saskatchewan
Accelerator Laboratory who also ported the
FreeBSD TCP/IP stack to RTEMS.

The following is a list of resources which
should be useful in trying to understand Eth-
ernet:

* Charles Spurgeon’s Ethernet Web Site
“This site provides extensive informa-
tion about Ethernet (IEEE 802.3) local
area network (LAN) technology. Includ-
ing the original 10 Megabit per sec-
ond (Mbps) system, the 100 Mbps Fast
Ethernet system (802.3u), and the Gi-
gabit Ethernet system (802.3z).” The
URL is: (

)

e TCP/IP Illustrated, Volume 1 : The Pro-
tocols by W. Richard Stevens (ISBN:
0201633469) This book provides de-
tailed introduction to TCP/IP and in-
cludes diagnostic programs which are
publicly available.

e TCP/IP Illustrated, Volume 2 : The Im-
plementation by W. Richard Stevens and
Gary Wright (ISBN: 020163354X) This
book focuses on implementation issues
regarding TCP/IP. The treat for RTEMS
users is that the implementation covered
is the BSD stack with most of the source
code described in detail.

* UNIX Network Programming, Volume 1
2nd Edition by W. Richard Stevens
(ISBN: 0-13-490012-X) This book de-
scribes how to write basic TCP/IP appli-
cations, again with primary focus on the
BSD stack.

mailto:eric@skatter.usask.ca
http://www.ethermanage.com/ethernet/ethernet.html
http://www.ethermanage.com/ethernet/ethernet.html

RTEMS Networking User Documentation, Release 4.11.3 Chapter 0 Section 0.0

Part 11

Network Task
Structure and Data
Flow

RTEMS Networking User Documentation, Release 4.11.3

Chapter 0 Section 0.0

A schematic diagram of the tasks and message
mbuf queues in a simple RTEMS networking
application is shown in the following figure:

User

Application
Task

Socket
Receive
Queue

Network
Code

Routing
Table

Interface
Output
Queue

Interface Interface
5 ; Network

Receive Transmit
Daeman

Daemon Daemon

X X

Reoceive Transmit
Interrupt Interrupt
Handler Handler

The transmit task for each network interface
is normally blocked waiting for a packet to
arrive in the transmit queue. Once a packet
arrives, the transmit task may block waiting
for an event from the transmit interrupt han-
dler. The transmit interrupt handler sends an
RTEMS event to the transmit task to indicate
that transmit hardware resources have become
available.

The receive task for each network interface is
normally blocked waiting for an event from the
receive interrupt handler. When this event is
received the receive task reads the packet and
forwards it to the network stack for subsequent
processing by the network task.

The network task processes incoming packets
and takes care of timed operations such as han-
dling TCP timeouts and aging and removing
routing table entries.

The ‘Network code’ contains routines which
may run in the context of the user application
tasks, the interface receive task or the network
task. A network semaphore ensures that the
data structures manipulated by the network
code remain consistent.

Part 111

Networking Driver

RTEMS Networking User Documentation, Release 4.11.3 Chapter 0 Section 0.0

10

CHAPTER
ONE

This chapter is intended to provide an
introduction to the procedure for writ-
ing RTEMS network device drivers. The
example code is taken from the ‘Generic
68360’ network device driver. The source
code for this driver is located in the
c/src/lib/1libbsp/m68k/gen68360/network
directory in the RTEMS source code distri-
bution. Having a copy of this driver at hand
when reading the following notes will help
significantly.

INTRODUCTION

11

RTEMS Networking User Documentation, Release 4.11.3 Chapter 1 Section 1.0

12 Chapter 1. Introduction

CHAPTER
TWO

LEARN ABOUT THE NETWORK DEVICE

Before starting to write the network driver be-
come completely familiar with the program-
mer’s view of the device. The following points
list some of the details of the device that must
be understood before a driver can be written.

* Does the device use DMA to transfer
packets to and from memory or does the
processor have to copy packets to and
from memory on the device?

* If the device uses DMA, is it capable of
forming a single outgoing packet from
multiple fragments scattered in separate
memory buffers?

 If the device uses DMA, is it capable of
chaining multiple outgoing packets, or
does each outgoing packet require inter-
vention by the driver?

* Does the device automatically pad short
frames to the minimum 64 bytes or does
the driver have to supply the padding?

* Does the device automatically retry a
transmission on detection of a collision?

* If the device uses DMA, is it capable of
buffering multiple packets to memory, or
does the receiver have to be restarted af-
ter the arrival of each packet?

* How are packets that are too short, too
long, or received with CRC errors han-
dled? Does the device automatically con-
tinue reception or does the driver have to
intervene?

* How is the device Ethernet address set?
How is the device programmed to accept
or reject broadcast and multicast pack-
ets?

* What interrupts does the device gener-
ate? Does it generate an interrupt for

each incoming packet, or only for pack-
ets received without error? Does it gen-
erate an interrupt for each packet trans-
mitted, or only when the transmit queue
is empty? What happens when a trans-
mit error is detected?

In addition, some controllers have specific
questions regarding board specific configura-
tion. For example, the SONIC Ethernet con-
troller has a very configurable data bus inter-
face. It can even be configured for sixteen and
thirty-two bit data buses. This type of informa-
tion should be obtained from the board vendor.

13

RTEMS Networking User Documentation, Release 4.11.3 Chapter 2 Section 2.0

14 Chapter 2. Learn about the network device

CHAPTER
THREE

UNDERSTAND THE NETWORK
SCHEDULING CONVENTIONS

When writing code for the driver transmit and rtems_event_receive.
receive tasks, take care to follow the network
scheduling conventions. All tasks which are
associated with networking share various data
structures and resources. To ensure the con-
sistency of these structures the tasks execute
only when they hold the network semaphore
(rtems_bsdnet_semaphore). The transmit and
receive tasks must abide by this protocol. Be
very careful to avoid ‘deadly embraces’ with
the other network tasks. A number of rou-
tines are provided to make it easier for the net-
work driver code to conform to the network
task scheduling conventions.

* void rtems_bsdnet_semaphore_release(void)
This function releases the network
semaphore. The network driver tasks
must call this function immediately
before making any blocking RTEMS
request.

* void rtems_bsdnet_semaphore_obtain(void)
This function obtains the network
semaphore. If a network driver task
has released the network semaphore
to allow other network-related tasks
to run while the task blocks, then this
function must be called to reobtain the
semaphore immediately after the return
from the blocking RTEMS request.

* rtems_bsdnet_event_receive(rtems_event_set,rtems_option,rtems_interval,rtems_event_set
%x) The network driver task should
call this function when it wishes to
wait for an event. This function re-
leases the network semaphore, calls
rtems_event_receive to wait for the
specified event or events and re-
obtains the semaphore. The value
returned is the value returned by the

15

RTEMS Networking User Documentation, Release 4.11.3 Chapter 3 Section 3.0

16 Chapter 3. Understand the network scheduling conventions

-

-

N

CHAPTER
FOUR

NETWORK DRIVER MAKEFILE

Network drivers are considered part of
the BSD network package and as such
are to be compiled with the appropriate
flags. This can be accomplished by adding
-D__INSIDE_RTEMS_BSD_TCPIP_STACK__ to the
command line. If the driver is inside the
RTEMS source tree or is built using the RTEMS
application Makefiles, then adding the follow-
ing line accomplishes this:

DEFINES += -D__INSIDE_RTEMS_BSD_TCPIP_STACK_

—

This is equivalent to the following list of defi-
nitions. Early versions of the RTEMS BSD net-
work stack required that all of these be de-
fined.

-D_COMPILING_BSD_KERNEL_
—DNFS \
-DDIAGNOSTIC -DBOOTP_COMPAT

-DKERNEL -DINET -

Defining these macros tells the network header
files that the driver is to be compiled with ex-
tended visibility into the network stack. This
is in sharp contrast to applications that simply
use the network stack. Applications do not re-
quire this level of visibility and should stick to
the portable application level API.

As a direct result of being logically inter-
nal to the network stack, network drivers
use the BSD memory allocation routines This
means, for example, that malloc takes three
arguments. See the SONIC device driver
(c/src/lib/libchip/network/sonic.c) for an
example of this. Because of this, network
drivers should not include <stdlib.h>. Do-
ing so will result in conflicting definitions of
malloc().

Application level code including network
servers such as the FTP daemon are not part of
the BSD kernel network code and should not

be compiled with the BSD network flags. They
should include <stdlib.h> and not define the
network stack visibility macros.

17

RTEMS Networking User Documentation, Release 4.11.3 Chapter 4 Section 4.0

18 Chapter 4. Network Driver Makefile

CHAPTER
FIVE

WRITE THE DRIVER

The driver attach function is responsible for
configuring the driver and making the connec-
tion between the network stack and the driver.

Driver attach functions take a pointer to an
rtems_bsdnet_ifconfig structure as their only
argument. and set the driver parameters based
on the values in this structure. If an entry in
the configuration structure is zero the attach
function chooses an appropriate default value
for that parameter.

The driver should then set up several fields
in the ifnet structure in the device-dependent
data structure supplied and maintained by the
driver:

ifp->if_softc
Pointer to the device-dependent data. The
first entry in the device-dependent data
structure must be an arpcom structure.

ifp->if_name
The name of the device. The network stack
uses this string and the device number for
device name lookups. The device name
should be obtained from the name entry in
the configuration structure.

ifp->if_unit

The device number. The network stack uses?
this number and the device name for device*
name lookups. For example, if ifp->if_name
is scc and ifp->if_unit is 1, the full de-
vice name would be scc1. The unit number
should be obtained from the ‘name’ entry in
the configuration structure.

ifp->if_mtu
The maximum transmission unit for the de-
vice. For Ethernet devices this value should
almost always be 1500.

ifp->if_flags
The device flags. Ethernet devices should set

ATTACH FUNCTION

the flags to IFF_BROADCAST | IFF_SIMPLEX, in-
dicating that the device can broadcast pack-
ets to multiple destinations and does not re-
ceive and transmit at the same time.

ifp->if_snd.ifq_maxlen
The maximum length of the queue of pack-
ets waiting to be sent to the driver. This is
normally set to ifgmaxlen.

ifp->if_init
The address of the driver initialization func-
tion.

ifp->if_start
The address of the driver start function.

ifp->if_ioctl
The address of the driver ioctl function.

ifp—>if_output
The address of the output function. Ethernet
devices should set this to ether_output.

RTEMS provides a function to parse the driver
name in the configuration structure into a de-
vice name and unit number.

int rtems_bsdnet_parse_driver_name (
const struct rtems_bsdnet_ifconfig .
—*xconfig,
char **namep

s

The function takes two arguments; a pointer
to the configuration structure and a pointer to
a pointer to a character. The function parses
the configuration name entry, allocates mem-
ory for the driver name, places the driver name
in this memory, sets the second argument to
point to the name and returns the unit num-
ber. On error, a message is printed and -1 is
returned.

Once the attach function has set up the
above entries it must link the driver data

19

RTEMS Networking User Documentation, Release 4.11.3 Chapter 5 Section 5.0

structure onto the list of devices by calling
if_attach. Ethernet devices should then call
ether_ifattach. Both functions take a pointer
to the device’s ifnet structure as their only ar-
gument.

The attach function should return a non-zero
value to indicate that the driver has been suc-
cessfully configured and attached.

20

Chapter 5. Write the Driver Attach Function

CHAPTER
SIX

WRITE THE DRIVER START FUNCTION.

This function is called each time the net-
work stack wants to start the transmitter.
This occures whenever the network stack adds
a packet to a device’s send queue and the
IFF_OACTIVE bit in the device’s if_f1lags is not
set.

For many devices this function need only set
the IFF_OACTIVE bit in the if_flags and send
an event to the transmit task indicating that a
packet is in the driver transmit queue.

21

RTEMS Networking User Documentation, Release 4.11.3 Chapter 6 Section 6.0

22 Chapter 6. Write the Driver Start Function.

CHAPTER
SEVEN

WRITE THE DRIVER INITIALIZATION

This function should initialize the device, at-
tach to interrupt handler, and start the driver
transmit and receive tasks. The function

rtems_id

rtems_bsdnet_newproc (char *name,
int stacksize,
void(*entry) (void *),
void =*arg);

should be used to start the driver tasks.

Note that the network stack may call the driver
initialization function more than once. Make
sure multiple versions of the receive and trans-
mit tasks are not accidentally started.

FUNCTION.

23

RTEMS Networking User Documentation, Release 4.11.3 Chapter 7 Section 7.0

24 Chapter 7. Write the Driver Initialization Function.

CHAPTER
EIGHT

WRITE THE DRIVER TRANSMIT TASK

This task is reponsible for removing packets
from the driver send queue and sending them
to the device. The task should block waiting
for an event from the driver start function in-
dicating that packets are waiting to be trans-
mitted. When the transmit task has drained
the driver send queue the task should clear the
IFF_OACTIVE bit in if_flags and block until
another outgoing packet is queued.

25

RTEMS Networking User Documentation, Release 4.11.3 Chapter 8 Section 8.0

26 Chapter 8. Write the Driver Transmit Task

CHAPTER
NINE

WRITE THE DRIVER RECEIVE TASK

This task should block until a packet arrives
from the device. If the device is an Ether-
net interface the function ether_input should
be called to forward the packet to the net-
work stack. The arguments to ether_input
are a pointer to the interface data structure,
a pointer to the ethernet header and a pointer
to an mbuf containing the packet itself.

27

RTEMS Networking User Documentation, Release 4.11.3 Chapter 9 Section 9.0

28 Chapter 9. Write the Driver Receive Task

CHAPTER
TEN

WRITE THE DRIVER INTERRUPT

A typical interrupt handler will do nothing
more than the hardware manipulation re-
quired to acknowledge the interrupt and send
an RTEMS event to wake up the driver re-
ceive or transmit task waiting for the event.
Network interface interrupt handlers must not
make any calls to other network routines.

HANDLER

29

RTEMS Networking User Documentation, Release 4.11.3 Chapter 10 Section 10.0

30 Chapter 10. Write the Driver Interrupt Handler

CHAPTER
ELEVEN

WRITE THE DRIVER IOCTL FUNCTION

This function handles ioctl requests directed at
the device. The ioctl commands which must be
handled are:

SIOCGIFADDR

SIOCSIFADDR
If the device is an FEthernet interface
these commands should be passed on to
ether_ioctl.

SIOCSIFFLAGS
This command should be used to start or
stop the device, depending on the state of
the interface IFF_UP and IFF_RUNNING bits in
if_flags:

IFF_RUNNING
Stop the device.

IFF_UP
Start the device.

IFF_UP|IFF_RUNNING
Stop then start the device.

0
Do nothing.

31

RTEMS Networking User Documentation, Release 4.11.3 Chapter 11 Section 11.0

32 Chapter 11. Write the Driver IOCTL Function

CHAPTER
TWELVE

WRITE THE DRIVER

STATISTIC-PRINTING FUNCTION

This function should print the values of
any statistic/diagnostic counters the network
driver may use. The driver ioctl function
should call the statistic-printing function when
the ioctl command is STO_RTEMS_SHOW_STATS.

33

RTEMS Networking User Documentation, Release 4.11.3 Chapter 12 Section 12.0

34 Chapter 12. Write the Driver Statistic-Printing Function

Part IV

Using Networking
in an RTEMS
Application

RTEMS Networking User Documentation, Release 4.11.3 Chapter 12 Section 12.0

36

CHAPTER
THIRTEEN

MAKEFILE CHANGES

37

-

RTEMS Networking User Documentation, Release 4.11.3

Chapter 13 Section 13.1

13.1 Including the required man-
agers

The FreeBSD networking code requires several
RTEMS managers in the application:

MANAGERS = io event semaphore

38

Chapter 13. Makefile changes

-

Chapter 13 Section 13.2

RTEMS Networking User Documentation, Release 4.11.3

13.2 Increasing the size of the heap

The networking tasks allocate a lot of mem-
ory. For most applications the heap should be
at least 256 kbytes. The amount of memory
set aside for the heap can be adjusted by set-
ting the CFLAGS_LD definition as shown below:

CFLAGS_LD += -W1,--defsym -W1,
—HeapSize=0x80000

This sets aside 512 kbytes of memory for the
heap.

13.2. Increasing the size of the heap

39

RTEMS Networking User Documentation, Release 4.11.3 Chapter 13 Section 13.2

40 Chapter 13. Makefile changes

CHAPTER
FOURTEEN

SYSTEM CONFIGURATION

The networking tasks allocate some RTEMS
objects. These must be accounted for in the
application configuration table. The following
lists the requirements.

TASKS
One network task plus a receive and transmit
task for each device.

SEMAPHORES
One network semaphore plus one syslog mu-
tex semaphore if the application uses open-
log/syslog.

EVENTS
The network stack uses RTEMS_EVENT_24 and
RTEMS_EVENT_25. This has no effect on
the application configuration, but applica-
tion tasks which call the network functions
should not use these events for other pur-
poses.

41

RTEMS Networking User Documentation, Release 4.11.3 Chapter 14 Section 14.0

42 Chapter 14. System Configuration

CHAPTER
FIFTEEN

INITIALIZATION

43

-

RTEMS Networking User Documentation, Release 4.11.3

Chapter 15 Section 15.1

15.1 Additional include files

The source file which declares the network
configuration structures and calls the network
initialization function must include

#include <rtems/rtems_bsdnet.h>

44

Chapter 15. Initialization

-

w

N Oy v A

10
11

12
13

14

15
16

17

18

19

20

21

22

23

24

25

26
27

28

29

30
31

Chapter 15 Section 15.2

RTEMS Networking User Documentation, Release 4.11.3

15.2 Network Configuration

32
33
The network configuration is speci-
fied by declaring and initializing the"

35

rtems_bsdnet_config structure. o

struct rtems_bsdnet_config {
/% :
* This entry points to the head of the._
—ifconfig chain. 3
*x/ 3
struct rtems_bsdnet_ifconfig *ifconfig;
/*
* This entry should be rtems_bsdnet_do_
—bootp if BOOTP
* is being used to configure the network,
— and NULL
* if BOOTP is not being used.
*/
void o
— (*bootp) (void);
/*
* The remaining items can be .
—initialized to 0, in
* which case the default value will be_,
—used.
*/
rtems_task_priority
—task_priority; /* 100
unsigned long
—bytecount;
unsigned long
—cluster_bytecount; /* 128 kbytes */

network_
*/

mbuf_
*/

mbuf_

/* 64 kbytes

char *hostname;
— /* BOOTP */

char *domainname;
o /* BOOTP */

char *gateway; .
< /* BOOTP */

char *log_host; .
— /* BOOTP */

char *name_
—server[3]; /* BOOTP */

char *ntp_
—server[3]; /* BOOTP */

unsigned long sb_

—efficiency; /* 2 */

/* UDP TX: 9216 bytes =*/

unsigned long udp_tx_buf_

—size;
/* UDP RX: 40 * (1024 + sizeof(struct.
—sockaddr_in)) x/

unsigned long udp_rx_buf_
—size;

/* TCP TX: 16 * 1024 bytes */

unsigned long tep_tx_buf_

—size;

/* TCP TX: 16 * 1024 bytes */
unsigned long

—size;
/* Default Network Tasks CPU Affinity =%/
#ifdef RTEMS_SMP

tcp_rx_buf_

const cpu_set_t *network_
—task_cpuset;
size_t network_
—task_cpuset_size;
#endif

};

The structure entries are described in the
following table. If your application uses
BOOTP/DHCP to obtain network configura-
tion information and if you are happy with the
default values described below, you need to
provide only the first two entries in this struc-
ture.

struct rtems_bsdnet_ifconfig *ifconfig
A pointer to the first configuration structure
of the first network device. This structure is
described in the following section. You must
provide a value for this entry since there is
no default value for it.

void (*bootp)(void)
This entry should be set to
rtems_bsdnet_do_bootp if your applica-
tion by default uses the BOOTP/DHCP
client protocol to obtain network con-
figuration information. It should be
set to NULL if your application does not
use BOOTP/DHCP. You can also use
rtems_bsdnet_do_bootp_rootfs to have
a set of standard files created with the
information return by the BOOTP/DHCP
protocol. The IP address is added to
/etc/hosts with the host name and domain
returned. If no host name or domain
is returned me.mydomain is used. The
BOOTP/DHCP server’s address is also added
to /etc/hosts. The domain name server
listed in the BOOTP/DHCP information
are added to /etc/resolv.conf. A“search”
record is also added if a domain is re-
turned. The files are created if they do not
exist. The default rtems_bsdnet_do_bootp
and rtems_bsdnet_do_bootp_rootfs han-
dlers will loop for-ever waiting for a
BOOTP/DHCP server to respond. If an error
is detected such as not valid interface or

15.2. Network Configuration

45

RTEMS Networking User Documentation, Release 4.11.3 Chapter 15 Section 15.2

valid hardware address the target will re-
boot allowing any hardware reset to correct
itself. You can provide your own custom
handler which allows you to perform an
initialization that meets your specific system
requirements. For example you could try
BOOTP/DHCP then enter a configuration
tool if no server is found allowing the user
to switch to a static configuration.

int network_task_priority
The priority at which the network task and
network device receive and transmit tasks
will run. If a value of 0 is specified the tasks
will run at priority 100.

unsigned long mbuf_bytecount
The number of bytes to allocate from the
heap for use as mbufs. If a value of O is spec-
ified, 64 kbytes will be allocated.

unsigned long mbuf_cluster_bytecount
The number of bytes to allocate from the
heap for use as mbuf clusters. If a value of 0
is specified, 128 kbytes will be allocated.

char *hostname
The host name of the system. If this, or
any of the following, entries are NULL the
value may be obtained from a BOOTP/DHCP
server.

char *domainname
The name of the Internet domain to which
the system belongs.

char *gateway
The Internet host number of the network
gateway machine, specified in ‘dotted deci-
mal’ (129.128.4.1) form.

char *log_host
The Internet host number of the machine to
which syslog messages will be sent.

char *name_server[3]
The Internet host numbers of up to three ma-
chines to be used as Internet Domain Name
Servers.

char *ntp_server[3]
The Internet host numbers of up to three ma-
chines to be used as Network Time Protocol
(NTP) Servers.

unsigned long sb_efficiency

This is the first of five configuration pa-
rameters related to the amount of memory
each socket may consume for buffers. The
TCP/IP stack reserves buffers (e.g. mbufs)
for each open socket. The TCP/IP stack
has different limits for the transmit and re-
ceive buffers associated with each TCP and
UDP socket. By tuning these parameters,
the application developer can make trade-
offs between memory consumption and per-
formance. @ The default parameters fa-
vor performance over memory consumption.
See

for more de-
tails but note that after the RTEMS 4.8 re-
lease series, the sb_efficiency default was
changed from 8 to 2. The user should also
be aware of the SO_SNDBUF and SO_RCVBUF
IO control operations. These can be used to
specify the send and receive buffer sizes for a
specific socket. There is no standard IO con-
trol to change the sb_efficiency factor. The
sb_efficiency parameter is a buffering fac-
tor used in the implementation of the TCP/IP
stack. The default is 2 which indicates dou-
ble buffering. When allocating memory for
each socket, this number is multiplied by the
buffer sizes for that socket.

unsigned long udp_tx_buf_size

This configuration parameter specifies the
maximum amount of buffer memory which
may be used for UDP sockets to transmit
with. The default size is 9216 bytes which
corresponds to the maximum datagram size.

unsigned long udp_rx_buf_size

-

This configuration parameter specifies the
maximum amount of buffer memory which
may be used for UDP sockets to receive into.
The default size is the following length in
bytes:

40 * (1024 + sizeof(struct sockaddr_in)

unsigned long tcp_tx_buf_size

This configuration parameter specifies the
maximum amount of buffer memory which
may be used for TCP sockets to transmit
with. The default size is sixteen kilobytes.

46

Chapter 15. Initialization

http://www.rtems.org/ml/rtems-users/2004/february/msg00200.html
http://www.rtems.org/ml/rtems-users/2004/february/msg00200.html

Chapter 15 Section 15.2 RTEMS Networking User Documentation, Release 4.11.3

unsigned long tcp_rx_buf_size
This configuration parameter specifies the
maximum amount of buffer memory which
may be used for TCP sockets to receive into.
The default size is sixteen kilobytes.

const cpu_set_t *network_task_cpuset
This configuration parameter specifies the
CPU affinity of the network task. If set to
0 the network task can be scheduled on any
CPU. Only available in SMP configurations.

size_t network_task_cpuset_size
This configuration parameter specifies the
size of the network_task_cpuset used. Only
available in SMP configurations.

In addition, the following fields in the
rtems_bsdnet_ifconfig are of interest.

int port
The 1/0 port number (ex: 0x240) on which
the external Ethernet can be accessed.

int irno
The interrupt number of the external Ether-
net controller.

int bpar

The address of the shared memory on the
external Ethernet controller.

15.2. Network Configuration

47

RTEMS Networking User Documentation, Release 4.11.3

Chapter 15 Section 15.3

15.3 Network device configuration

Network devices are specified and config-
ured by declaring and initializing a struct
rtems_bsdnet_ifconfig structure for each net-
work device.

The structure entries are described in the fol-
lowing table. An application which uses a sin-
gle network interface, gets network configura-
tion information from a BOOTP/DHCP server,
and uses the default values for all driver pa-
rameters needs to initialize only the first two
entries in the structure.

char *name

The full name of the network device.
This name consists of the driver name
and the unit number (e.g. "sccl”).
The bsp.h include file usually defines
RTEMS_BSP_NETWORK_DRIVER_NAME as the
name of the primary (or only) network
driver.

int (*attach) (struct
rtems_bsdnet_ifconfig *conf)

The address of the driver attach
function. The network initializa-
tion function calls this function
to configure the driver and attach
it to the network stack. The
bsp.h include file usually defines
RTEMS_BSP_NETWORK_DRIVER_ATTACH
as the name of the attach function
of the primary (or only) network
driver.

struct rtems_bsdnet_ifconfig *next
A pointer to the network device configura-
tion structure for the next network interface, !
or NULL if this is the configuration structure
of the last network interface.

char xip_address
The Internet address of the device, speci-
fied in ‘dotted decimal’ (129.128.4.2) form,]
or NULL if the device configuration informa-
tion is being obtained from a BOOTP/DHCP,
server.

u AW N

char *ip_netmask

(255.255.255.0) form, or NULL if the
device configuration information is being
obtained from a BOOTP/DHCP server.

void *hardware_address
The hardware address of the device, or NULL
if the driver is to obtain the hardware ad-
dress in some other way (usually by read-
ing it from the device or from the bootstrap
ROM).

int ignore_broadcast
Zero if the device is to accept broadcast
packets, non-zero if the device is to ignore
broadcast packets.

int mtu
The maximum transmission unit of the de-
vice, or zero if the driver is to choose a de-
fault value (typically 1500 for Ethernet de-
vices).

int rbuf_count
The number of receive buffers to use, or zero
if the driver is to choose a default value

int xbuf_count
The number of transmit buffers to use, or
zero if the driver is to choose a default value
Keep in mind that some network devices
may use 4 or more transmit descriptors for
a single transmit buffer.

A complete network configuration specifica-
tion can be as simple as the one shown in
the following example. This configuration uses
a single network interface, gets network con-
figuration information from a BOOTP/DHCP
server, and uses the default values for all driver
parameters.

static struct rtems_bsdnet_ifconfig _
—netdriver_config = {
RTEMS_BSP_NETWORK_DRIVER_NAME,
RTEMS_BSP_NETWORK_DRIVER_ATTACH
b
struct rtems_bsdnet_config
—config = {
&netdriver_config,
rtems_bsdnet_do_bootp,

rtems_bsdnet_

3

The Internet inetwork mask of the
device, specified in ‘dotted decimal’
48 Chapter 15. Initialization

Chapter 15 Section 15.4 RTEMS Networking User Documentation, Release 4.11.3

15.4 Network initialization

The networking tasks must be started before
any network I/O operations can be performed.
This is done by calling:

rtems_bsdnet_initialize_network ();

This function is declared in
rtems/rtems_bsdnet.h. t returns O on
success and -1 on failure with an error code in
errno. It is not possible to undo the effects of
a partial initialization, though, so the function
can be called only once irregardless of the
return code. Consequently, if the condition
for the failure can be corrected, the system
must be reset to permit another network
initialization attempt.

15.4. Network initialization

49

RTEMS Networking User Documentation, Release 4.11.3 Chapter 15 Section 15.4

50 Chapter 15. Initialization

CHAPTER
SIXTEEN

APPLICATION PROGRAMMING

The RTEMS network package provides almost
a complete set of BSD network services. The
network functions work like their BSD coun-
terparts with the following exceptions:

* A given socket can be read or written by
only one task at a time.

* The select function only works for file
descriptors associated with sockets.

* You must call openlog before calling any
of the syslog functions.

* Some of the network functions are not
thread-safe. For example the following
functions return a pointer to a static
buffer which remains valid only until the

next call:
gethostbyaddr gethostbyname
inet_ntoa (inet_ntop is thread-safe,
though).

* The RTEMS network package gathers
statistics.

* Addition of a mechanism to “tap onto”
an interface and monitor every packet re-
ceived and transmitted.

e Addition of SO_SNDWAKEUP and
SO_RCVWAKEUP socket options.

Some of the new features are discussed in
more detail in the following sections.

INTERFACE

51

RTEMS Networking User Documentation, Release 4.11.3

Chapter 16 Section 16.1

16.1 Network Statistics

There are a number of functions to print statis-
tics gathered by the network stack. These func-
tion are declared in rtems/rtems_bsdnet.h.

rtems_bsdnet_show_if_stats
Display statistics gathered by network inter-
faces.

rtems_bsdnet_show_ip_stats
Display IP packet statistics.

rtems_bsdnet_show_icmp_stats
Display ICMP packet statistics.

rtems_bsdnet_show_tcp_stats
Display TCP packet statistics.

rtems_bsdnet_show_udp_stats
Display UDP packet statistics.

rtems_bsdnet_show_mbuf_stats
Display mbuf statistics.

rtems_bsdnet_show_inet_routes
Display the routing table.

52 Chapter 16. Application Programming Interface

Chapter 16 Section 16.2 RTEMS Networking User Documentation, Release 4.11.3

16.2 Tapping Into an Interface

RTEMS add two new ioctls to the BSD net-
working code, SIOCSIFTAP and SIOCGIFTAP.
These may be used to set and get a tap func-
tion. The tap function will be called for every
Ethernet packet received by the interface.

These are called like other interface ioctls, such
as SIOCSIFADDR. When setting the tap function
with SIOCSIFTAP, set the ifr tap field of the
ifreq struct to the tap function. When retriev-
ing the tap function with SIOCGIFTAP, the cur-
rent tap function will be returned in the ifr _tap
field. To stop tapping packets, call STOCSIFTAP
with a ifr_tap field of 0.

The tap function is called like this:

int tap (struct ifnet *, struct ether_header.
—*, struct mbuf =*)

The tap function should return 1 if the packet
was fully handled, in which case the caller
will simply discard the mbuf. The tap function
should return o if the packet should be passed
up to the higher networking layers.

The tap function is called with the network
semaphore locked. It must not make any
calls on the application levels of the network-
ing level itself. It is safe to call other non-
networking RTEMS functions.

16.2. Tapping Into an Interface

53

-

RTEMS Networking User Documentation, Release 4.11.3

Chapter 16 Section 16.3

16.3 Socket Options

RTEMS adds two new SOL_SOCKET level
options for setsockopt and getsockopt:
SO_SNDWAKEUP and SO_RCVWAKEUP. For both, the
option value should point to a sockwakeup
structure. The sockwakeup structure has the
following fields:

void (*sw_pfn) (struct socket *, caddr_t);
caddr_t sw_arg;

These options are used to set a callback func-
tion to be called when, for example, there is
data available from the socket (SO_RCVWAKEUP)
and when there is space available to accept
data written to the socket (SO_SNDWAKEUP).

If setsockopt is called with the SO_RCVWAKEUP
option, and the sw_pfn field is not zero, then
when there is data available to be read from
the socket, the function pointed to by the
sw_pfn field will be called. A pointer to the
socket structure will be passed as the first ar-
gument to the function. The sw_arg field set
by the SO_RCVWAKEUP call will be passed as the
second argument to the function.

If setsockopt is called with the SO_SNDWAKEUP
function, and the sw_pfn field is not zero, then
when there is space available to accept data
written to the socket, the function pointed to
by the sw_pfn field will be called. The argu-
ments passed to the function will be as with
SO_SNDWAKEUP.

When the function is called, the network
semaphore will be locked and the callback
function runs in the context of the networking
task. The function must be careful not to call
any networking functions. It is OK to call an
RTEMS function; for example, it is OK to send
an RTEMS event.

The purpose of these callback functions is to
permit a more efficient alternative to the se-
lect call when dealing with a large number of
sockets.

The callbacks are called by the same crite-
ria that the select function uses for indicating
“ready” sockets. In Stevens Unix Network Pro-
gramming on page 153-154 in the section “Un-
der what Conditions Is a Descriptor Ready?”

you will find the definitive list of conditions
for readable and writable that also determine
when the functions are called.

When the number of received bytes equals or
exceeds the socket receive buffer “low water
mark” (default 1 byte) you get a readable call-
back. If there are 100 bytes in the receive
buffer and you only read 1, you will not imme-
diately get another callback. However, you will
get another callback after you read the remain-
ing 99 bytes and at least 1 more byte arrives.
Using a non-blocking socket you should prob-
ably read until it produces error ENOULDBLOCK
and then allow the readable callback to tell you
when more data has arrived. (Condition 1.a.)

For sending, when the socket is connected and
the free space becomes at or above the “low
water mark” for the send buffer (default 4096
bytes) you will receive a writable callback.
You don’t get continuous callbacks if you don’t
write anything. Using a non-blocking write
socket, you can then call write until it returns
a value less than the amount of data requested
to be sent or it produces error ENOULDBLOCK (in-
dicating buffer full and no longer writable).
When this happens you can try the write again,
but it is often better to go do other things and
let the writable callback tell you when space
is available to send again. You only get a
writable callback when the free space transi-
tions to above the “low water mark” and not
every time you write to a non-full send buffer.
(Condition 2.a.)

The remaining conditions enumerated by
Stevens handle the fact that sockets become
readable and/or writable when connects, dis-
connects and errors occur, not just when data
is received or sent. For example, when a
server “listening” socket becomes readable it
indicates that a client has connected and ac-
cept can be called without blocking, not that
network data was received (Condition 1.c).

54

Chapter 16. Application Programming Interface

[un

O 0 N oy 1 AW N

==
-]

12
13

14
15
16
17

18
19

20
21
22
23

24

Chapter 16 Section 16.4

RTEMS Networking User Documentation, Release 4.11.3

16.4 Adding an IP Alias

The following code snippet adds an IP alias:

void addAlias(const char *pName, const char_
—*pAddr, const char xpMask)
{
struct ifaliasreq aliasreq;
struct sockaddr_in *in;

/* initialize alias request =*/
memset(&aliasreq, 0, sizeof(aliasreq));
sprintf(aliasreq.ifra_name, pName);

/* initialize alias address */
in = (struct sockaddr_in =*)&aliasreq.
—ifra_addr;
in->sin_family = AF_INET;
in->sin_len = sizeof(aliasreq.ifra_
—addr);
in->sin_addr.s_addr = inet_addr(pAddr);

/* initialize alias mask */
in = (struct sockaddr_in =x)&aliasreq.
—ifra_mask;
in->sin_family = AF_INET;
in->sin_len = sizeof(aliasreq.ifra_
—mask) ;
in->sin_addr.s_addr = inet_addr(pMask);

/* call to setup the alias */
rtems_bsdnet_ifconfig(pName, SIOCAIFADDR,
— &aliasreq);

}

Thanks to Mike Seirs <
> for this example code.

16.4. Adding an IP Alias

55

mailto:mikes@poliac.com
mailto:mikes@poliac.com

-

O O N o 1 AW N

I R I L T < =
m O V ® N O U1 A W N = O

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
44
45
46
47

RTEMS Networking User Documentation, Release 4.11.3

Chapter 16 Section 16.5

16.5 Adding a Default Route

48
49
The function provided in this section is func=°
tionally equivalent to the command route add

default gw yyy.yyy.yyy.yyy: ”

53

}

if ((f_down !=0) && (f_ip != 0)) {
f_up = 1;
>

void mon_ifconfig(int argc, char xargv[], | while(arge > cur_idx) { o

—.unsigned32 command_arg, bool verbose) 0 ¢ if (stremp(argvleur_idx], "up”) ==.

{ —>
struct sockaddr_in ipaddr; > f_up =5
struct sockaddr_in dstaddr; ° 1f (f_down !=0) { ,
struct sockaddr_in netmask; 5 printf(”"Can't make interface._
struct sockaddr_in broadcast; —up and down\n");
char *iface; ° i .
int f_ip = 0; 6 } else if(strcmp(argvlicur_idx], "down
int f_ptp = 0; = =0 {
int f_netmask = 0; 6 f_down =0
int fF_up = 0; 62 if (f_up !'=0) {
int £_down = o; 6 printf(”"Can't make interface.
int f_bcast = 0; —up and down\n");
int cur_idx; i 3 .)
int re; 6 } else if(strcmp(argvlcur_idx], .
int flags; —"netmask") == 0) {

6 if ((cur_idx + 1) >= argc) {
bzero((void+) &ipaddr, sizeof(ipaddr)); | printf("No netmask addressin
bzero((void*) &dstaddr, sizeof(dstaddr)); ="
bzero((void*) &netmask, sizeof(netmask));’ return;

bzero((void*) gbroadcast, . } .

_.sizeof (broadcast)); 7 . if (1netjpton(AF_INET, argvlcur_
ipaddr.sin_len = sizeof(ipaddr); —idx+1], &netmask.31n_addr) <01
ipaddr.sin_family = AF_INET; 7 . printf(”bad netmask: %s\n",_
dstaddr.sin_len = sizeof(dstaddr); —argvlcur_idx1);
dstaddr.sin_family = AF_INET; ? return;
netmask.sin_len = sizeof(netmask); 7 3
netmask.sin_family = AF_INET; i f_neFmask =0
broadcast.sin_len = sizeof(broadcast); cur_1dx-+: 1)
broadcast.sin_family = AF_INET; 4 } else if(stremp(argvleur_idx],
cur idx = 0: —"broadcast”) == 0) {

- ’ 77 if ((cur_idx + 1) >= arge) {
if (arge <= 1) { 7 printf(”"No broadcast address\n
/% display all interfaces */ =3
iface = NULL; 7 return;
cur_idx += 1; 8 o
} else { 8 if (inet_pton(AF_INET, argv[cur_
iface = argv[1]; —idx+1], &broadcagt.sin_addr) <0) {
if (isdigit(xargv[2])) { 82 . printf(”"bad broadcast: %s\n
if (inet_pton(AF_INET, argv[2],_|| — - argvleur_idxl);
~&ipaddr.sin_addr) < 0) { 8 return;
printf(”bad ip address: %s\r'| ¥
" argv[2]); 8 f_bc§st =1;
return; 8 cur_idx += 1;
} 8y } else if(strcmp(argvlcur_idx], .
fip = 1; —"pointopoint"”) == 0) {
cur_idx += 3; 8 if ((cur_idx + 1) >= argc) {
} else { 89 printf(”"No pointopoint._
cur_idx += 2; —address\n");
} 9 return;
56 Chapter 16. Application Programming Interface

91
92

93

94
95
96
97
98
99

100
101
102
103
104
105
106

108
109
110
111

112
113
114
115
116

117
118
119
120
121

122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138

139

Chapter 16 Section 16.5

RTEMS Networking User Documentation, Release 4.11.3

} 14
if (inet_pton(AF_INET, argv[lcuris
—1idx+1], &dstaddr.sin_addr) < 0) {
printf("bad pointopoint: %s\m

, argvlcur_idx]);
return;

! 14

o
14
3
f_ptp = 1;
cur_idx += 1;
} else {
printf(”Bad parameter: %s\n", 1

—argv[lcur_idx]1);

14
14

14

return; 15
} 15
cur_idx += 1; 152

}
15
printf("ifconfig "); 15
if (iface != NULL) { 15
printf("%s ", iface); 15
if (f_ip !'=0) { 15
char str[256]7; 15

inet_ntop(AF_INET, &ipaddr.sinis
—addr, str, 256);
printf("%s ", str); 16
} 16
if (f_netmask != 0) {
char str[2561];
inet_ntop(AF_INET, &netmask.sinis
—addr, str, 256);
printf("netmask %s ", str); 16
} 16
if (f_bcast !'= 0) { 16
char str[256];
inet_ntop(AF_INET, &broadcastis
—sin_addr, str, 256);
printf("broadcast %s ", str);
} 17
if (f_ptp '= 0) { 17
char str[256];

16

16

inet_ntop(AF_INET, &dstaddr.siniz

—addr, str, 256);
printf("pointopoint %s ", str); iz
} 17
if (f_up !'=0) { 17
printf("up\n");
} else if (f_down != 0) {
printf(”"down\n");

17.

17
17
17

} else {
printf(”"\n"); 18
} 18
} 182
if ((iface == NULL) || ((f_ip == 0) &&aus
—(f_down == @) && (f_up == 0))) { 18

rtems_bsdnet_show_if_stats();

142

162

e

return;

}

flags = 0;
if (f_netmask) {
rc = rtems_bsdnet_ifconfig(iface, .
—SIOCSIFNETMASK, &netmask);
if (rc < 0) ¢
printf("Could not set netmask:
—%s\n", strerror(errno));
return;
3
3
if (f_bcast) {
rc = rtems_bsdnet_ifconfig(iface, ..
—SIOCSIFBRDADDR, &broadcast);
if (rc <0) {
printf(”"Could not set broadcast:
— %s\n", strerror(errno));
return;
}
3
if (f_ptp) {
rc = rtems_bsdnet_ifconfig(iface, .
—»SIOCSIFDSTADDR, &dstaddr);
if (rc <0) {
printf(”"Could not set destination_
—address: %s\n", strerror(errno));
return;

3
flags |= IFF_POINTOPOINT;

/* This must come _after_ setting the.
—netmask, broadcast addresses */
if (f_ip) {
rc = rtems_bsdnet_ifconfig(iface, ..
—SIOCSIFADDR, &ipaddr);
if (rc <0) {
printf(”"Could not set IP address:
— %s\n", strerror(errno));
return;
}
3
if (f_up '=0) {
flags |= IFF_UP;
1
if (f_down != 0) {
printf("Warning: taking interfaces.
—down is not supported\n”);

3

rc = rtems_bsdnet_ifconfig(iface, ..
<,SIOCSIFFLAGS, &flags);
if (rc <0) {
printf(”"Could not set interface.
—flags: %s\n", strerror(errno));

16.5. Adding a Default Route

57

185
186
187
188
189

190
191
192
193
194
195
196
197
198
199
200
201
202

204
205
206

208
209

210
211
212

213
214
215
216
217
218
219
220
221
222
223
224

225

226
227
228
229
230
231
232
233
234
235

RTEMS Networking User Documentation, Release 4.11.3

Chapter 16 Section 16.5

return; 23 } else if (strcmp(argv[2], "-net”) == 0)
} —{
} 237 f_host = 0;
23 } else {
void mon_route(int argc, char =*argv[], 23 printf("Invalid type: %s\n", argv[1]);
—unsigned32 command_arg, bool verbose) 24 printf("\tit should be '-host' or '-
{ —net'\n");
int cmd; 24 return;
struct sockaddr_in dst; 242 }
struct sockaddr_in gw; 24
struct sockaddr_in netmask; 244 if (argc < 4) {
int f_host; 24 printf(”"not enough arguments\n");
int f_gw =0; 24 return;
int cur_idx; 247 }
int flags; 24
int rc; 24 inet_pton(AF_INET, argv[3], &dst.sin_
—addr);
memset(&dst, 0, sizeof(dst)); 25
memset(&gw, 0, sizeof(gw)); 25 cur_idx = 4;
memset(&netmask, 0, sizeof(netmask)); 2s2 while(cur_idx < argc) {
dst.sin_len = sizeof(dst); 25 if (strcmp(argvlcur_idx], "gw") ==_
dst.sin_family = AF_INET; —0) {
dst.sin_addr.s_addr = inet_addr("0.0.0.¢4 if ((cur_idx +1) >= argc) {
="); 25 printf("no gateway address\n
gw.sin_len = sizeof(gw); =");
gw.sin_family = AF_INET; 25 return;
gw.sin_addr.s_addr = inet_addr("0.0.0.&y }
") 25 f_gw = 1;
netmask.sin_len = sizeof(netmask); 25 inet_pton(AF_INET, argv[cur_idx.
netmask.sin_family = AF_INET; <+ 1], &gw.sin_addr);
netmask.sin_addr.s_addr = inet_addr("255z26 cur_idx += 1;
—255.255.0"); 26 } else if(strcmp(argvlcur_idx], .
—"netmask"”) == 0) {
if (argc < 2) { 262 if ((cur_idx +1) >= argc) {
rtems_bsdnet_show_inet_routes(); 26 printf("no netmask address\n
return; =");
} 264 return;
26, }
if (strcmp(argv[1], "add") == 0) { 26 f_gw = 1;
cmd = RTM_ADD; 267 inet_pton(AF_INET, argv[cur_idx.
} else if (strcmp(argv[1], "del”) == 0) { —+ 1], &netmask.sin_addr);
cmd = RTM_DELETE; 26 cur_idx += 1;
} else { 26 } else {
printf("invalid command: %s\n", 27 printf("Unknown argument\n");
—argv[1]); 27 return;
printf(”"\tit should be 'add' or 'deds }
—'\n"); 27 cur_idx += 1;
return; 274 }
} 27,
27 flags = RTF_STATIC;
if (argc < 3) { 277 if (f_gw !'=0) {
printf(”"not enough arguments\n"); 27 flags |= RTF_GATEWAY;
return; 27! 3
3} 28 if (f_host != 0) {
28 flags |= RTF_HOST;
if (strcmp(argv[2], "-host"”) == 0) { 282 }
f_host = 1; 28
58 Chapter 16. Application Programming Interface

284

285
286
287
288

Chapter 16 Section 16.5

RTEMS Networking User Documentation, Release 4.11.3

rc = rtems_bsdnet_rtrequest(cmd, &dst, &
—gw, &netmask, flags, NULL);
if (rc <0) {
printf("Error adding route\n");
}

Thanks to Jay Monkman <
> for this ex-
ample code.

16.5. Adding a Default Route

59

mailto:jtm@smoothmsmoothie.com
mailto:jtm@smoothmsmoothie.com

RTEMS Networking User Documentation, Rele

ase 4.11.3 Chapter 16 Section 16.6

16.6 Time Synchronization Using
NTP

int rtems_bsdnet_synchronize_ntp (int _
—interval, rtems_task_priority priority);

If the interval argument is @ the rou-
tine synchronizes the RTEMS time-of-day
clock with the first NTP server in the
rtems_bsdnet_ntpserve array and returns.
The priority argument is ignored.

If the interval argument is greater than O, the
routine also starts an RTEMS task at the speci-
fied priority and polls the NTP server every ‘in-
terval’ seconds. NOTE: This mode of operation
has not yet been implemented.

On successful synchronization of the RTEMS
time-of-day clock the routine returns 0. If an
error occurs a message is printed and the rou-
tine returns -1 with an error code in errno.
There is no timeout - if there is no response
from an NTP server the routine will wait for-
ever.

60

Chapter 16. Application Programming Interface

PartV

Testing the Driver

RTEMS Networking User Documentation, Release 4.11.3 Chapter 16 Section 16.6

62

CHAPTER
SEVENTEEN

PRELIMINARY SETUP

The network used to test the driver should in-
clude at least:

* The hardware on which the driver is to
run. It makes testing much easier if you
can run a debugger to control the opera-
tion of the target machine.

* An Ethernet network analyzer or a work-
station with an ‘Ethernet snoop’ program
such as ethersnoop or tcpdump.

e A workstation.

During early debug, you should consider
putting the target, workstation, and snooper
on a small network by themselves. This offers
a few advantages:

* There is less traffic to look at on the
snooper and for the target to process
while bringing the driver up.

* Any serious errors will impact only your
small network not a building or campus
network. You want to avoid causing any
unnecessary problems.

* Test traffic is easier to repeatably gener-
ate.

* Performance measurements are not im-
pacted by other systems on the network.

63

RTEMS Networking User Documentation, Release 4.11.3 Chapter 17 Section 17.0

64 Chapter 17. Preliminary Setup

CHAPTER
EIGHTEEN

There are a number of sources of debug output
that can be enabled to aid in tracing the behav-
ior of the network stack. The following is a list
of them:

» mbuf activity There are commented out
calls to printf in the file sys/mbuf.h in
the network stack code. Uncommenting
these lines results in output when mbuf’s
are allocated and freed. This is very use-
ful for finding memory leaks.

e TX and RX queuing There are com-
mented out calls to printf in the file
net/if.h in the network stack code. Un-
commenting these lines results in out-
put when packets are placed on or re-
moved from one of the transmit or re-
ceive packet queues. These queues can
be viewed as the boundary line between
a device driver and the network stack. If
the network stack is enqueuing packets
to be transmitted that the device driver
is not dequeuing, then that is indica-
tive of a problem in the transmit side of
the device driver. Conversely, if the de-
vice driver is enqueueing packets as it re-
ceives them (via a call to ether_input)
and they are not being dequeued by the
network stack, then there is a problem.
This situation would likely indicate that
the network server task is not running.

e TCP state transitions

In the unlikely event that one would ac-
tually want to see TCP state transitions,
the TCPDEBUG macro can be defined in the
file opt_tcpdebug.h. This results in the
routine tcp_trace() being called by the
network stack and the state transitions
logged into the tcp_debug data structure.
If the variable tcpconsdebug in the file
netinet/tcp_debug.cis set to 1, then the

DEBUG OUTPUT

state transitions will also be printed to
the console.

65

RTEMS Networking User Documentation, Release 4.11.3 Chapter 18 Section 18.0

66 Chapter 18. Debug Output

CHAPTER
NINETEEN

MONITOR COMMANDS

There are a number of command available in
the shell / monitor to aid in tracing the behav-
ior of the network stack. The following is a list
of them:

* inet This command shows the current
routing information for the TCP/IP stack.
Following is an example showing the
output of this command.

1| Destination Gateway/Mask/Hw .
—Flags Refs Use Expire .
—Interface

2(10.0.0.0 255.0.0.0 u o
s 0 0 17 smcl

31127.0.0.1 127.0.0.1 UH _
- 0 0 0 100

In this example, there is only one
network interface with an IP address
of 10.8.1.1. This link is currently not
up. Two routes that are shown are the
default routes for the Ethernet interface
(10.0.0.0) and the loopback interface
(127.0.0.1). Since the stack comes from
BSD, this command is very similar to
the netstat command. For more details
on the network routing please look the
following URL: (

) For a
quick reference to the flags, see the table
below:

(Uc
Up: The route is active.
GHG
Host: The route destination is a single
host.
‘G(
Gateway: Send anything for this desti-

nation on to this remote system, which
will figure out from there where to

send it.

‘S‘
Static: This route was configured man-
ually, not automatically generated by
the system.

‘C‘
Clone: Generates a new route based
upon this route for machines we con-
nect to. This type of route is normally
used for local networks.

‘w(
WasCloned: Indicated a route that
was auto-configured based upon a lo-
cal area network (Clone) route.

‘L(
Link: Route involves references to Eth-
ernet hardware.

mbuf This command shows the current
MBUF statistics. An example of the com-
mand is shown below:

KhhAAAARERRKR MBUF STATISTICS o
kKRR RARKARK

mbufs: 4096 clusters: 256 free: .
241

drops: 0 waits: 0 drains: 0
free:4080 data:16 -
—header:0 socket: @

pcbh: 0 rtable: @ =
—htable:0 atable: 0

soname: @ soopts: @ o
—ftable:0 rights:o

ifaddr:e control: @ -
—oobdata: 0

if This command shows the current
statistics for your Ethernet driver as long
as the ioctl hook SIO_RTEMS_SHOW_STATS
has been implemented. Below is an ex-
ample:

67

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-routing.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-routing.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-routing.html

RTEMS Networking User Documentation, Release 4.11.3

Chapter 19 Section 19.0

~

10

11

12

13

14

15
16

17
18

*xkkkkxxk**xx INTERFACE STATISTICS
kKRR ERARKRANK

*%kkk%k SmMCT ***xx

Ethernet Address: 00:12:76:43:34:25

Address:10.8.1.1 Broadcast .,
—Address:10.255.255.255 Net mask:
—255.0.0.0

Flags: Up Broadcast Running Simplex
Send queue limit:50 length:@ -
—Dropped: 0

SMC91C111 RTEMS driver A@.01 11/03/
—2002 Ian Caddy (ianc@microsol.iinet.
—net.au)

Rx Interrupts:0@ Not First:
0 Not Last:0Q

Giant:0 Runt:
—0 Non-octet: 0

Bad CRC:@ Overrun:
-0 Collision:0@

Tx Interrupts:2 Deferred:
-0 Missed Hearbeat:0

No Carrier:@ Retransmit Limit:
-0 Late Collision: 0@

Underrun: @ Raw output wait:
—0 Coalesced: 0

Coalesce failed:0@ -
—Retries: 0

*x*xxk%x 100 **xk*x%x

Address:127.0.0.1 Net mask:255.0.
0.0

Flags: Up Loopback Running Multicast

Send queue limit:50 length:@ o
—Dropped: 0

ip This command show the IP statistics
for the currently configured interfaces.

icmp This command show the ICMP
statistics for the currently configured in-
terfaces.

tcp This command show the TCP statis-
tics for the currently configured inter-
faces.

udp This command show the UDP statis-
tics for the currently configured inter-
faces.

68

Chapter 19. Monitor Commands

CHAPTER
TWENTY

DRIVER BASIC OPERATION

The network demonstration program netdemo
may be used for these tests.

Edit networkconfig.h to reflect the val-
ues for your network.

Start with RTEMS_USE_BOOTP not defined.

Edit networkconfig.h to configure the
driver with an explicit Ethernet and In-
ternet address and with reception of
broadcast packets disabled: Verify that
the program continues to run once the
driver has been attached.

Issue a ‘u‘ command to send UDP pack-
ets to the ‘discard’ port. Verify that the
packets appear on the network.

Issue a ‘s command to print the network
and driver statistics.

On a workstation, add a static route to
the target system.

On that same workstation try to ‘ping’ the
target system. Verify that the ICMP echo
request and reply packets appear on the
net.

Remove the static route to the target
system. Modify networkconfig.h to at-
tach the driver with reception of broad-
cast packets enabled. Try to ‘ping’
the target system again. Verify that
ARP request/reply and ICMP echo re-
quest/reply packets appear on the net.

Issue a ‘t* command to send TCP pack-
ets to the ‘discard’ port. Verify that the
packets appear on the network.

Issue a ‘s command to print the network
and driver statistics.

Verify that you can telnet to ports 24742
and 24743 on the target system from one

or more workstations on your network.

69

RTEMS Networking User Documentation, Release 4.11.3 Chapter 20 Section 20.0

70 Chapter 20. Driver basic operation

CHAPTER
TWENTYONE

BOOTP/DHCP OPERATION

Set up a BOOTP/DHCP server on the net-
work. Set define RTEMS USE_BOOT in
networkconfig.h. Run the netdemo test pro-
gram. Verify that the target system configures
itself from the BOOTP/DHCP server and that
all the above tests succeed.

71

RTEMS Networking User Documentation, Release 4.11.3 Chapter 21 Section 21.0

72 Chapter 21. BOOTP/DHCP operation

CHAPTER
TWENTYTWO

STRESS TESTS

Once the driver passes the tests described in
the previous section it should be subjected to
conditions which exercise it more thoroughly
and which test its error handling routines.

73

RTEMS Networking User Documentation, Release 4.11.3 Chapter 22 Section 22.1

22.1 Giant packets

* Recompile the driver with
MAXIMUM_FRAME_SIZE set to a smaller
value, say 514.

* ‘Ping’ the driver from another worksta-
tion and verify that frames larger than
514 bytes are correctly rejected.

* Recompile the driver with
MAXIMUM_FRAME_SIZE restored to 1518.

74 Chapter 22. Stress Tests

Chapter 22 Section 22.2 RTEMS Networking User Documentation, Release 4.11.3

22.2 Resource Exhaustion

* Edit networkconfig.h so that the driver
is configured with just two receive and
transmit descriptors.

* Compile and run the netdemo program.

* Verify that the program operates prop-
erly and that you can still telnet to both
the ports.

 Display the driver statistics (Console ‘s
command or telnet ‘control-G’ character)
and verify that:

1. The number of transmit interrupts
is non-zero. This indicates that all
transmit descriptors have been in
use at some time.

2. The number of missed packets is
non-zero. This indicates that all re-
ceive descriptors have been in use
at some time.

22.2. Resource Exhaustion 75

RTEMS Networking User Documentation, Release 4.11.3

Chapter 22 Section 22.3

22.3 Cable Faults

Run the netdemo program.

Issue a ‘u‘ console command to make the
target machine transmit a bunch of UDP
packets.

While the packets are being transmitted,
disconnect and reconnect the network
cable.

Display the network statistics and verify
that the driver has detected the loss of
carrier.

Verify that you can still telnet to both
ports on the target machine.

76

Chapter 22. Stress Tests

Chapter 22 Section 22.4 RTEMS Networking User Documentation, Release 4.11.3

22.4 Throughput

Run the ttcp network benchmark program.
Transfer large amounts of data (100’s of
megabytes) to and from the target system.

The procedure for testing throughput from a
host to an RTEMS target is as follows:

1. Download and start the ttcp program on
the Target.

2. In response to the ttcp prompt, enter -s
-r. The meaning of these flags is de-
scribed in the ttcp.1 manual page found
in the ttcp_orig subdirectory.

3. On the host run ttcp -s -t <<insert
the hostname or IP address of the
Target here>>

The procedure for testing throughput from an
RTEMS target to a Host is as follows:

1. On the host run ttcp -s -r.

2. Download and start the ttcp program on
the Target.

3. In response to the ttcp prompt, enter
-s -t <<insert the hostname or IP
address of the Target here>>. You
need to type the IP address of the host
unless your Target is talking to your Do-
main Name Server.

To change the number of buffers, the buffer
size, etc. you just add the extra flags to the
-t machine as specified in the ttcp.1 manual
page found in the ttcp_orig subdirectory.

22.4. Throughput

77

RTEMS Networking User Documentation, Release 4.11.3 Chapter 22 Section 22.4

78 Chapter 22. Stress Tests

Part VI

Network Servers

RTEMS Networking User Documentation, Release 4.11.3 Chapter 22 Section 22.4

80

CHAPTER
TWENTYTHREE

RTEMS FTP DAEMON

The RTEMS FTPD is a complete file transfer
protocol (FTP) daemon which can store, re-
trieve, and manipulate files on the local filesys-
tem. In addition, the RTEMS FTPD provides
“hooks” which are actions performed on re-
ceived data. Hooks are useful in situations
where a destination file is not necessarily ap-
propriate or in cases when a formal device
driver has not yet been implemented.

This server was implemented and
documented by Jake Janovetz

().

81

mailto:janovetz@tempest.ece.uiuc.edu

RTEMS Networking User Documentation, Release 4.11.3

Chapter 23 Section 23.1

23.1 Configuration Parameters

The configuration structure for FTPD is as fol-
lows:

struct rtems_ftpd_configuration

{
rtems_task_priority priority; -
— /* FTPD task priority =/
unsigned long max_hook_filesize;
< /% Maximum buffersize =*/
/% for hooks */
int port; =
— /* Well-known port */
struct rtems_ftpd_hook *hooks; -
— /* List of hooks */
b

The FTPD task priority is specified with
priority. Because hooks are not saved as
files, the received data is placed in an allo-
cated buffer. max_hook_filesize specifies the
maximum size of this buffer. Finally, hooks is a
pointer to the configured hooks structure.

82

Chapter 23. RTEMS FTP Daemon

N o v AW N =

[e]

10

11

12

13

Chapter 23 Section 23.2

RTEMS Networking User Documentation, Release 4.11.3

23.2 Initializing FTPD (Starting
the daemon)

Starting FTPD is done with a call to
rtems_initialize_ftpd(). The configuration
structure must be provided in the application
source code. Example hooks structure and
configuration structure folllow.

struct rtems_ftpd_hook ftp_hooks[] =
{

{"untar”, Untar_FromMemory},
{NULL, NULL}
b

struct rtems_ftpd_configuration rtems_ftpd_
—configuration =

{
40, /* FTPD task.
—priority x/
512x1024, /* Maximum hook
—'file' size */
Q, /* Use default_
—port */
ftp_hooks /* Local ftp._
—hooks */
b

Specifying O for the well-known port causes
FTPD to use the UNIX standard FTPD port
@2n.

23.2. Initializing FTPD (Starting the daemon)

83

O 0 N oy 1 AW N =

e e N e
0w N o A W N = O

19
20
21
22
23
24

25
26
27

RTEMS Networking User Documentation, Release 4.11.3

Chapter 23 Section 23.3

23.3 Using Hooks

In the example above, one hook was installed.
The hook causes FTPD to call the function
Untar_FromMemory when the user sends data
to the file untar. The prototype for the untar
hook (and hooks, in general) is:

int Untar_FromMemory(unsigned char =*tar_buf,
— unsigned long size);

An example FTP transcript which exercises this
hook is:

220 RTEMS FTP server (Version 1.0-JWJ) ready.

Name (dcomm@:janovetz): John Galt

230 User logged in.

Remote system type is RTEMS.

ftp> bin

200 Type set to I.

ftp> dir

200 PORT command successful.

150 ASCII data connection for LIST.

drwxrwx--x 0 0 268 dev

drwxrwx--x 0 0 0 TFTP

226 Transfer complete.

ftp> put html.tar untar

local: html.tar remote: untar

200 PORT command successful.

150 BINARY data connection.

210 File transferred successfully.

471040 bytes sent in 0.48 secs (9.6et+02 .
—Kbytes/sec)

ftp> dir

200 PORT command successful.

150 ASCII data connection for LIST.

drwxrwx--x 0 0 268 dev

drwxrwx--x 0 0 0 TFTP

drwxrwx--x % % 3484 public_
—html

226 Transfer complete.

ftp> quit

221 Goodbye.

84

Chapter 23. RTEMS FTP Daemon

Part VII

DEC 21140 Driver

RTEMS Networking User Documentation, Release 4.11.3 Chapter 23 Section 23.3

86

CHAPTER
TWENTYFOUR

DEC 21240 DRIVER INTRODUCTION

One aim of our project is to port RTEMS on a
standard PowerPC platform. To achieve it, we
have chosen a Motorola MCP750 board. This
board includes an Ethernet controller based
on a DEC21140 chip. Because RTEMS has
a TCP/IP stack, we will have to develop the
DEC21140 related ethernet driver for the Pow-
erPC port of RTEMS. As this controller is able
to support 100Mbps network and as there is a
lot of PCI card using this DEC chip, we have
decided to first implement this driver on an In-
tel PC386 target to provide a solution for using
RTEMS on PC with the 100Mbps network and
then to port this code on PowerPC in a second
phase.

The aim of this document is to give some PCI
board generalities and to explain the software
architecture of the RTEMS driver. Finally, we
will see what will be done for ChorusOs and
Netboot environment .

87

RTEMS Networking User Documentation, Release 4.11.3 Chapter 24 Section 24.0

88 Chapter 24. DEC 21240 Driver Introduction

CHAPTER
TWENTYFIVE

DOCUMENT REVISION HISTORY

Current release:
e Current applicable release is 1.0.
Existing releases:

* 1.0 : Released the 10/02/98. First ver-
sion of this document.

e 0.1 : First draft of this document
Planned releases:

* None planned today.

89

RTEMS Networking User Documentation, Release 4.11.3 Chapter 25 Section 25.0

90 Chapter 25. Document Revision History

CHAPTER
TWENTYSIX

DEC21140 PCI BOARD GENERALITIES

This chapter describes rapidely the PCI inter-
face of this Ethernet controller. The board
we have chosen for our PC386 implementa-
tion is a D-Link DFE-500TX. This is a dual-
speed 10/100Mbps Ethernet PCI adapter with
a DEC21140AF chip. Like other PCI devices,
this board has a PCI device’s header contain-
ing some required configuration registers, as
shown in the PCI Register Figure. By reading
or writing these registers, a driver can obtain
information about the type of the board, the
interrupt it uses, the mapping of the chip spe-
cific registers, ...

On Intel target, the chip specific registers can
be accessed via 2 methods : I/0 port access or
PCI address mapped access. We have chosen
to implement the PCI address access to obtain
compatible source code to the port the driver
on a PowerPC target.

On RTEMS, a PCI API exists. We have used it
to configure the board. After initializing this
PCI module via the pci_initialize() func-
tion, we try to detect the DEC21140 based
ethernet board. This board is characterized
by its Vendor ID (0x1011) and its Device
ID (0x0009). We give these arguments to
the“pcib_find by deviceid* function which re-
turns , if the device is present, a pointer to
the configuration header space (see PCI Reg-
isters Fgure). Once this operation performed,
the driver is able to extract the information it
needs to configure the board internal registers,
like the interrupt line, the base address,... The
board internal registers will not be detailled
here. You can find them in DIGITAL Semicon-
ductor 21140A PCI Fast Ethernet LAN Controller
- Hardware Reference Manual.

91

RTEMS Networking User Documentation, Release 4.11.3 Chapter 26 Section 26.0

92 Chapter 26. DEC21140 PCI Board Generalities

CHAPTER
TWENTYSEVEN

RTEMS DRIVER SOFTWARE
ARCHITECTURE

In this chapter will see the initialization phase,
how the controller uses the host memory and
the 2 threads launched at the initialization
time.

93

RTEMS Networking User Documentation, Release 4.11.3 Chapter 27 Section 27.1

27.1 Initialization phase

The DEC21140 Ethernet driver keeps
the same software architecture than the
other RTEMS ethernet drivers. The
only API the programmer can use is the
rtems_dec21140_driver_attach(struct
rtems_bsdnet_ifconfig xconfig) function
which detects the board and initializes the
associated data structure (with registers base
address, entry points to low-level initialization
function,...), if the board is found.

Once the attach function executed, the driver
initializes the DEC chip. Then the driver con-
nects an interrupt handler to the interrupt line
driven by the Ethernet controller (the only in-
terrupt which will be treated is the receive in-
terrupt) and launches 2 threads : a receiver
thread and a transmitter thread. Then the
driver waits for incoming frame to give to the
protocol stack or outcoming frame to send on
the physical link.

94 Chapter 27. RTEMS Driver Software Architecture

Chapter 27 Section 27.2 RTEMS Networking User Documentation, Release 4.11.3

27.2 Memory Buffer

This DEC chip uses the host memory to store
the incoming Ethernet frames and the descrip-
tor of these frames. We have chosen to use 7
receive buffers and 1 transmit buffer to opti-
mize memory allocation due to cache and pag-
ing problem that will be explained in the sec-
tion Encountered Problems.

To reference these buffers to the DEC chip we
use a buffer descriptors ring. The descriptor
structure is defined in the Buffer Descriptor
Figure. Each descriptor can reference one or
two memory buffers. We choose to use only
one buffer of 1520 bytes per descriptor.

The difference between a receive and a trans-
mit buffer descriptor is located in the status
and control bits fields. We do not give details
here, please refer to the DEC21140 Hardware
Manual.

a
W Status

N

Byte-Count | Byte-Count

Control bits Buffer 2 i

Buffer address 1

Buffer address 2

27.2. Memory Buffer

95

RTEMS Networking User Documentation, Release 4.11.3 Chapter 27 Section 27.3

27.3 Receiver Thread

This thread is event driven. Each time a
DEC PCI board interrupt occurs, the handler
checks if this is a receive interrupt and send an
event “reception” to the receiver thread which
looks into the entire buffer descriptors ring the
ones that contain a valid incoming frame (bit
OWN=0 means descriptor belongs to host pro-
cessor). Each valid incoming ethernet frame is
sent to the protocol stack and the buffer de-
scriptor is given back to the DEC board (the
host processor reset bit OWN, which means de-
scriptor belongs to 21140).

96 Chapter 27. RTEMS Driver Software Architecture

Chapter 27 Section 27.4 RTEMS Networking User Documentation, Release 4.11.3

27.4 Transmitter Thread

This thread is also event driven. Each time an
Ethernet frame is put in the transmit queue,
an event is sent to the transmit thread, which
empty the queue by sending each outcoming
frame. Because we use only one transmit
buffer, we are sure that the frame is well-sent
before sending the next.

27.4. Transmitter Thread

97

RTEMS Networking User Documentation, Release 4.11.3 Chapter 27 Section 27.4

98 Chapter 27. RTEMS Driver Software Architecture

CHAPTER
TWENTYEIGHT

ENCOUNTERED PROBLEMS

On Intel PC386 target, we were faced with a
problem of memory cache management. Be-
cause the DEC chip uses the host memory
to store the incoming frame and because the
DEC21140 configuration registers are mapped
into the PCI address space, we must ensure
that the data read (or written) by the host pro-
cessor are the ones written (or read) by the
DEC21140 device in the host memory and not
old data stored in the cache memory. There-
fore, we had to provide a way to manage the
cache. This module is described in the docu-
ment RTEMS Cache Management For Intel. On
Intel, the memory region cache management
is available only if the paging unit is enabled.
We have used this paging mechanism, with
4Kb page. All the buffers allocated to store
the incoming or outcoming frames, buffer de-
scriptor and also the PCI address space of the
DEC board are located in a memory space with
cache disable.

Concerning the buffers and their descriptors,
we have tried to optimize the memory space in
term of allocated page. One buffer has 1520
bytes, one descriptor has 16 bytes. We have
7 receive buffers and 1 transmit buffer, and
for each, 1 descriptor : (7+1)*(1520+16) =
12288 bytes = 12Kb = 3 entire pages. This
allows not to lose too much memory or not to
disable cache memory for a page which con-
tains other data than buffer, which could de-
crease performance.

99

RTEMS Networking User Documentation, Release 4.11.3 Chapter 28 Section 28.0

100 Chapter 28. Encountered Problems

CHAPTER
TWENTYNINE

NETBOOT DEC DRIVER

We use Netboot tool to load our development
from a server to the target via an ethernet net-
work. Currently, this tool does not support the
DEC board. We plan to port the DEC driver for
the Netboot tool.

But concerning the port of the DEC driver into
Netboot, we are faced with a problem: in
RTEMS environment, the DEC driver is inter-
rupt or event driven, in Netboot environment,
it must be used in polling mode. It means that
we will have to re-write some mechanisms of
this driver.

101

RTEMS Networking User Documentation, Release 4.11.3 Chapter 29 Section 29.0

102 Chapter 29. Netboot DEC driver

CHAPTER
THIRTY

LIST OF ETHERNET CARDS USING THE

Many Ethernet adapter cards use the Tulip

chip.

Here is a non exhaustive list of adapters

which support this driver :

Accton EtherDuo PCI.

Accton EN1207 All three media types
supported.

Adaptec ANA6911/TX 21140-AC.

Cogent EM110 21140-A with DP83840
N-Way MII transceiver.

Cogent EM400 EM100 with 4 21140
100mbps-only ports + PCI Bridge.

Danpex EN-9400P3.

D-Link DFE500-Tx
DP83840 transceiver.

Kingston EtherX KNE100TX 21140AE.
Netgear FX310 TX 10/100 21140AE.

SMC EtherPower10/100 With
DEC21140 and 68836 SYM transceiver.

SMC EtherPower10/100 With
DEC21140-AC and DP83840 MII
transceiver. Note: The EtherPower II
uses the EPIC chip, which requires a
different driver.

Surecom EP-320X DEC 21140.
Thomas Conrad TC5048.

Znyx ZX345 21140-A, usually with the
DP83840 N-Way MII transciever. Some
ZX345 cards made in 1996 have an ICS
1890 transciver instead.

ZNYX 7ZX348 Two 21140-A chips using
ICS 1890 transcievers and either a 21052

21140-A with

DEC CHIP

or 21152 bridge. Early versions used Na-
tional 83840 transcievers, but later ver-
sions are depopulated ZX346 boards.

* ZNYX ZX351 21140 chip with a Broad-

com 100BaseT4 transciever.

Our DEC driver has not been tested with all
these cards, only with the D-Link DFE500-TX.

* DEC21140 Hardware Manual DIGITAL,

DIGITAL Semiconductor 21140A PCI Fast
Ethernet LAN Controller - Hardware Ref-
erence Manual**.

e [99.TA.0021.M.ER]Emmanuel

Raguet,*RTEMS Cache

For Intel*.

Management

103

RTEMS Networking User Documentation, Release 4.11.3 Chapter 30 Section 30.0

104 Chapter 30. List of Ethernet cards using the DEC chip

Part VIII

Command and
Variable Index

RTEMS Networking User Documentation, Release 4.11.3 Chapter 30 Section 30.0

There are currently no Command and Variable
Index entries.

* genindex

e search

106

	I Preface
	II Network Task Structure and Data Flow
	III Networking Driver
	Introduction
	Learn about the network device
	Understand the network scheduling conventions
	Network Driver Makefile
	Write the Driver Attach Function
	Write the Driver Start Function.
	Write the Driver Initialization Function.
	Write the Driver Transmit Task
	Write the Driver Receive Task
	Write the Driver Interrupt Handler
	Write the Driver IOCTL Function
	Write the Driver Statistic-Printing Function

	IV Using Networking in an RTEMS Application
	Makefile changes
	Including the required managers
	Increasing the size of the heap

	System Configuration
	Initialization
	Additional include files
	Network Configuration
	Network device configuration
	Network initialization

	Application Programming Interface
	Network Statistics
	Tapping Into an Interface
	Socket Options
	Adding an IP Alias
	Adding a Default Route
	Time Synchronization Using NTP

	V Testing the Driver
	Preliminary Setup
	Debug Output
	Monitor Commands
	Driver basic operation
	BOOTP/DHCP operation
	Stress Tests
	Giant packets
	Resource Exhaustion
	Cable Faults
	Throughput

	VI Network Servers
	RTEMS FTP Daemon
	Configuration Parameters
	Initializing FTPD (Starting the daemon)
	Using Hooks

	VII DEC 21140 Driver
	DEC 21240 Driver Introduction
	Document Revision History
	DEC21140 PCI Board Generalities
	RTEMS Driver Software Architecture
	Initialization phase
	Memory Buffer
	Receiver Thread
	Transmitter Thread

	Encountered Problems
	Netboot DEC driver
	List of Ethernet cards using the DEC chip

	VIII Command and Variable Index

