
RTEMS Development Environment
Documentation

Release 4.11.3
©Copyright 2016, RTEMS Project (built 15th February 2018)

CONTENTS

I RTEMS Development Environment Guide 1

1 Introduction 5

2 Directory Structure 7
2.1 c/ Directory . 9

2.1.1 c/src/ Directory . 9
2.1.1.1 c/src/lib/libbsp BSP Directory 10

2.2 CPU Kit Directory . 11
2.3 testsuites/ Test Suites . 13

3 Sample Applications 15
3.1 Introduction . 16
3.2 Hello World . 18
3.3 Clock Tick . 19
3.4 Base Single Processor Application . 20
3.5 Base Multiple Processor Application . 21
3.6 Constructor/Destructor C++ Application . 22
3.7 Minimum Size Test . 23
3.8 Nanosecond Granularity Application . 24
3.9 Paranoia Floating Point Application . 25
3.10 Network Loopback Test . 26

4 RTEMS Specific Utilities 27
4.1 packhex - Compress Hexadecimal File . 29
4.2 unhex - Convert Hexadecimal File into Binary Equivalent 30

5 Command and Variable Index 31

i

ii

Chapter 0 Section 0.0 RTEMS Development Environment Documentation, Release 4.11.3

Part I

RTEMS Development Environment
Guide

1

Chapter 0 Section 0.0 RTEMS Development Environment Documentation, Release 4.11.3

COPYRIGHT (c) 1988 - 2016.
On-Line Applications Research
Corporation (OAR).

The authors have used their best efforts in
preparing this material. These efforts include
the development, research, and testing of the
theories and programs to determine their ef-
fectiveness. No warranty of any kind, ex-
pressed or implied, with regard to the soft-
ware or the material contained in this docu-
ment is provided. No liability arising out of
the application or use of any product described
in this document is assumed. The authors re-
serve the right to revise this material and to
make changes from time to time in the content
hereof without obligation to notify anyone of
such revision or changes.

The RTEMS Project is hosted at http://www.
rtems.org/. Any inquiries concerning RTEMS,
its related support components, or its docu-
mentation should be directed to the Commu-
nity Project hosted at http://www.rtems.org/.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documenta-
tion

https://docs.rtems.org/

Bug
Reporting

https:
//devel.rtems.org/query

Mailing Lists https://lists.rtems.org/
Git
Repositories

https://git.rtems.org/

3

http://www.rtems.org/
http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 0 Section 0.0

4

CHAPTER

ONE

INTRODUCTION

This document describes the RTEMS develop-
ment environment. Discussions are provided
for the following topics:

• the directory structure used by RTEMS,

• usage of the GNU Make utility within the
RTEMS development environment,

• sample applications, and

• the RTEMS specific utilities.

RTEMS was designed as a reusable software
component. Highly reusable software such
as RTEMS is typically distributed in the form
of source code without providing any support
tools. RTEMS is the foundation for a com-
plex family of facilities including board sup-
port packages, device drivers, and support li-
braries. The RTEMS Development Environ-
ment is not a CASE tool. It is a collection of
tools designed to reduce the complexity of us-
ing and enhancing the RTEMS family. Tools
are provided which aid in the management of
the development, maintenance, and usage of
RTEMS, its run-time support facilities, and ap-
plications which utilize the executive.

A key component of the RTEMS development
environment is the GNU family of free tools.
This is robust set of development and POSIX
compatible tools for which source code is
freely available. The primary compilers, as-
semblers, linkers, and make utility used by the
RTEMS development team are the GNU tools.
They are highly portable supporting a wide
variety of host computers and, in the case of
the development tools, a wide variety of target
processors.

It is recommended that the RTEMS developer
become familiar with the RTEMS Development
Environment before proceeding with any mod-
ifications to the executive source tree. The

source code for the executive is very modular
and source code is divided amongst directories
based upon functionality as well as dependen-
cies on CPU and target board. This organiza-
tion is aimed at isolating and minimizing non-
portable code. This has the immediate result
that adding support for a new CPU or target
board requires very little “wandering” around
the source tree.

5

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 1 Section 1.0

6 Chapter 1. Introduction

CHAPTER

TWO

DIRECTORY STRUCTURE

The RTEMS directory structure is designed to
meet the following requirements:

• encourage development of modular com-
ponents.

• isolate processor and target dependent
code, while allowing as much common
source code as possible to be shared
across multiple processors and target
boards.

• allow multiple RTEMS users to perform
simultaneous compilation of RTEMS and
its support facilities for different proces-
sors and targets.

The resulting directory structure has processor
and board dependent source files isolated from
generic files. When RTEMS is configured and
built, object directories and an install point
will be automatically created based upon the
target CPU family and BSP selected.

The placement of object files based upon the
selected BSP name ensures that object files
are not mixed across CPUs or targets. This
in combination with the makefiles allows the
specific compilation options to be tailored for
a particular target board. For example, the ef-
ficiency of the memory subsystem for a par-
ticular target board may be sensitive to the
alignment of data structures, while on another
target board with the same processor mem-
ory may be very limited. For the first target,
the options could specify very strict alignment
requirements, while on the second the data
structures could be packed to conserve mem-
ory. It is impossible to achieve this degree of
flexibility without providing source code.

The RTEMS source tree is organized based on
the following variables:

• functionality,

• target processor family,

• target processor model,

• peripherals, and

• target board.

Each of the following sections will describe
the contents of the directories in the RTEMS
source tree. The top of the tree will be refer-
enced as ${RTEMS_ROOT} in this discussion.

1 rtems-VERSION
2 |
3 +--------+----+----+----+--+-----+---+------

→˓-+--------+
4 | | | | | | | ␣

→˓| |
5 aclocal automake c contrib cpukit doc make␣

→˓testsuites tools

${RTEMS_ROOT}/aclocal/
This directory contains the custom M4
macros which are available to the var-
ious GNU autoconf configure.ac scripts
throughout the RTEMS source tree. GNU
autoconf interprets configure.ac files to
produce the configure files used to tailor
RTEMS build for a particular host and tar-
get environment. The contents of this direc-
tory will not be discussed further in this doc-
ument.

${RTEMS_ROOT}/automake/
This directory contains the custom GNU au-
tomake fragments which are used to support
the various Makefile.am files throughout the
RTEMS source tree. The contents of this di-
rectory will not be discussed further in this
document.

${RTEMS_ROOT}/c/
This directory is the root of the portions of
the RTEMS source tree which must be built
tailored for a particular CPU model or BSP.

7

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 2 Section 2.0

The contents of this directory will be dis-
cussed in the c/ Directory (page 9) section.

${RTEMS_ROOT}/cpukit/
This directory is the root for all of the “mul-
tilib’able” portions of RTEMS. This is a GNU
way of saying the contents of this directory
can be compiled like the C Library (libc.a)
and the functionality is neither CPU model
nor BSP specific. The source code for most
RTEMS services reside under this directory.
The contents of this directory will be dis-
cussed in the CPU Kit Directory (page 11)
section.

${RTEMS_ROOT}/make/
This directory contains files which support
the RTEMS Makefile’s. From a user’s per-
spective, the most important parts are found
in the custom/ subdirectory. Each ”.cfg” file
in this directory is associated with a spe-
cific BSP and describes the CPU model, com-
piler flags, and procedure to produce an ex-
ecutable for the target board. These files are
described in detail in the*RTEMS BSP and
Device Driver Development Guide* and will
not be discussed further in this document.

${RTEMS_ROOT}/testsuites/
This directory contains the test suites for the
various RTEMS APIs and support libraries.
The contents of this directory are discussed
in the testsuites/ Test Suites (page 13) sec-
tion.

${RTEMS_ROOT}/tools/
This directory contains RTEMS specific sup-
port utilities which execute on the develop-
ment host. These utilities are divided into
subdirectories based upon whether they are
used in the process of building RTEMS and
applications, are CPU specific, or are used
to assist in updating the RTEMS source tree
and applications. The support utilities used
in the process of building RTEMS are de-
scribed in Chapter 4 - RTEMS Specific Utilities
(page 27). These are the only components
of this subtree that will be discussed in this
document.

8 Chapter 2. Directory Structure

Chapter 2 Section 2.1 RTEMS Development Environment Documentation, Release 4.11.3

2.1 c/ Directory

The ${RTEMS_ROOT}/c/ directory was formerly
the root directory of all RTEMS source code.
At this time, it contains the root directory for
only those RTEMS components which must be
compiled or linked in a way that is specific to a
particular CPU model or board. This directory
contains the following subdirectories:

${RTEMS_ROOT}/c/src/
This directory is logically the root for the
RTEMS components which are CPU model
or board dependent. Thus this directory is
the root for the BSPs and the Ada Test Suites
as well as CPU model and BSP dependent
libraries. The contents of this directory are
discussed in the c/src/ Directory (page 9)
section.

2.1.1 c/src/ Directory

As mentioned previously, this directory is log-
ically the root for the RTEMS components
which are CPU model or board dependent. The
following is a list of the subdirectories in this
directory and a description of each.

${RTEMS_ROOT}/c/src/aclocal/
This directory contains the custom M4
macros which are available to the var-
ious GNU autoconf configure.ac scripts
throughout this portion of the RTEMS source
tree. GNU autoconf interprets‘‘configure.ac‘‘
files to produce the configure files used to
tailor RTEMS build for a particular host and
target environment. The contents of this di-
rectory will not be discussed further in this
document.

${RTEMS_ROOT}/c/src/ada/
This directory contains the Ada95 language
bindings to the RTEMS Classic API.

${RTEMS_ROOT}/c/src/ada-tests/
This directory contains the test suite for the
Ada language bindings to the Classic API.

${RTEMS_ROOT}/c/src/automake/
This directory contains files which are
“Makefile fragments.” They are included
as required by the various Makefile.am files

throughout this portion of the RTEMS source
tree.

${RTEMS_ROOT}/c/src/lib/
This directory contains the directories
libbsp/ and libcpu/ which contain the
source code for the Board Support Packages
(BSPs) and CPU Model specific source code
for RTEMS. The libbsp/ is organized based
upon the CPU family and boards BSPs. The
contents of libbsp/ are discussed briefly in
c/src/lib/libbsp BSP Directory (page 10) and
presented in detail in the*RTEMS BSP and
Device Driver Development Guide*. The
libcpu/ directory is also organized by CPU
family with further divisions based upon
CPU model and features that are shared
across CPU models such as caching and
DMA.

${RTEMS_ROOT}/c/src/libchip/
This directory contains device drivers for
various peripheral chips which are designed
to be CPU and board dependent. This di-
rectory contains a variety of drivers for se-
rial devices, network interface controllers,
shared memory and real-time clocks.

${RTEMS_ROOT}/c/src/librtems++/
This directory contains C++ classes which
map to the RTEMS Classic API.

${RTEMS_ROOT}/c/src/make/
This directory is used to generate the bulk
of the supporting rules files which are in-
stalled as part of the Application Makefiles.
This file contains settings for various Make-
file variables to tailor them to the particular
CPU model and BSP configured.

${RTEMS_ROOT}/c/src/nfsclient/
This directory contains a Network File Sys-
tem (NFS) client for RTEMS. With this file
system, a user’s application can access files
on a remote computer.

${RTEMS_ROOT}/c/src/support/
This directory exists solely to generate the
RTEMS version string which includes the
RTEMS version, CPU architecture, CPU
model, and BSP name.

${RTEMS_ROOT}/c/src/wrapup/
This directory is responsible for taking the
individual libraries and objects built in each

2.1. c/ Directory 9

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 2 Section 2.1

of the components in the RTEMS source tree
and bundling them together to form the sin-
gle RTEMS library librtemsbsp.a. This li-
brary contains all BSP and CPU model spe-
cific software.

2.1.1.1 c/src/lib/libbsp BSP Directory

The “libbsp” directory contains a directory for
each CPU family supported by RTEMS. Be-
neath each CPU directory is a directory for
each BSP for that processor family.

The “libbsp” directory provides all the BSPs
provided with this release of the RTEMS ex-
ecutive. The subdirectories are divided, as dis-
cussed previously, based on specific processor
family, then further broken down into specific
target board environments. The “no_cpu” sub-
directory provides a starting point template
BSP which can be used to develop a specific
BSP for an unsupported target board. The
files in this subdirectory may aid in prelimi-
nary testing of the RTEMS development envi-
ronment that has been built for no particular
target in mind.

Below each CPU dependent directory is a di-
rectory for each target BSP supported in this
release.

Each BSP provides the modules which com-
prise an RTEMS BSP. The modules are sepa-
rated into the subdirectories “clock”, “console”,
“include”, “shmsupp”, “startup”, and “timer” as
shown in the following figure:

1 Each BSP
2 |
3 +-----------+----------+-----+-----+--------

→˓--+----------+
4 | | | | ␣

→˓ | |
5 clock console include shmsupp ␣

→˓ startup timer

10 Chapter 2. Directory Structure

Chapter 2 Section 2.2 RTEMS Development Environment Documentation, Release 4.11.3

2.2 CPU Kit Directory

The @code{cpukit/} directory structure is as
follows:

1 cpukit
2 |
3 +-----------+----------+-----------+--------

→˓--+
4 | | | | |
5 posix rtems sapi score ␣

→˓wrapup

The cpukit/ directory contains a set of subdi-
rectories which contains the source files com-
prising the executive portion of the RTEMS
development environment as well as portable
support libraries such as support for the C Li-
brary and filesystems. The API specific and
“SuperCore” (e.g. score/ directory) source
code files are separated into distinct directory
trees.

The following is a description of each of the
subdirectories under cpukit/:

${RTEMS_ROOT}/cpukit/aclocal/
This directory contains the custom M4
macros which are available to the var-
ious GNU autoconf configure.ac scripts
throughout the CPU Kit portion of the
RTEMS source tree. GNU autoconf interprets
configure.ac files to produce the configure
files used to tailor RTEMS build for a partic-
ular host and target environment. The con-
tents of this directory will not be discussed
further in this document.

${RTEMS_ROOT}/cpukit/automake/
This directory contains files which are
“Makefile fragments.” They are included
as required by the various Makefile.am
files throughout the CPU Kit portion of the
RTEMS source tree.

${RTEMS_ROOT}/cpukit/ftpd/
This directory contains the RTEMS ftpd
server.

${RTEMS_ROOT}/cpukit/mhttpd/
This directory contains the port of the Mon-
goose web server to RTEMS.

${RTEMS_ROOT}/cpukit/include/
This directory contains header files which

are private to RTEMS and not considered to
be owned by any other component in the
CPU Kit.

${RTEMS_ROOT}/cpukit/libblock/
This directory contains support code for us-
ing Block Devices such as hard drives, flop-
pies, and CD-ROMs. It includes the generic
IO primitives for block device drivers, disk
caching support, and a RAM disk block de-
vice driver.

${RTEMS_ROOT}/cpukit/libcsupport/
This directory contains the RTEMS specific
support routines for the Newlib C Library.
This includes what are referred to as sys-
tem calls and found in section 2 of the tradi-
tional UNIX manual. In addition, it contains
a thread-safe implementation of the Malloc
family of routines as well as BSD and POSIX
services not found in Newlib.

${RTEMS_ROOT}/cpukit/libfs/
This directory contains the various non-
networked filesystem implementations for
RTEMS. It includes the In-Memory FileSys-
tem (IMFS), the mini-IMFS, and FAT filesys-
tems.

${RTEMS_ROOT}/cpukit/libi2c/
This directory contains the RTEMS I2C
framework.

${RTEMS_ROOT}/cpukit/libmd/
This directory contains a port of the standard
MD5 checksum code.

${RTEMS_ROOT}/cpukit/libmisc/
This directory contains support facilities
which are RTEMS specific but otherwise un-
classified. In general, they do not adhere
to a standard API. Among the support facili-
ties in this directory are a /dev/null device
driver, the Stack Overflow Checker, a mini-
shell, the CPU and rate monotonic period
usage monitoring libraries, and a utility to
“dump a buffer” in a nicely formatted way
similar to many ROM monitors.

${RTEMS_ROOT}/cpukit/libnetworking/
This directory contains the port of the
FreeBSD TCP/IP stack to RTEMS.

${RTEMS_ROOT}/cpukit/librpc/
This directory contains the port of the

2.2. CPU Kit Directory 11

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 2 Section 2.2

FreeBSD RPC/XDR source to RTEMS.

${RTEMS_ROOT}/cpukit/libpci/
This directory contains RTEMS PCI Library.

${RTEMS_ROOT}/cpukit/posix/
This directory contains the RTEMS imple-
mentation of the threading portions of the
POSIX API.

${RTEMS_ROOT}/cpukit/pppd/
This directory contains a port of the free im-
plementation of the PPPD network protocol.

${RTEMS_ROOT}/cpukit/rtems/
This directory contains the implementation
of the Classic API.

${RTEMS_ROOT}/cpukit/sapi/
This directory contains the implementation
of RTEMS services which are required but
beyond the realm of any standardization ef-
forts. It includes initialization, shutdown,
and IO services.

${RTEMS_ROOT}/cpukit/score/
This directory contains the “SuperCore” of
RTEMS. All APIs are implemented in terms
of SuperCore services. For example, Clas-
sic API tasks and POSIX threads are all im-
plemented in terms of SuperCore threads.
This provides a common infrastructure and a
high degree of interoperability between the
APIs. For example, services from all APIs
may be used by any task/thread indepen-
dent of the API used to create it. Within the
score/ directory the CPU dependent mod-
ules are found. The score/cpu/ subdirec-
tory contains a subdirectory for each target
CPU supported by this release of the RTEMS
executive. Each processor directory con-
tains the CPU dependent code necessary to
host RTEMS. The no_cpu directory provides
a starting point for developing a new port
to an unsupported processor. The files con-
tained within the no_cpu directory may also
be used as a reference for the other ports to
specific processors.

${RTEMS_ROOT}/cpukit/telnetd/
This directory contains the RTEMS telnetd
server.

${RTEMS_ROOT}/cpukit/wrapup/
This directory is responsible for taking the

individual libraries and objects built in
each of the components in the RTEMS
CPU Kit source tree and bundling them to-
gether to form the single RTEMS library
librtemscpu.a. This library contains all BSP
and CPU model specific software.

${RTEMS_ROOT}/cpukit/zlib/
This directory contains a port of the GNU
Zlib compression library to RTEMS.

12 Chapter 2. Directory Structure

Chapter 2 Section 2.3 RTEMS Development Environment Documentation, Release 4.11.3

2.3 testsuites/ Test Suites

This directory provides all of the RTEMS Test
Suite except those for the Classic API Ada95
binding This includes the single processor
tests, multiprocessor tests, timing tests, library
tests, and sample tests. Additionally, subdi-
rectories for support functions and test related
header files are provided. The following table
lists the test suites currently included with the
RTEMS and the directory in which they may be
located:

${RTEMS_ROOT}/testsuites/libtests/
This directory contains the test suite for the
various RTEMS support components.

${RTEMS_ROOT}/testsuites/mptests/
This directory contains the test suite for the
multiprocessor support in the Classic API.
The tests provided address two node config-
urations and provide coverage for the multi-
processor code found in RTEMS.

${RTEMS_ROOT}/testsuites/psxtests/
This directory contains the test suite for the
RTEMS POSIX API.

${RTEMS_ROOT}/testsuites/samples/
This directory provides sample application
tests which aid in the testing a newly built
RTEMS environment, a new BSP, or as start-
ing points for the development of an appli-
cation using the RTEMS executive. They are
discussed in ::ref::Sample Applications.

${RTEMS_ROOT}/testsuites/sptests/
This directory contains the test suite for the
RTEMS Classic API when executing on a sin-
gle processor. The tests were originally de-
signed to provide near complete test cover-
age for the entire executive code. With the
addition of multiple APIs, this is no longer
the case as some SuperCore functionality is
not available through the Classic API. Thus
some functionality in the SuperCore is only
covered by tests in the POSIX API Test Suites.

${RTEMS_ROOT}/testsuites/support/
This directory contains support software and
header files for the various test suites.

${RTEMS_ROOT}/testsuites/tmtests/
This directory contains the timing test suite

for the RTEMS Classic API. This include tests
that benchmark each directive in the Clas-
sic API as well as a set of critical Super-
Core functions. These tests are important
for helping to verify that RTEMS performs as
expected on your target hardware. It is not
uncommon to discover mistakes in board ini-
tialization such as caching being disabled as
a side-effect of analyzing the results of these
tests.

${RTEMS_ROOT}/testsuites/tools/
This directory contains tools which execute
on the development host and aid in exe-
cuting and evaluating the results of the test
suite. The tools difftest compares the out-
put of one or more tests with the expected
output. If you place the output of all the
tmtests/ in a single file, then the utility
sorttimes will be able to produce a report
organizing the execution times by manager.

2.3. testsuites/ Test Suites 13

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 2 Section 2.3

14 Chapter 2. Directory Structure

CHAPTER

THREE

SAMPLE APPLICATIONS

15

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 3 Section 3.1

3.1 Introduction

The RTEMS source distribution includes a set
of sample applications that are located in
the ${RTEMS_ROOT}/testsuites/samples/ di-
rectory. These applications are intended to
illustrate the basic format of RTEMS single
and multiple processor applications and the
use of some features. In addition, these rela-
tively simple applications can be used to test
locally developed board support packages and
device drivers as they exercise a critical subset
of RTEMS functionality that is often broken in
new BSPs.

Some of the following sample applications will
be covered in more detail in subsequent sec-
tions:

Hello World
The RTEMS Hello World test
is provided in the subdirectory
${RTEMS_ROOT}/testsuites/samples/hello/.
This test is helpful when testing new RTEMS
development environment.

Clock Tick
The ${RTEMS_ROOT}/testsuites/samples/ticker/
subdirectory provides a test for verification
of clock chip device drivers of BSPs.

Base Single Processor
A simple single processor test sim-
ilar to those in the single pro-
cessor test suite is provided in
${RTEMS_ROOT}/testsuites/samples/base_sp/.

Base Multiple Processor
A simple two node multiprocessor
test capable of testing an newly de-
veloped MPCI layer is provided in
${RTEMS_ROOT}/testsuites/samples/base_mp/.

Capture
The RTEMS Capture test is
provided in the subdirectory
${RTEMS_ROOT}/testsuites/samples/capture/.
This is an interactive test which demon-
strates the capabilities of the RTEMS
Capture Engine. It includes a few
test threads which generate interest-
ing execution patterns. Look at the file
${RTEMS_ROOT}/testsuites/samples/capture/capture.scn
for a sample session.

Constructor/Destructor C++ Test
The ${RTEMS_ROOT}/testsuites/samples/cdtest/
subdirectory provides a simple C++ appli-
cation using constructors and destructors.
It is only built when C++ is enabled and
its primary purpose is to demonstrate that
global constructors and destructors work.
Since this requires that the linker script for
your BSP be correct, this is an important
test.

File IO
The RTEMS File IO test is
provided in the subdirectory
${RTEMS_ROOT}/testsuites/samples/fileio/.
This is an interactive test which allows the
user to interact with an ATA/IDE device.
It will read the partition table and allow
the user to dynamically mount one of the
FAT32 partitions it finds. Commands are
also provided to write and read files on the
disk.

IO Stream
The RTEMS IO Stream test is
provided in the subdirectory
${RTEMS_ROOT}/testsuites/samples/iostream/.
This test is a simple C++ application which
demonstrates that C++ iostreams are func-
tional. This requires that the RTEMS C++
run-time support is functioning properly.
This test is only build when C++ is enabled.

Network Loopback Test
The ${RTEMS_ROOT}/testsuites/samples/loopback/
directory contains a sample test that demon-
strates the use of sockets and the loopback
network device. It does not require the
presence of network hardware in order to
run. It is only built if RTEMS was configured
with networking enabled.

Minimum Size Test
The directory
${RTEMS_ROOT}/testsuites/samples/minimum/
contains a simple RTEMS program that re-
sults in a non-functional executable. It is
intended to show the size of a minimum
footprint application based upon the current
RTEMS configuration.

Nanoseconds
The RTEMS Nanoseconds test
is provided in the subdirectory

16 Chapter 3. Sample Applications

Chapter 3 Section 3.1 RTEMS Development Environment Documentation, Release 4.11.3

${RTEMS_ROOT}/testsuites/samples/nsecs/.
This test demonstrates that the BSP has sup-
port for nanosecond timestamp granularity.
It prints the time of day and uptime multiple
times as quickly as possible. It should be
possible from the output to determine if
your BSP has nanosecond accurate clock
support and it is functional.

Paranoia Floating Point Test
The directory
${RTEMS_ROOT}/testsuites/samples/paranoia/
contains the public domain floating point
and math library test.

Point-to-Point Protocol Daemon
The RTEMS Point-to-Point Protocol Dae-
mon test is provided in the subdirectory
${RTEMS_ROOT}/testsuites/samples/pppd/.
This test primarily serves as the baseline for
a user application using the PPP protocol.

Unlimited Object Allocation
The ${RTEMS_ROOT}/testsuites/samples/unlimited/
directory contains a sample test that demon-
strates the use of the*unlimited* object
allocation configuration option to RTEMS.

The sample tests are written using the Clas-
sic API so the reader should be familiar with
the terms used and material presented in the
RTEMS Applications Users Guide.

3.1. Introduction 17

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 3 Section 3.2

3.2 Hello World

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/hello/

It provides a rudimentary test of the BSP start
up code and the console output routine. The
C version of this sample application uses the
printf function from the RTEMS Standard C Li-
brary to output messages. The Ada version of
this sample uses the TEXT_IO package to out-
put the hello messages. The following mes-
sages are printed:

1 *** HELLO WORLD TEST ***
2 Hello World
3 *** END OF HELLO WORLD TEST ***

These messages are printed from the applica-
tion’s single initialization task. If the above
messages are not printed correctly, then either
the BSP start up code or the console output
routine is not operating properly.

18 Chapter 3. Sample Applications

Chapter 3 Section 3.3 RTEMS Development Environment Documentation, Release 4.11.3

3.3 Clock Tick

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/ticker/

This application is designed as a simple test of
the clock tick device driver. In addition, this
application also tests the printf function from
the RTEMS Standard C Library by using it to
output the following messages:

1 *** CLOCK TICK TEST ***
2 TA1 - tm_get - 09:00:00 12/31/1988
3 TA2 - tm_get - 09:00:00 12/31/1988
4 TA3 - tm_get - 09:00:00 12/31/1988
5 TA1 - tm_get - 09:00:05 12/31/1988
6 TA1 - tm_get - 09:00:10 12/31/1988
7 TA2 - tm_get - 09:00:10 12/31/1988
8 TA1 - tm_get - 09:00:15 12/31/1988
9 TA3 - tm_get - 09:00:15 12/31/1988

10 TA1 - tm_get - 09:00:20 12/31/1988
11 TA2 - tm_get - 09:00:20 12/31/1988
12 TA1 - tm_get - 09:00:25 12/31/1988
13 TA1 - tm_get - 09:00:30 12/31/1988
14 TA2 - tm_get - 09:00:30 12/31/1988
15 TA3 - tm_get - 09:00:30 12/31/1988
16 *** END OF CLOCK TICK TEST ***

The clock tick sample application utilizes a sin-
gle initialization task and three copies of the
single application task. The initialization task
prints the test herald, sets the time and date,
and creates and starts the three application
tasks before deleting itself. The three applica-
tion tasks generate the rest of the output. Ev-
ery five seconds, one or more of the tasks will
print the current time obtained via the tm_get
directive. The first task, TA1, executes every
five seconds, the second task, TA2, every ten
seconds, and the third task, TA3, every fifteen
seconds. If the time printed does not match
the above output, then the clock device driver
is not operating properly.

3.3. Clock Tick 19

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 3 Section 3.4

3.4 Base Single Processor Applica-
tion

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/base_sp/

It provides a framework from which a sin-
gle processor RTEMS application can be devel-
oped. The use of the task argument is illus-
trated. This sample application uses the printf
function from the RTEMS Standard C Library
or TEXT_IO functions when using the Ada ver-
sion to output the following messages:

1 *** SAMPLE SINGLE PROCESSOR APPLICATION ***
2 Creating and starting an application task
3 Application task was invoked with argument␣

→˓(0) and has id of 0x10002
4 *** END OF SAMPLE SINGLE PROCESSOR ␣

→˓APPLICATION ***

The first two messages are printed from the ap-
plication’s single initialization task. The final
messages are printed from the single applica-
tion task.

20 Chapter 3. Sample Applications

Chapter 3 Section 3.5 RTEMS Development Environment Documentation, Release 4.11.3

3.5 Base Multiple Processor Appli-
cation

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/base_mp/

It provides a framework from which a mul-
tiprocessor RTEMS application can be devel-
oped. This directory has a subdirectory for
each node in the multiprocessor system. The
task argument is used to distinguish the node
on which the application task is executed. The
first node will print the following messages:

1 *** SAMPLE MULTIPROCESSOR APPLICATION ***
2 Creating and starting an application task
3 This task was invoked with the node argument␣

→˓(1)
4 This task has the id of 0x10002
5 *** END OF SAMPLE MULTIPROCESSOR APPLICATION␣

→˓***

The second node will print the following mes-
sages:

1 *** SAMPLE MULTIPROCESSOR APPLICATION ***
2 Creating and starting an application task
3 This task was invoked with the node argument␣

→˓(2)
4 This task has the id of 0x20002
5 *** END OF SAMPLE MULTIPROCESSOR APPLICATION␣

→˓***

The herald is printed from the application’s
single initialization task on each node. The fi-
nal messages are printed from the single appli-
cation task on each node.

In this sample application, all source code is
shared between the nodes except for the node
dependent configuration files. These files con-
tains the definition of the node number used
in the initialization of the RTEMS Multiproces-
sor Configuration Table. This file is not shared
because the node number field in the RTEMS
Multiprocessor Configuration Table must be
unique on each node.

3.5. Base Multiple Processor Application 21

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 3 Section 3.6

3.6 Constructor/Destructor C++
Application

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/cdtest/

This sample application demonstrates that
RTEMS is compatible with C++ applications.
It uses constructors, destructor, and I/O stream
output in testing these various capabilities.
The board support package responsible for this
application must support a C++ environment.

This sample application uses the printf func-
tion from the RTEMS Standard C Library to
output the following messages:

1 Hey I'M in base class constructor number 1␣
→˓for 0x400010cc.

2 Hey I'M in base class constructor number 2␣
→˓for 0x400010d4.

3 Hey I'M in derived class constructor number␣
→˓3 for 0x400010d4.

4 *** CONSTRUCTOR/DESTRUCTOR TEST ***
5 Hey I'M in base class constructor number 4␣

→˓for 0x4009ee08.
6 Hey I'M in base class constructor number 5␣

→˓for 0x4009ee10.
7 Hey I'M in base class constructor number 6␣

→˓for 0x4009ee18.
8 Hey I'M in base class constructor number 7␣

→˓for 0x4009ee20.
9 Hey I'M in derived class constructor number␣

→˓8 for 0x4009ee20.
10 Testing a C++ I/O stream
11 Hey I'M in derived class constructor number␣

→˓8 for 0x4009ee20.
12 Derived class - Instantiation order 8
13 Hey I'M in base class constructor number 7␣

→˓for 0x4009ee20.
14 Instantiation order 8
15 Hey I'M in base class constructor number 6␣

→˓for 0x4009ee18.
16 Instantiation order 6
17 Hey I'M in base class constructor number 5␣

→˓for 0x4009ee10.
18 Instantiation order 5
19 Hey I'M in base class constructor number 4␣

→˓for 0x4009ee08.
20 Instantiation order 5
21 *** END OF CONSTRUCTOR/DESTRUCTOR TEST ***
22 Hey I'M in base class constructor number 3␣

→˓for 0x400010d4.
23 Hey I'M in base class constructor number 2␣

→˓for 0x400010d4.

24 Hey I'M in base class constructor number 1␣
→˓for 0x400010cc.

22 Chapter 3. Sample Applications

Chapter 3 Section 3.7 RTEMS Development Environment Documentation, Release 4.11.3

3.7 Minimum Size Test

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/minimum/

This sample application is designed to pro-
duce the minimum code space required for
any RTEMS application based upon the current
RTEMS configuration and BSP. In many situ-
ations, the bulk of this executable consists of
hardware and RTEMS initialization, basic in-
frastructure such as malloc(), and RTEMS and
hardware shutdown support.

3.7. Minimum Size Test 23

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 3 Section 3.8

3.8 Nanosecond Granularity Appli-
cation

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/nsecs/

This sample application exercises the Clock
Driver for this BSP and demonstrates its ability
to generate accurate timestamps. This applica-
tion does this by exercising the time subsystem
in three ways:

• Obtain Time of Day Twice Back to Back

• Obtain System Up Time Twice Back to
Back

• Use System Up Time to Measure Loops

The following is an example of what the output
of this test may appear like:

1 *** NANOSECOND CLOCK TEST ***
2 10 iterations of getting TOD
3 Start: Sat Mar 24 11:15:00 2007:540000
4 Stop : Sat Mar 24 11:15:00 2007:549000 -->␣

→˓0:9000
5 Start: Sat Mar 24 11:15:00 2007:3974000
6 Stop : Sat Mar 24 11:15:00 2007:3983000 -->␣

→˓0:9000
7 Start: Sat Mar 24 11:15:00 2007:7510000
8 Stop : Sat Mar 24 11:15:00 2007:7519000 -->␣

→˓0:9000
9 Start: Sat Mar 24 11:15:00 2007:11054000

10 Stop : Sat Mar 24 11:15:00 2007:11063000 -->
→˓ 0:9000

11 Start: Sat Mar 24 11:15:00 2007:14638000
12 Stop : Sat Mar 24 11:15:00 2007:14647000 -->

→˓ 0:9000
13 Start: Sat Mar 24 11:15:00 2007:18301000
14 Stop : Sat Mar 24 11:15:00 2007:18310000 -->

→˓ 0:9000
15 Start: Sat Mar 24 11:15:00 2007:21901000
16 Stop : Sat Mar 24 11:15:00 2007:21910000 -->

→˓ 0:9000
17 Start: Sat Mar 24 11:15:00 2007:25526000
18 Stop : Sat Mar 24 11:15:00 2007:25535000 -->

→˓ 0:9000
19 Start: Sat Mar 24 11:15:00 2007:29196000
20 Stop : Sat Mar 24 11:15:00 2007:29206000 -->

→˓ 0:10000
21 Start: Sat Mar 24 11:15:00 2007:32826000
22 Stop : Sat Mar 24 11:15:00 2007:32835000 -->

→˓ 0:9000
23 10 iterations of getting Uptime

24 0:38977000 0:38986000 --> 0:9000
25 0:40324000 0:40332000 --> 0:8000
26 0:41636000 0:41645000 --> 0:9000
27 0:42949000 0:42958000 --> 0:9000
28 0:44295000 0:44304000 --> 0:9000
29 0:45608000 0:45617000 --> 0:9000
30 0:46921000 0:46930000 --> 0:9000
31 0:48282000 0:48291000 --> 0:9000
32 0:49595000 0:49603000 --> 0:8000
33 0:50908000 0:50917000 --> 0:9000
34 10 iterations of getting Uptime with ␣

→˓different loop values
35 loop of 10000 0:119488000 0:119704000 --> 0:

→˓216000
36 loop of 20000 0:124028000 0:124463000 --> 0:

→˓435000
37 loop of 30000 0:128567000 0:129220000 --> 0:

→˓653000
38 loop of 40000 0:133097000 0:133964000 --> 0:

→˓867000
39 loop of 50000 0:137643000 0:138728000 --> 0:

→˓1085000
40 loop of 60000 0:142265000 0:143572000 --> 0:

→˓1307000
41 loop of 70000 0:146894000 0:148416000 --> 0:

→˓1522000
42 loop of 80000 0:151519000 0:153260000 --> 0:

→˓1741000
43 loop of 90000 0:156145000 0:158099000 --> 0:

→˓1954000
44 loop of 100000 0:160770000 0:162942000 -->␣

→˓0:2172000
45 *** END OF NANOSECOND CLOCK TEST ***

24 Chapter 3. Sample Applications

Chapter 3 Section 3.9 RTEMS Development Environment Documentation, Release 4.11.3

3.9 Paranoia Floating Point Appli-
cation

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/paranoia/

This sample application uses a public domain
floating point and math library test to verify
these capabilities of the RTEMS executive. De-
viations between actual and expected results
are reported to the screen. This is a very ex-
tensive test which tests all mathematical and
number conversion functions. Paranoia is also
very large and requires a long period of time
to run. Problems which commonly prevent
this test from executing to completion include
stack overflow and FPU exception handlers not
installed.

3.9. Paranoia Floating Point Application 25

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 3 Section 3.10

3.10 Network Loopback Test

This sample application is in the following di-
rectory:

1 ${RTEMS_ROOT}/testsuites/samples/loopback/

This sample application uses the network loop-
back device to demonstrate the use of the
RTEMS TCP/IP stack. This sample test illus-
trates the basic configuration and initialization
of the TCP/IP stack as well as simple socket
usage.

26 Chapter 3. Sample Applications

CHAPTER

FOUR

RTEMS SPECIFIC UTILITIES

This section describes the additional com-
mands available within the RTEMS Develop-
ment Environment. Although some of these
commands are of general use, most are in-
cluded to provide some capability necessary
to perform a required function in the develop-
ment of the RTEMS executive, one of its sup-
port components, or an RTEMS based applica-
tion.

Some of the commands are implemented as C
programs. However, most commands are im-
plemented as Bourne shell scripts. Even if the
current user has selected a different shell, the
scripts will automatically invoke the Bourne
shell during their execution lifetime.

The commands are presented in UNIX manual
page style for compatibility and convenience.
A standard set of paragraph headers were used
for all of the command descriptions. If a sec-
tion contained no data, the paragraph header
was omitted to conserve space. Each of the
permissible paragraph headers and their con-
tents are described below:

SYNOPSIS
describes the command syntax

DESCRIPTION
a full description of the command

OPTIONS
describes each of the permissible options for
the command

NOTES
lists any special noteworthy comments about
the command

ENVIRONMENT
describes all environment variables utilized
by the command

EXAMPLES
illustrates the use of the command with spe-

cific examples

FILES
provides a list of major files that the com-
mand references

SEE ALSO
lists any relevant commands which can be
consulted

Most environment variables referenced by the
commands are defined for the RTEMS Devel-
opment Environment during the login proce-
dure. During login, the user selects a default
RTEMS environment through the use of the
Modules package. This tool effectively sets the
environment variables to provide a consistent
development environment for a specific user.
Additional environment variables within the
RTEMS environment were set by the system
administrator during installation. When speci-
fying paths, a command description makes use
of these environment variables.

When referencing other commands in the SEE
ALSO paragraph, the following notation is
used: command(code). Where command is
the name of a related command, and code is
a section number. Valid section numbers are
as follows:

1
Section 1 of the standard UNIX documenta-
tion

1G
Section 1 of the GNU documentation

1R
a manual page from this document, the
RTEMS Development Environment Guide

For example, ls(1) means see the standard ls
command in section 1 of the UNIX documen-
tation. gcc020(1G) means see the description

27

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 4 Section 4.0

of gcc020 in section 1 of the GNU documenta-
tion.

28 Chapter 4. RTEMS Specific Utilities

Chapter 4 Section 4.1 RTEMS Development Environment Documentation, Release 4.11.3

4.1 packhex - Compress Hexadeci-
mal File

SYNOPSIS

1 packhex <source >destination

DESCRIPTION

packhex accepts Intel Hexadecimal or Mo-
torola Srecord on its standard input and at-
tempts to pack as many contiguous bytes
as possible into a single hexadecimal record.
Many programs output hexadecimal records
which are less than 80 bytes long (for human
viewing). The overhead required by each un-
necessary record is significant and packhex can
often reduce the size of the download image
by 20%. packhex attempts to output records
which are as long as the hexadecimal format
allows.

OPTIONS

This command has no options.

EXAMPLES

Assume the current directory contains the Mo-
torola Srecord file download.sr. Then execut-
ing the command:

1 packhex <download.sr >packed.sr

will generate the file packed.sr which is usually
smaller than download.sr.

CREDITS

The source for packhex first appeared in the
May 1993 issue of Embedded Systems mag-
azine. The code was downloaded from their
BBS. Unfortunately, the author’s name was not
provided in the listing.

4.1. packhex - Compress Hexadecimal File 29

RTEMS Development Environment Documentation, Release 4.11.3 Chapter 4 Section 4.2

4.2 unhex - Convert Hexadecimal
File into Binary Equivalent

SYNOPSIS

1 unhex [-valF] [-o file] [file [file ...]]

DESCRIPTION

unhex accepts Intel Hexadecimal, Motorola
Srecord, or TI ‘B’ records and converts them to
their binary equivalent. The output may sent
to standout or may be placed in a specified file
with the -o option. The designated output file
may not be an input file. Multiple input files
may be specified with their outputs logically
concatenated into the output file.

OPTIONS

This command has the following options:

v
Verbose

a base
First byte of output corresponds with base
address

l
Linear Output

o file
Output File

F k_bits
Fill holes in input with 0xFFs up to k_bits *
1024 bits

EXAMPLES

The following command will create a binary
equivalent file for the two Motorola S record
files in the specified output file binary.bin:

1 unhex -o binary.bin downloadA.sr downloadB.
→˓sr

30 Chapter 4. RTEMS Specific Utilities

CHAPTER

FIVE

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable
Index entries.

• genindex

• search

31

	I RTEMS Development Environment Guide
	Introduction
	Directory Structure
	c/ Directory
	c/src/ Directory
	c/src/lib/libbsp BSP Directory

	CPU Kit Directory
	testsuites/ Test Suites

	Sample Applications
	Introduction
	Hello World
	Clock Tick
	Base Single Processor Application
	Base Multiple Processor Application
	Constructor/Destructor C++ Application
	Minimum Size Test
	Nanosecond Granularity Application
	Paranoia Floating Point Application
	Network Loopback Test

	RTEMS Specific Utilities
	packhex - Compress Hexadecimal File
	unhex - Convert Hexadecimal File into Binary Equivalent

	Command and Variable Index

