
RTEMS C User Documentation
Release 4.11.3

©Copyright 2016, RTEMS Project (built 15th February 2018)

CONTENTS

I RTEMS C User’s Guide 1

1 Preface 5

2 Overview 9
2.1 Introduction . 10
2.2 Real-time Application Systems . 11
2.3 Real-time Executive . 12
2.4 RTEMS Application Architecture . 13
2.5 RTEMS Internal Architecture . 14
2.6 User Customization and Extensibility . 15
2.7 Portability . 16
2.8 Memory Requirements . 17
2.9 Audience . 18
2.10 Conventions . 19
2.11 Manual Organization . 20

3 Key Concepts 23
3.1 Introduction . 24
3.2 Objects . 25

3.2.1 Object Names . 25
3.2.2 Object IDs . 25

3.2.2.1 Thirty-Two Object ID Format . 25
3.2.2.2 Sixteen Bit Object ID Format . 26

3.2.3 Object ID Description . 26
3.3 Communication and Synchronization . 27
3.4 Time . 28
3.5 Memory Management . 29

4 RTEMS Data Types 31
4.1 Introduction . 32
4.2 List of Data Types . 33

5 Scheduling Concepts 37
5.1 Introduction . 38
5.2 Scheduling Algorithms . 39

5.2.1 Priority Scheduling . 39
5.2.2 Deterministic Priority Scheduler . 39
5.2.3 Simple Priority Scheduler . 40

i

5.2.4 Simple SMP Priority Scheduler . 40
5.2.5 Earliest Deadline First Scheduler . 40
5.2.6 Constant Bandwidth Server Scheduling (CBS) 40

5.3 Scheduling Modification Mechanisms . 42
5.3.1 Task Priority and Scheduling . 42
5.3.2 Preemption . 42
5.3.3 Timeslicing . 42
5.3.4 Manual Round-Robin . 42

5.4 Dispatching Tasks . 43
5.5 Task State Transitions . 44

6 Initialization Manager 47
6.1 Introduction . 48
6.2 Background . 49

6.2.1 Initialization Tasks . 49
6.2.2 System Initialization . 49
6.2.3 The Idle Task . 49
6.2.4 Initialization Manager Failure . 49

6.3 Operations . 51
6.3.1 Initializing RTEMS . 51
6.3.2 Shutting Down RTEMS . 52

6.4 Directives . 53
6.4.1 INITIALIZE_EXECUTIVE - Initialize RTEMS 54
6.4.2 SHUTDOWN_EXECUTIVE - Shutdown RTEMS 55

7 Task Manager 57
7.1 Introduction . 58
7.2 Background . 59

7.2.1 Task Definition . 59
7.2.2 Task Control Block . 59
7.2.3 Task States . 59
7.2.4 Task Priority . 59
7.2.5 Task Mode . 60
7.2.6 Accessing Task Arguments . 60
7.2.7 Floating Point Considerations . 61
7.2.8 Per Task Variables . 61
7.2.9 Building a Task Attribute Set . 62
7.2.10 Building a Mode and Mask . 62

7.3 Operations . 64
7.3.1 Creating Tasks . 64
7.3.2 Obtaining Task IDs . 64
7.3.3 Starting and Restarting Tasks . 64
7.3.4 Suspending and Resuming Tasks . 64
7.3.5 Delaying the Currently Executing Task 64
7.3.6 Changing Task Priority . 65
7.3.7 Changing Task Mode . 65
7.3.8 Notepad Locations . 65
7.3.9 Task Deletion . 65
7.3.10 Transition Advice for Obsolete Directives 65

7.3.10.1 Notepads . 65
7.4 Directives . 67

7.4.1 TASK_CREATE - Create a task . 68

ii

7.4.2 TASK_IDENT - Get ID of a task . 70
7.4.3 TASK_SELF - Obtain ID of caller . 71
7.4.4 TASK_START - Start a task . 72
7.4.5 TASK_RESTART - Restart a task . 73
7.4.6 TASK_DELETE - Delete a task . 74
7.4.7 TASK_SUSPEND - Suspend a task . 75
7.4.8 TASK_RESUME - Resume a task . 76
7.4.9 TASK_IS_SUSPENDED - Determine if a task is Suspended 77
7.4.10 TASK_SET_PRIORITY - Set task priority 78
7.4.11 TASK_MODE - Change the current task mode 79
7.4.12 TASK_GET_NOTE - Get task notepad entry 80
7.4.13 TASK_SET_NOTE - Set task notepad entry 81
7.4.14 TASK_WAKE_AFTER - Wake up after interval 82
7.4.15 TASK_WAKE_WHEN - Wake up when specified 83
7.4.16 ITERATE_OVER_ALL_THREADS - Iterate Over Tasks 84
7.4.17 TASK_VARIABLE_ADD - Associate per task variable 85
7.4.18 TASK_VARIABLE_GET - Obtain value of a per task variable 86
7.4.19 TASK_VARIABLE_DELETE - Remove per task variable 87

8 Interrupt Manager 89
8.1 Introduction . 90
8.2 Background . 91

8.2.1 Processing an Interrupt . 91
8.2.2 RTEMS Interrupt Levels . 91
8.2.3 Disabling of Interrupts by RTEMS . 91

8.3 Operations . 93
8.3.1 Establishing an ISR . 93
8.3.2 Directives Allowed from an ISR . 93

8.4 Directives . 95
8.4.1 INTERRUPT_CATCH - Establish an ISR 96
8.4.2 INTERRUPT_DISABLE - Disable Interrupts 97
8.4.3 INTERRUPT_ENABLE - Enable Interrupts 98
8.4.4 INTERRUPT_FLASH - Flash Interrupts 99
8.4.5 INTERRUPT_LOCAL_DISABLE - Disable Interrupts on Current Processor 100
8.4.6 INTERRUPT_LOCAL_ENABLE - Enable Interrupts on Current Processor . 101
8.4.7 INTERRUPT_LOCK_INITIALIZE - Initialize an ISR Lock 102
8.4.8 INTERRUPT_LOCK_ACQUIRE - Acquire an ISR Lock 103
8.4.9 INTERRUPT_LOCK_RELEASE - Release an ISR Lock 104
8.4.10 INTERRUPT_LOCK_ACQUIRE_ISR - Acquire an ISR Lock from ISR 105
8.4.11 INTERRUPT_LOCK_RELEASE_ISR - Release an ISR Lock from ISR 106
8.4.12 INTERRUPT_IS_IN_PROGRESS - Is an ISR in Progress 107

9 Clock Manager 109
9.1 Introduction . 110
9.2 Background . 111

9.2.1 Required Support . 111
9.2.2 Time and Date Data Structures . 111
9.2.3 Clock Tick and Timeslicing . 111
9.2.4 Delays . 111
9.2.5 Timeouts . 111

9.3 Operations . 113
9.3.1 Announcing a Tick . 113

iii

9.3.2 Setting the Time . 113
9.3.3 Obtaining the Time . 113

9.4 Directives . 114
9.4.1 CLOCK_SET - Set date and time . 115
9.4.2 CLOCK_GET - Get date and time information 116
9.4.3 CLOCK_GET_TOD - Get date and time in TOD format 117
9.4.4 CLOCK_GET_TOD_TIMEVAL - Get date and time in timeval format . . . 118
9.4.5 CLOCK_GET_SECONDS_SINCE_EPOCH - Get seconds since epoch 119
9.4.6 CLOCK_GET_TICKS_PER_SECOND - Get ticks per second 120
9.4.7 CLOCK_GET_TICKS_SINCE_BOOT - Get current ticks counter value . . . 121
9.4.8 CLOCK_TICK_LATER - Get tick value in the future 122
9.4.9 CLOCK_TICK_LATER_USEC - Get tick value in the future in microseconds 123
9.4.10 CLOCK_TICK_BEFORE - Is tick value is before a point in time 124
9.4.11 CLOCK_GET_UPTIME - Get the time since boot 125
9.4.12 CLOCK_GET_UPTIME_TIMEVAL - Get the time since boot in timeval for-

mat . 126
9.4.13 CLOCK_GET_UPTIME_SECONDS - Get the seconds since boot 127
9.4.14 CLOCK_GET_UPTIME_NANOSECONDS - Get the nanoseconds since boot 128

10 Timer Manager 129
10.1 Introduction . 130
10.2 Background . 131

10.2.1 Required Support . 131
10.2.2 Timers . 131
10.2.3 Timer Server . 131
10.2.4 Timer Service Routines . 131

10.3 Operations . 132
10.3.1 Creating a Timer . 132
10.3.2 Obtaining Timer IDs . 132
10.3.3 Initiating an Interval Timer . 132
10.3.4 Initiating a Time of Day Timer . 132
10.3.5 Canceling a Timer . 132
10.3.6 Resetting a Timer . 132
10.3.7 Initiating the Timer Server . 132
10.3.8 Deleting a Timer . 132

10.4 Directives . 133
10.4.1 TIMER_CREATE - Create a timer . 134
10.4.2 TIMER_IDENT - Get ID of a timer . 135
10.4.3 TIMER_CANCEL - Cancel a timer . 136
10.4.4 TIMER_DELETE - Delete a timer . 137
10.4.5 TIMER_FIRE_AFTER - Fire timer after interval 138
10.4.6 TIMER_FIRE_WHEN - Fire timer when specified 139
10.4.7 TIMER_INITIATE_SERVER - Initiate server for task-based timers 140
10.4.8 TIMER_SERVER_FIRE_AFTER - Fire task-based timer after interval . . . 141
10.4.9 TIMER_SERVER_FIRE_WHEN - Fire task-based timer when specified . . 142
10.4.10 TIMER_RESET - Reset an interval timer 143

11 Rate Monotonic Manager 145
11.1 Introduction . 146
11.2 Background . 147

11.2.1 Rate Monotonic Manager Required Support 147
11.2.2 Period Statistics . 147

iv

11.2.3 Rate Monotonic Manager Definitions . 148
11.2.4 Rate Monotonic Scheduling Algorithm 148
11.2.5 Schedulability Analysis . 149

11.2.5.1 Assumptions . 149
11.2.5.2 Processor Utilization Rule . 149
11.2.5.3 Processor Utilization Rule Example 149
11.2.5.4 First Deadline Rule . 150
11.2.5.5 First Deadline Rule Example . 150
11.2.5.6 Relaxation of Assumptions . 151
11.2.5.7 Further Reading . 151

11.3 Operations . 152
11.3.1 Creating a Rate Monotonic Period . 152
11.3.2 Manipulating a Period . 152
11.3.3 Obtaining the Status of a Period . 152
11.3.4 Canceling a Period . 152
11.3.5 Deleting a Rate Monotonic Period . 152
11.3.6 Examples . 152
11.3.7 Simple Periodic Task . 152
11.3.8 Task with Multiple Periods . 153

11.4 Directives . 155
11.4.1 RATE_MONOTONIC_CREATE - Create a rate monotonic period 156
11.4.2 RATE_MONOTONIC_IDENT - Get ID of a period 157
11.4.3 RATE_MONOTONIC_CANCEL - Cancel a period 158
11.4.4 RATE_MONOTONIC_DELETE - Delete a rate monotonic period 159
11.4.5 RATE_MONOTONIC_PERIOD - Conclude current/Start next period . . . 160
11.4.6 RATE_MONOTONIC_GET_STATUS - Obtain status from a period 161
11.4.7 RATE_MONOTONIC_GET_STATISTICS - Obtain statistics from a period . 162
11.4.8 RATE_MONOTONIC_RESET_STATISTICS - Reset statistics for a period . 163
11.4.9 RATE_MONOTONIC_RESET_ALL_STATISTICS - Reset statistics for all

periods . 164
11.4.10 RATE_MONOTONIC_REPORT_STATISTICS - Print period statistics report 165

12 Semaphore Manager 167
12.1 Introduction . 168
12.2 Background . 169

12.2.1 Nested Resource Access . 169
12.2.2 Priority Inversion . 169
12.2.3 Priority Inheritance . 169
12.2.4 Priority Ceiling . 170
12.2.5 Multiprocessor Resource Sharing Protocol 170
12.2.6 Building a Semaphore Attribute Set . 171
12.2.7 Building a SEMAPHORE_OBTAIN Option Set 171

12.3 Operations . 173
12.3.1 Creating a Semaphore . 173
12.3.2 Obtaining Semaphore IDs . 173
12.3.3 Acquiring a Semaphore . 173
12.3.4 Releasing a Semaphore . 173
12.3.5 Deleting a Semaphore . 174

12.4 Directives . 175
12.4.1 SEMAPHORE_CREATE - Create a semaphore 176
12.4.2 SEMAPHORE_IDENT - Get ID of a semaphore 178

v

12.4.3 SEMAPHORE_DELETE - Delete a semaphore 179
12.4.4 SEMAPHORE_OBTAIN - Acquire a semaphore 180
12.4.5 SEMAPHORE_RELEASE - Release a semaphore 181
12.4.6 SEMAPHORE_FLUSH - Unblock all tasks waiting on a semaphore 182
12.4.7 SEMAPHORE_SET_PRIORITY - Set priority by scheduler for a semaphore 183

13 Barrier Manager 185
13.1 Introduction . 186
13.2 Background . 187

13.2.1 Automatic Versus Manual Barriers . 187
13.2.2 Building a Barrier Attribute Set . 187

13.3 Operations . 188
13.3.1 Creating a Barrier . 188
13.3.2 Obtaining Barrier IDs . 188
13.3.3 Waiting at a Barrier . 188
13.3.4 Releasing a Barrier . 188
13.3.5 Deleting a Barrier . 188

13.4 Directives . 189
13.4.1 BARRIER_CREATE - Create a barrier . 190
13.4.2 BARRIER_IDENT - Get ID of a barrier . 191
13.4.3 BARRIER_DELETE - Delete a barrier . 192
13.4.4 BARRIER_OBTAIN - Acquire a barrier . 193
13.4.5 BARRIER_RELEASE - Release a barrier 194

14 Message Manager 195
14.1 Introduction . 196
14.2 Background . 197

14.2.1 Messages . 197
14.2.2 Message Queues . 197
14.2.3 Building a Message Queue Attribute Set 197
14.2.4 Building a MESSAGE_QUEUE_RECEIVE Option Set 197

14.3 Operations . 199
14.3.1 Creating a Message Queue . 199
14.3.2 Obtaining Message Queue IDs . 199
14.3.3 Receiving a Message . 199
14.3.4 Sending a Message . 199
14.3.5 Broadcasting a Message . 199
14.3.6 Deleting a Message Queue . 200

14.4 Directives . 201
14.4.1 MESSAGE_QUEUE_CREATE - Create a queue 202
14.4.2 MESSAGE_QUEUE_IDENT - Get ID of a queue 203
14.4.3 MESSAGE_QUEUE_DELETE - Delete a queue 204
14.4.4 MESSAGE_QUEUE_SEND - Put message at rear of a queue 205
14.4.5 MESSAGE_QUEUE_URGENT - Put message at front of a queue 206
14.4.6 MESSAGE_QUEUE_BROADCAST - Broadcast N messages to a queue . . 207
14.4.7 MESSAGE_QUEUE_RECEIVE - Receive message from a queue 208
14.4.8 MESSAGE_QUEUE_GET_NUMBER_PENDING - Get number of messages

pending on a queue . 209
14.4.9 MESSAGE_QUEUE_FLUSH - Flush all messages on a queue 210

15 Event Manager 211
15.1 Introduction . 212

vi

15.2 Background . 213
15.2.1 Event Sets . 213
15.2.2 Building an Event Set or Condition . 213
15.2.3 Building an EVENT_RECEIVE Option Set 213

15.3 Operations . 214
15.3.1 Sending an Event Set . 214
15.3.2 Receiving an Event Set . 214
15.3.3 Determining the Pending Event Set . 214
15.3.4 Receiving all Pending Events . 214

15.4 Directives . 215
15.4.1 EVENT_SEND - Send event set to a task 216
15.4.2 EVENT_RECEIVE - Receive event condition 217

16 Signal Manager 219
16.1 Introduction . 220
16.2 Background . 221

16.2.1 Signal Manager Definitions . 221
16.2.2 A Comparison of ASRs and ISRs . 221
16.2.3 Building a Signal Set . 221
16.2.4 Building an ASR Mode . 221

16.3 Operations . 223
16.3.1 Establishing an ASR . 223
16.3.2 Sending a Signal Set . 223
16.3.3 Processing an ASR . 223

16.4 Directives . 224
16.4.1 SIGNAL_CATCH - Establish an ASR . 225
16.4.2 SIGNAL_SEND - Send signal set to a task 226

17 Partition Manager 227
17.1 Introduction . 228
17.2 Background . 229

17.2.1 Partition Manager Definitions . 229
17.2.2 Building a Partition Attribute Set . 229

17.3 Operations . 230
17.3.1 Creating a Partition . 230
17.3.2 Obtaining Partition IDs . 230
17.3.3 Acquiring a Buffer . 230
17.3.4 Releasing a Buffer . 230
17.3.5 Deleting a Partition . 230

17.4 Directives . 231
17.4.1 PARTITION_CREATE - Create a partition 232
17.4.2 PARTITION_IDENT - Get ID of a partition 233
17.4.3 PARTITION_DELETE - Delete a partition 234
17.4.4 PARTITION_GET_BUFFER - Get buffer from a partition 235
17.4.5 PARTITION_RETURN_BUFFER - Return buffer to a partition 236

18 Region Manager 237
18.1 Introduction . 238
18.2 Background . 239

18.2.1 Region Manager Definitions . 239
18.2.2 Building an Attribute Set . 239
18.2.3 Building an Option Set . 239

vii

18.3 Operations . 240
18.3.1 Creating a Region . 240
18.3.2 Obtaining Region IDs . 240
18.3.3 Adding Memory to a Region . 240
18.3.4 Acquiring a Segment . 240
18.3.5 Releasing a Segment . 240
18.3.6 Obtaining the Size of a Segment . 241
18.3.7 Changing the Size of a Segment . 241
18.3.8 Deleting a Region . 241

18.4 Directives . 242
18.4.1 REGION_CREATE - Create a region . 243
18.4.2 REGION_IDENT - Get ID of a region . 244
18.4.3 REGION_DELETE - Delete a region . 245
18.4.4 REGION_EXTEND - Add memory to a region 246
18.4.5 REGION_GET_SEGMENT - Get segment from a region 247
18.4.6 REGION_RETURN_SEGMENT - Return segment to a region 248
18.4.7 REGION_GET_SEGMENT_SIZE - Obtain size of a segment 249
18.4.8 REGION_RESIZE_SEGMENT - Change size of a segment 250

19 Dual-Ported Memory Manager 251
19.1 Introduction . 252
19.2 Background . 253
19.3 Operations . 254

19.3.1 Creating a Port . 254
19.3.2 Obtaining Port IDs . 254
19.3.3 Converting an Address . 254
19.3.4 Deleting a DPMA Port . 254

19.4 Directives . 255
19.4.1 PORT_CREATE - Create a port . 256
19.4.2 PORT_IDENT - Get ID of a port . 257
19.4.3 PORT_DELETE - Delete a port . 258
19.4.4 PORT_EXTERNAL_TO_INTERNAL - Convert external to internal address 259
19.4.5 PORT_INTERNAL_TO_EXTERNAL - Convert internal to external address 260

20 I/O Manager 261
20.1 Introduction . 262
20.2 Background . 263

20.2.1 Device Driver Table . 263
20.2.2 Major and Minor Device Numbers . 263
20.2.3 Device Names . 263
20.2.4 Device Driver Environment . 263
20.2.5 Runtime Driver Registration . 263
20.2.6 Device Driver Interface . 264
20.2.7 Device Driver Initialization . 264

20.3 Operations . 265
20.3.1 Register and Lookup Name . 265
20.3.2 Accessing an Device Driver . 265

20.4 Directives . 266
20.4.1 IO_REGISTER_DRIVER - Register a device driver 267
20.4.2 IO_UNREGISTER_DRIVER - Unregister a device driver 268
20.4.3 IO_INITIALIZE - Initialize a device driver 269
20.4.4 IO_REGISTER_NAME - Register a device 270

viii

20.4.5 IO_LOOKUP_NAME - Lookup a device 271
20.4.6 IO_OPEN - Open a device . 272
20.4.7 IO_CLOSE - Close a device . 273
20.4.8 IO_READ - Read from a device . 274
20.4.9 IO_WRITE - Write to a device . 275
20.4.10 IO_CONTROL - Special device services 276

21 Fatal Error Manager 277
21.1 Introduction . 278
21.2 Background . 279
21.3 Operations . 280

21.3.1 Announcing a Fatal Error . 280
21.4 Directives . 281

21.4.1 FATAL_ERROR_OCCURRED - Invoke the fatal error handler 282
21.4.2 FATAL - Invoke the fatal error handler with error source 283
21.4.3 EXCEPTION_FRAME_PRINT - Prints the exception frame 284
21.4.4 FATAL_SOURCE_TEXT - Returns a text for a fatal source 285
21.4.5 INTERNAL_ERROR_TEXT - Returns a text for an internal error code . . . 286

22 Board Support Packages 287
22.1 Introduction . 288
22.2 Reset and Initialization . 289

22.2.1 Interrupt Stack Requirements . 289
22.2.2 Processors with a Separate Interrupt Stack 290
22.2.3 Processors Without a Separate Interrupt Stack 290

22.3 Device Drivers . 291
22.3.1 Clock Tick Device Driver . 291

22.4 User Extensions . 292
22.5 Multiprocessor Communications Interface (MPCI) 293

22.5.1 Tightly-Coupled Systems . 293
22.5.2 Loosely-Coupled Systems . 293
22.5.3 Systems with Mixed Coupling . 293
22.5.4 Heterogeneous Systems . 293

23 User Extensions Manager 295
23.1 Introduction . 296
23.2 Background . 297

23.2.1 Extension Sets . 297
23.2.2 TCB Extension Area . 297
23.2.3 Extensions . 298

23.2.3.1 TASK_CREATE Extension . 298
23.2.3.2 TASK_START Extension . 298
23.2.3.3 TASK_RESTART Extension . 299
23.2.3.4 TASK_DELETE Extension . 299
23.2.3.5 TASK_SWITCH Extension . 299
23.2.3.6 TASK_BEGIN Extension . 299
23.2.3.7 TASK_EXITTED Extension . 300
23.2.3.8 FATAL Error Extension . 300

23.2.4 Order of Invocation . 300
23.3 Operations . 302

23.3.1 Creating an Extension Set . 302
23.3.2 Obtaining Extension Set IDs . 302

ix

23.3.3 Deleting an Extension Set . 302
23.4 Directives . 303

23.4.1 EXTENSION_CREATE - Create a extension set 304
23.4.2 EXTENSION_IDENT - Get ID of a extension set 305
23.4.3 EXTENSION_DELETE - Delete a extension set 306

24 Configuring a System 307
24.1 Introduction . 308
24.2 Default Value Selection Philosophy . 309
24.3 Sizing the RTEMS Workspace . 310
24.4 Potential Issues with RTEMS Workspace Size Estimation 311
24.5 Format to be followed for making changes in this file 312
24.6 Configuration Example . 313
24.7 Unlimited Objects . 315

24.7.1 Per Object Class Unlimited Object Instances 315
24.7.2 Unlimited Object Instances . 316
24.7.3 Enable Unlimited Object Instances . 316
24.7.4 Specify Unlimited Objects Allocation Size 316

24.8 Classic API Configuration . 317
24.8.1 Specify Maximum Classic API Tasks . 317
24.8.2 Specify Maximum Classic API Timers . 317
24.8.3 Specify Maximum Classic API Timers . 317
24.8.4 Specify Maximum Classic API Semaphores 318
24.8.5 Specify Maximum Classic API Semaphores usable with MrsP 318
24.8.6 Specify Maximum Classic API Message Queues 318
24.8.7 Specify Maximum Classic API Barriers 318
24.8.8 Specify Maximum Classic API Periods . 318
24.8.9 Specify Maximum Classic API Partitions 319
24.8.10 Specify Maximum Classic API Regions 319
24.8.11 Specify Maximum Classic API Ports . 319
24.8.12 Specify Maximum Classic API User Extensions 319

24.9 Classic API Initialization Tasks Table Configuration 320
24.9.1 Instantiate Classic API Initialization Task Table 320
24.9.2 Specifying Classic API Initialization Task Entry Point 320
24.9.3 Specifying Classic API Initialization Task Name 320
24.9.4 Specifying Classic API Initialization Task Stack Size 320
24.9.5 Specifying Classic API Initialization Task Priority 321
24.9.6 Specifying Classic API Initialization Task Attributes 321
24.9.7 Specifying Classic API Initialization Task Modes 321
24.9.8 Specifying Classic API Initialization Task Arguments 321
24.9.9 Not Using Generated Initialization Tasks Table 322

24.10POSIX API Configuration . 323
24.10.1 Specify Maximum POSIX API Threads . 323
24.10.2 Specify Maximum POSIX API Mutexes 323
24.10.3 Specify Maximum POSIX API Condition Variables 323
24.10.4 Specify Maximum POSIX API Keys . 323
24.10.5 Specify Maximum POSIX API Timers . 324
24.10.6 Specify Maximum POSIX API Queued Signals 324
24.10.7 Specify Maximum POSIX API Message Queues 324
24.10.8 Specify Maximum POSIX API Message Queue Descriptors 324
24.10.9 Specify Maximum POSIX API Semaphores 325

x

24.10.10Specify Maximum POSIX API Barriers . 325
24.10.11Specify Maximum POSIX API Spinlocks 325
24.10.12Specify Maximum POSIX API Read/Write Locks 325

24.11POSIX Initialization Threads Table Configuration 326
24.11.1 Instantiate POSIX API Initialization Thread Table 326
24.11.2 Specifying POSIX API Initialization Thread Entry Point 326
24.11.3 Specifying POSIX API Initialization Thread Stack Size 326
24.11.4 Not Using Generated POSIX Initialization Threads Table 327

24.12Basic System Information . 328
24.12.1 Separate or Unified Work Areas . 328
24.12.2 Length of Each Clock Tick . 328
24.12.3 Specifying Timeslicing Quantum . 328
24.12.4 Specifying the Number of Thread Priority Levels 329
24.12.5 Specifying the Minimum Task Size . 329
24.12.6 Configuring the Size of the Interrupt Stack 329
24.12.7 Reserve Task/Thread Stack Memory Above Minimum 330
24.12.8 Automatically Zeroing the RTEMS Workspace and C Program Heap . . . 330
24.12.9 Enable The Task Stack Usage Checker . 330
24.12.10Specify Application Specific User Extensions 331

24.13Configuring Custom Task Stack Allocation . 332
24.13.1 Custom Task Stack Allocator Initialization 332
24.13.2 Custom Task Stack Allocator . 332
24.13.3 Custom Task Stack Deallocator . 332

24.14Configuring Memory for Classic API Message Buffers 333
24.14.1 Calculate Memory for a Single Classic Message API Message Queue . . . 333
24.14.2 Reserve Memory for All Classic Message API Message Queues 333

24.15Seldom Used Configuration Parameters . 334
24.15.1 Specify Memory Overhead . 334
24.15.2 Do Not Generate Configuration Information 334

24.16C Library Support Configuration . 335
24.16.1 Specify Maximum Number of File Descriptors 335
24.16.2 Disable POSIX Termios Support . 335
24.16.3 Specify Maximum Termios Ports . 335

24.17File System Configuration Parameters . 336
24.17.1 Providing Application Specific Mount Table 336
24.17.2 Configure devFS as Root File System . 336
24.17.3 Specifying Maximum Devices for devFS 336
24.17.4 Disable File System Support . 336
24.17.5 Use a Root IMFS with a Minimalistic Feature Set 337
24.17.6 Specify Block Size for IMFS . 337
24.17.7 Disable Change Owner Support of Root IMFS 338
24.17.8 Disable Change Mode Support of Root IMFS 338
24.17.9 Disable Change Times Support of Root IMFS 338
24.17.10Disable Create Hard Link Support of Root IMFS 338
24.17.11Disable Create Symbolic Link Support of Root IMFS 338
24.17.12Disable Read Symbolic Link Support of Root IMFS 338
24.17.13Disable Rename Support of Root IMFS 339
24.17.14Disable Directory Read Support of Root IMFS 339
24.17.15Disable Mount Support of Root IMFS . 339
24.17.16Disable Unmount Support of Root IMFS 339
24.17.17Disable Make Nodes Support of Root IMFS 339

xi

24.17.18Disable Make Files Support of Root IMFS 340
24.17.19Disable Remove Nodes Support of Root IMFS 340

24.18Block Device Cache Configuration . 341
24.18.1 Enable Block Device Cache . 341
24.18.2 Size of the Cache Memory . 341
24.18.3 Minimum Size of a Buffer . 341
24.18.4 Maximum Size of a Buffer . 341
24.18.5 Swapout Task Swap Period . 341
24.18.6 Swapout Task Maximum Block Hold Time 342
24.18.7 Swapout Task Priority . 342
24.18.8 Maximum Blocks per Read-Ahead Request 342
24.18.9 Maximum Blocks per Write Request . 342
24.18.10Task Stack Size of the Block Device Cache Tasks 342
24.18.11Read-Ahead Task Priority . 343
24.18.12Swapout Worker Task Count . 343
24.18.13Swapout Worker Task Priority . 343

24.19BSP Specific Settings . 344
24.19.1 Disable BSP Configuration Settings . 344
24.19.2 Specify BSP Supports sbrk() . 344
24.19.3 Specify BSP Specific Idle Task . 344
24.19.4 Specify BSP Suggested Value for IDLE Task Stack Size 344
24.19.5 Specify BSP Specific User Extensions . 345
24.19.6 Specifying BSP Specific Interrupt Stack Size 345
24.19.7 Specifying BSP Specific Maximum Devices 345
24.19.8 BSP Recommends RTEMS Workspace be Cleared 345
24.19.9 Specify BSP Prerequisite Drivers . 346

24.20Idle Task Configuration . 347
24.20.1 Specify Application Specific Idle Task Body 347
24.20.2 Specify Idle Task Stack Size . 347
24.20.3 Specify Idle Task Performs Application Initialization 347

24.21Scheduler Algorithm Configuration . 348
24.21.1 Use Deterministic Priority Scheduler . 348
24.21.2 Use Simple Priority Scheduler . 348
24.21.3 Use Earliest Deadline First Scheduler . 348
24.21.4 Use Constant Bandwidth Server Scheduler 349
24.21.5 Use Deterministic Priority SMP Scheduler 349
24.21.6 Use Simple SMP Priority Scheduler . 349
24.21.7 Configuring a Scheduler Name . 350
24.21.8 Configuring a User Provided Scheduler 350
24.21.9 Configuring Clustered Schedulers . 351

24.22SMP Specific Configuration Parameters . 354
24.22.1 Enable SMP Support for Applications . 354
24.22.2 Specify Maximum Processors in SMP System 354

24.23Device Driver Table . 355
24.23.1 Specifying the Maximum Number of Device Drivers 355
24.23.2 Enable Console Device Driver . 355
24.23.3 Enable Clock Driver . 355
24.23.4 Enable the Benchmark Timer Driver . 356
24.23.5 Specify Clock and Benchmark Timer Drivers Are Not Needed 356
24.23.6 Enable Real-Time Clock Driver . 356
24.23.7 Enable the Watchdog Device Driver . 356

xii

24.23.8 Enable the Graphics Frame Buffer Device Driver 357
24.23.9 Enable Stub Device Driver . 357
24.23.10Specify Application Prerequisite Device Drivers 357
24.23.11Specify Extra Application Device Drivers 357
24.23.12Enable /dev/null Device Driver . 358
24.23.13Enable /dev/zero Device Driver . 358
24.23.14Specifying Application Defined Device Driver Table 358

24.24Multiprocessing Configuration . 359
24.24.1 Specify Application Will Use Multiprocessing 359
24.24.2 Configure Node Number in Multiprocessor Configuration 359
24.24.3 Configure Maximum Node in Multiprocessor Configuration 359
24.24.4 Configure Maximum Global Objects in Multiprocessor Configuration . . . 359
24.24.5 Configure Maximum Proxies in Multiprocessor Configuration 360
24.24.6 Configure MPCI in Multiprocessor Configuration 360
24.24.7 Do Not Generate Multiprocessor Configuration Table 360

24.25Ada Tasks . 361
24.25.1 Specify Application Includes Ada Code 361
24.25.2 Specify the Maximum Number of Ada Tasks. 361
24.25.3 Specify the Maximum Fake Ada Tasks . 361

24.26PCI Library . 362
24.27Go Tasks . 363

24.27.1 Specify Application Includes Go Code . 363
24.27.2 Specify the maximum number of Go routines 363
24.27.3 Specify the maximum number of Go Channels 363

24.28Configuration Data Structures . 364

25 Multiprocessing Manager 365
25.1 Introduction . 366
25.2 Background . 367

25.2.1 Nodes . 367
25.2.2 Global Objects . 367
25.2.3 Global Object Table . 367
25.2.4 Remote Operations . 368
25.2.5 Proxies . 368
25.2.6 Multiprocessor Configuration Table . 369

25.3 Multiprocessor Communications Interface Layer 370
25.3.1 INITIALIZATION . 370
25.3.2 GET_PACKET . 371
25.3.3 RETURN_PACKET . 371
25.3.4 RECEIVE_PACKET . 371
25.3.5 SEND_PACKET . 371
25.3.6 Supporting Heterogeneous Environments 372

25.4 Operations . 373
25.4.1 Announcing a Packet . 373

25.5 Directives . 374
25.5.1 MULTIPROCESSING_ANNOUNCE - Announce the arrival of a packet . . 375

26 Symmetric Multiprocessing Services 377
26.1 Introduction . 378
26.2 Background . 379

26.2.1 Uniprocessor versus SMP Parallelism . 379
26.2.2 Task Affinity . 379

xiii

26.2.3 Task Migration . 379
26.2.4 Clustered Scheduling . 380
26.2.5 Task Priority Queues . 381
26.2.6 Scheduler Helping Protocol . 381
26.2.7 Critical Section Techniques and SMP . 382

26.2.7.1 Disable Interrupts and Interrupt Locks 382
26.2.7.2 Highest Priority Task Assumption 383
26.2.7.3 Disable Preemption . 383

26.2.8 Task Unique Data and SMP . 384
26.2.8.1 Classic API Per Task Variables . 384

26.2.9 OpenMP . 384
26.2.10 Thread Dispatch Details . 385

26.3 Operations . 387
26.3.1 Setting Affinity to a Single Processor . 387

26.4 Directives . 388
26.4.1 GET_PROCESSOR_COUNT - Get processor count 389
26.4.2 GET_CURRENT_PROCESSOR - Get current processor index 390
26.4.3 SCHEDULER_IDENT - Get ID of a scheduler 391
26.4.4 SCHEDULER_GET_PROCESSOR_SET - Get processor set of a scheduler . 392
26.4.5 TASK_GET_SCHEDULER - Get scheduler of a task 393
26.4.6 TASK_SET_SCHEDULER - Set scheduler of a task 394
26.4.7 TASK_GET_AFFINITY - Get task processor affinity 395
26.4.8 TASK_SET_AFFINITY - Set task processor affinity 396

27 PCI Library 397
27.1 Introduction . 398
27.2 Background . 399

27.2.1 Software Components . 399
27.2.2 PCI Configuration . 399

27.2.2.1 RTEMS Configuration selection 400
27.2.2.2 Auto Configuration . 400
27.2.2.3 Read Configuration . 401
27.2.2.4 Static Configuration . 401
27.2.2.5 Peripheral Configuration . 401

27.2.3 PCI Access . 401
27.2.3.1 Configuration space . 402
27.2.3.2 I/O space . 402
27.2.3.3 Registers over Memory space . 402
27.2.3.4 Access functions . 402
27.2.3.5 PCI address translation . 403

27.2.4 PCI Interrupt . 403
27.2.5 PCI Shell command . 403

28 Stack Bounds Checker 405
28.1 Introduction . 406
28.2 Background . 407

28.2.1 Task Stack . 407
28.2.2 Execution . 407

28.3 Operations . 408
28.3.1 Initializing the Stack Bounds Checker . 408
28.3.2 Checking for Blown Task Stack . 408
28.3.3 Reporting Task Stack Usage . 408

xiv

28.3.4 When a Task Overflows the Stack . 408
28.4 Routines . 409

28.4.1 STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack 409
28.4.2 STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage 409

29 CPU Usage Statistics 411
29.1 Introduction . 412
29.2 Background . 413
29.3 Operations . 414

29.3.1 Report CPU Usage Statistics . 414
29.3.2 Reset CPU Usage Statistics . 414

29.4 Directives . 415
29.4.1 cpu_usage_report - Report CPU Usage Statistics 416
29.4.2 cpu_usage_reset - Reset CPU Usage Statistics 417

30 Object Services 419
30.1 Introduction . 420
30.2 Background . 421

30.2.1 APIs . 421
30.2.2 Object Classes . 421
30.2.3 Object Names . 421

30.3 Operations . 422
30.3.1 Decomposing and Recomposing an Object Id 422
30.3.2 Printing an Object Id . 422

30.4 Directives . 423
30.4.1 BUILD_NAME - Build object name from characters 424
30.4.2 OBJECT_GET_CLASSIC_NAME - Lookup name from id 425
30.4.3 OBJECT_GET_NAME - Obtain object name as string 426
30.4.4 OBJECT_SET_NAME - Set object name 427
30.4.5 OBJECT_ID_GET_API - Obtain API from Id 428
30.4.6 OBJECT_ID_GET_CLASS - Obtain Class from Id 429
30.4.7 OBJECT_ID_GET_NODE - Obtain Node from Id 430
30.4.8 OBJECT_ID_GET_INDEX - Obtain Index from Id 431
30.4.9 BUILD_ID - Build Object Id From Components 432
30.4.10 OBJECT_ID_API_MINIMUM - Obtain Minimum API Value 433
30.4.11 OBJECT_ID_API_MAXIMUM - Obtain Maximum API Value 434
30.4.12 OBJECT_API_MINIMUM_CLASS - Obtain Minimum Class Value 435
30.4.13 OBJECT_API_MAXIMUM_CLASS - Obtain Maximum Class Value 436
30.4.14 OBJECT_ID_API_MINIMUM_CLASS - Obtain Minimum Class Value for

an API . 437
30.4.15 OBJECT_ID_API_MAXIMUM_CLASS - Obtain Maximum Class Value for

an API . 438
30.4.16 OBJECT_GET_API_NAME - Obtain API Name 439
30.4.17 OBJECT_GET_API_CLASS_NAME - Obtain Class Name 440
30.4.18 OBJECT_GET_CLASS_INFORMATION - Obtain Class Information 441

31 Chains 443
31.1 Introduction . 444
31.2 Background . 445

31.2.1 Nodes . 445
31.2.2 Controls . 445

31.3 Operations . 446

xv

31.3.1 Multi-threading . 446
31.3.2 Creating a Chain . 446
31.3.3 Iterating a Chain . 446

31.4 Directives . 447
31.4.1 Initialize Chain With Nodes . 448
31.4.2 Initialize Empty . 449
31.4.3 Is Null Node ? . 450
31.4.4 Head . 451
31.4.5 Tail . 452
31.4.6 Are Two Nodes Equal ? . 453
31.4.7 Is the Chain Empty . 454
31.4.8 Is this the First Node on the Chain ? . 455
31.4.9 Is this the Last Node on the Chain ? . 456
31.4.10 Does this Chain have only One Node ? 457
31.4.11 Returns the node count of the chain (unprotected) 458
31.4.12 Is this Node the Chain Head ? . 459
31.4.13 Is this Node the Chain Tail ? . 460
31.4.14 Extract a Node . 461
31.4.15 Extract a Node (unprotected) . 462
31.4.16 Get the First Node . 463
31.4.17 Get the First Node (unprotected) . 464
31.4.18 Insert a Node . 465
31.4.19 Insert a Node (unprotected) . 466
31.4.20 Append a Node . 467
31.4.21 Append a Node (unprotected) . 468
31.4.22 Prepend a Node . 469
31.4.23 Prepend a Node (unprotected) . 470

32 Red-Black Trees 471
32.1 Introduction . 472
32.2 Background . 473

32.2.1 Nodes . 473
32.2.2 Controls . 473

32.3 Operations . 474
32.4 Directives . 475

32.4.1 Documentation for the Red-Black Tree Directives 475

33 Timespec Helpers 477
33.1 Introduction . 478
33.2 Background . 479

33.2.1 Time Storage Conventions . 479
33.3 Operations . 480

33.3.1 Set and Obtain Timespec Value . 480
33.3.2 Timespec Math . 480
33.3.3 Comparing struct timespec Instances . 480
33.3.4 Conversions and Validity Check . 480

33.4 Directives . 481
33.4.1 TIMESPEC_SET - Set struct timespec Instance 482
33.4.2 TIMESPEC_ZERO - Zero struct timespec Instance 483
33.4.3 TIMESPEC_IS_VALID - Check validity of a struct timespec instance . . . 484
33.4.4 TIMESPEC_ADD_TO - Add Two struct timespec Instances 485
33.4.5 TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances 486

xvi

33.4.6 TIMESPEC_DIVIDE - Divide Two struct timespec Instances 487
33.4.7 TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by

an Integer . 488
33.4.8 TIMESPEC_LESS_THAN - Less than operator 489
33.4.9 TIMESPEC_GREATER_THAN - Greater than operator 490
33.4.10 TIMESPEC_EQUAL_TO - Check equality of timespecs 491
33.4.11 TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec In-

stance . 492
33.4.12 TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the

struct timespec Instance . 493
33.4.13 TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks 494
33.4.14 TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representa-

tion . 495

34 Constant Bandwidth Server Scheduler API 497
34.1 Introduction . 498
34.2 Background . 499

34.2.1 Constant Bandwidth Server Definitions 499
34.2.2 Handling Periodic Tasks . 499
34.2.3 Registering a Callback Function . 499
34.2.4 Limitations . 499

34.3 Operations . 501
34.3.1 Setting up a server . 501
34.3.2 Attaching Task to a Server . 501
34.3.3 Detaching Task from a Server . 501
34.3.4 Examples . 501

34.4 Directives . 503
34.4.1 CBS_INITIALIZE - Initialize the CBS library 504
34.4.2 CBS_CLEANUP - Cleanup the CBS library 505
34.4.3 CBS_CREATE_SERVER - Create a new bandwidth server 506
34.4.4 CBS_ATTACH_THREAD - Attach a thread to server 507
34.4.5 CBS_DETACH_THREAD - Detach a thread from server 508
34.4.6 CBS_DESTROY_SERVER - Destroy a bandwidth server 509
34.4.7 CBS_GET_SERVER_ID - Get an ID of a server 510
34.4.8 CBS_GET_PARAMETERS - Get scheduling parameters of a server 511
34.4.9 CBS_SET_PARAMETERS - Set scheduling parameters 512
34.4.10 CBS_GET_EXECUTION_TIME - Get elapsed execution time 513
34.4.11 CBS_GET_REMAINING_BUDGET - Get remaining execution time 514
34.4.12 CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time 515

35 Directive Status Codes 517
35.1 Introduction . 518
35.2 Directives . 519

35.2.1 STATUS_TEXT - Returns the enumeration name for a status code 520

36 Linker Sets 521
36.1 Introduction . 522
36.2 Background . 523
36.3 Directives . 524

36.3.1 RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker 525
36.3.2 RTEMS_LINKER_SET_END - Designator of the linker set end marker . . 526
36.3.3 RTEMS_LINKER_SET_SIZE - The linker set size in characters 527

xvii

36.3.4 RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set . . . 528
36.3.5 RTEMS_LINKER_ROSET - Defines a read-only linker set 529
36.3.6 RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker

set item . 530
36.3.7 RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only

linker set item . 531
36.3.8 RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item . . . 532
36.3.9 RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-

only linker set item . 533
36.3.10 RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set . . 534
36.3.11 RTEMS_LINKER_RWSET - Defines a read-write linker set 535
36.3.12 RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker

set item . 536
36.3.13 RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write

linker set item . 537
36.3.14 RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item . . 538
36.3.15 RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-

write linker set item . 539

37 Example Application 541

38 Glossary 543

Index 553

xviii

Chapter 0 Section 0.0 RTEMS C User Documentation, Release 4.11.3

Part I

RTEMS C User’s Guide

1

Chapter 0 Section 0.0 RTEMS C User Documentation, Release 4.11.3

COPYRIGHT (c) 1988 - 2015.
On-Line Applications Research
Corporation (OAR).

The authors have used their best efforts in
preparing this material. These efforts include
the development, research, and testing of the
theories and programs to determine their ef-
fectiveness. No warranty of any kind, ex-
pressed or implied, with regard to the soft-
ware or the material contained in this docu-
ment is provided. No liability arising out of
the application or use of any product described
in this document is assumed. The authors re-
serve the right to revise this material and to
make changes from time to time in the content
hereof without obligation to notify anyone of
such revision or changes.

The RTEMS Project is hosted at http://www.
rtems.org/. Any inquiries concerning RTEMS,
its related support components, or its docu-
mentation should be directed to the Commu-
nity Project hosted at http://www.rtems.org/.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documenta-
tion

https://docs.rtems.org/

Bug
Reporting

https:
//devel.rtems.org/query

Mailing Lists https://lists.rtems.org/
Git
Repositories

https://git.rtems.org/

3

http://www.rtems.org/
http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS C User Documentation, Release 4.11.3 Chapter 0 Section 0.0

4

CHAPTER

ONE

PREFACE

In recent years, the cost required to develop
a software product has increased significantly
while the target hardware costs have de-
creased. Now a larger portion of money is ex-
pended in developing, using, and maintaining
software. The trend in computing costs is the
complete dominance of software over hard-
ware costs. Because of this, it is necessary that
formal disciplines be established to increase
the probability that software is characterized
by a high degree of correctness, maintainabil-
ity, and portability. In addition, these disci-
plines must promote practices that aid in the
consistent and orderly development of a soft-
ware system within schedule and budgetary
constraints. To be effective, these disciplines
must adopt standards which channel individ-
ual software efforts toward a common goal.

The push for standards in the software devel-
opment field has been met with various de-
grees of success. The Microprocessor Operat-
ing Systems Interfaces (MOSI) effort has ex-
perienced only limited success. As popular as
the UNIX operating system has grown, the at-
tempt to develop a standard interface defini-
tion to allow portable application development
has only recently begun to produce the results
needed in this area. Unfortunately, very little
effort has been expended to provide standards
addressing the needs of the real-time commu-
nity. Several organizations have addressed this
need during recent years.

The Real Time Executive Interface Definition
(RTEID) was developed by Motorola with tech-
nical input from Software Components Group.
RTEID was adopted by the VMEbus Interna-
tional Trade Association (VITA) as a baseline
draft for their proposed standard multiproces-
sor, real-time executive interface, Open Real-
Time Kernel Interface Definition (ORKID).
These two groups are currently working to-

gether with the IEEE P1003.4 committee to in-
sure that the functionality of their proposed
standards is adopted as the real-time exten-
sions to POSIX.

This emerging standard defines an interface
for the development of real-time software to
ease the writing of real-time application pro-
grams that are directly portable across multi-
ple real-time executive implementations. This
interface includes both the source code inter-
faces and run-time behavior as seen by a real-
time application. It does not include the details
of how a kernel implements these functions.
The standard’s goal is to serve as a complete
definition of external interfaces so that applica-
tion code that conforms to these interfaces will
execute properly in all real-time executive en-
vironments. With the use of a standards com-
pliant executive, routines that acquire memory
blocks, create and manage message queues,
establish and use semaphores, and send and
receive signals need not be redeveloped for
a different real-time environment as long as
the new environment is compliant with the
standard. Software developers need only con-
centrate on the hardware dependencies of the
real-time system. Furthermore, most hardware
dependencies for real-time applications can be
localized to the device drivers.

A compliant executive provides simple and
flexible real-time multiprocessing. It easily
lends itself to both tightly-coupled and loosely-
coupled configurations (depending on the sys-
tem hardware configuration). Objects such
as tasks, queues, events, signals, semaphores,
and memory blocks can be designated as
global objects and accessed by any task regard-
less of which processor the object and the ac-
cessing task reside.

The acceptance of a standard for real-time ex-

5

RTEMS C User Documentation, Release 4.11.3 Chapter 1 Section 1.0

ecutives will produce the same advantages en-
joyed from the push for UNIX standardization
by AT&T’s System V Interface Definition and
IEEE’s POSIX efforts. A compliant multipro-
cessing executive will allow close coupling be-
tween UNIX systems and real-time executives
to provide the many benefits of the UNIX de-
velopment environment to be applied to real-
time software development. Together they
provide the necessary laboratory environment
to implement real-time, distributed, embedded
systems using a wide variety of computer ar-
chitectures.

A study was completed in 1988, within the
Research, Development, and Engineering Cen-
ter, U.S. Army Missile Command, which com-
pared the various aspects of the Ada program-
ming language as they related to the applica-
tion of Ada code in distributed and/or multi-
ple processing systems. Several critical conclu-
sions were derived from the study. These con-
clusions have a major impact on the way the
Army develops application software for em-
bedded applications. These impacts apply to
both in-house software development and con-
tractor developed software.

A conclusion of the analysis, which has been
previously recognized by other agencies at-
tempting to utilize Ada in a distributed or
multiprocessing environment, is that the Ada
programming language does not adequately
support multiprocessing. Ada does provide a
mechanism for multi-tasking, however, this ca-
pability exists only for a single processor sys-
tem. The language also does not have inher-
ent capabilities to access global named vari-
ables, flags or program code. These critical
features are essential in order for data to be
shared between processors. However, these
drawbacks do have workarounds which are
sometimes awkward and defeat the intent of
software maintainability and portability goals.

Another conclusion drawn from the analysis,
was that the run time executives being deliv-
ered with the Ada compilers were too slow
and inefficient to be used in modern missile
systems. A run time executive is the core
part of the run time system code, or operat-
ing system code, that controls task scheduling,
input/output management and memory man-

agement. Traditionally, whenever efficient ex-
ecutive (also known as kernel) code was re-
quired by the application, the user developed
in-house software. This software was usually
written in assembly language for optimization.

Because of this shortcoming in the Ada pro-
gramming language, software developers in
research and development and contractors for
project managed systems, are mandated by
technology to purchase and utilize off-the-shelf
third party kernel code. The contractor, and
eventually the Government, must pay a licens-
ing fee for every copy of the kernel code used
in an embedded system.

The main drawback to this development envi-
ronment is that the Government does not own,
nor has the right to modify code contained
within the kernel. V&V techniques in this sit-
uation are more difficult than if the complete
source code were available. Responsibility for
system failures due to faulty software is yet an-
other area to be resolved under this environ-
ment.

The Guidance and Control Directorate began a
software development effort to address these
problems. A project to develop an experimen-
tal run time kernel was begun that will elim-
inate the major drawbacks of the Ada pro-
gramming language mentioned above. The
Real Time Executive for Multiprocessor Sys-
tems (RTEMS) provides full capabilities for
management of tasks, interrupts, time, and
multiple processors in addition to those fea-
tures typical of generic operating systems. The
code is Government owned, so no licensing
fees are necessary. RTEMS has been imple-
mented in both the Ada and C programming
languages. It has been ported to the following
processor families:

• Adapteva Epiphany

• Altera NIOS II

• Analog Devices Blackfin

• Atmel AVR

• ARM

• Freescale (formerly Motorola) MC68xxx

• Freescale (formerly Motorola) MC683xx

6 Chapter 1. Preface

Chapter 1 Section 1.0 RTEMS C User Documentation, Release 4.11.3

• Freescale (formerly Motorola) ColdFire

• Intel i386 and above

• Lattice Semiconductor LM32

• NEC V850

• MIPS

• Moxie Processor

• OpenRISC

• PowerPC

• Renesas (formerly Hitachi) SuperH

• Renesas (formerly Hitachi) H8/300

• Renesas M32C

• SPARC v7, v8, and V9

Since almost all of RTEMS is written in a high
level language, ports to additional processor
families require minimal effort.

RTEMS multiprocessor support is capable of
handling either homogeneous or heteroge-
neous systems. The kernel automatically com-
pensates for architectural differences (byte
swapping, etc.) between processors. This al-
lows a much easier transition from one proces-
sor family to another without a major system
redesign.

Since the proposed standards are still in draft
form, RTEMS cannot and does not claim com-
pliance. However, the status of the standard
is being carefully monitored to guarantee that
RTEMS provides the functionality specified in
the standard. Once approved, RTEMS will be
made compliant.

This document is a detailed users guide for a
functionally compliant real-time multiproces-
sor executive. It describes the user interface
and run-time behavior of Release 4.10.99.0 of
the C interface to RTEMS.

7

RTEMS C User Documentation, Release 4.11.3 Chapter 1 Section 1.0

8 Chapter 1. Preface

CHAPTER

TWO

OVERVIEW

9

RTEMS C User Documentation, Release 4.11.3 Chapter 2 Section 2.1

2.1 Introduction

RTEMS, Real-Time Executive for Multiproces-
sor Systems, is a real-time executive (kernel)
which provides a high performance environ-
ment for embedded military applications in-
cluding the following features:

• multitasking capabilities

• homogeneous and heterogeneous multi-
processor systems

• event-driven, priority-based, preemptive
scheduling

• optional rate monotonic scheduling

• intertask communication and synchro-
nization

• priority inheritance

• responsive interrupt management

• dynamic memory allocation

• high level of user configurability

This manual describes the usage of RTEMS for
applications written in the C programming lan-
guage. Those implementation details that are
processor dependent are provided in the Ap-
plications Supplement documents. A supple-
ment document which addresses specific archi-
tectural issues that affect RTEMS is provided
for each processor type that is supported.

10 Chapter 2. Overview

Chapter 2 Section 2.2 RTEMS C User Documentation, Release 4.11.3

2.2 Real-time Application Systems

Real-time application systems are a special
class of computer applications. They have a
complex set of characteristics that distinguish
them from other software problems. Gener-
ally, they must adhere to more rigorous re-
quirements. The correctness of the system de-
pends not only on the results of computations,
but also on the time at which the results are
produced. The most important and complex
characteristic of real-time application systems
is that they must receive and respond to a
set of external stimuli within rigid and criti-
cal time constraints referred to as deadlines.
Systems can be buried by an avalanche of in-
terdependent, asynchronous or cyclical event
streams.

Deadlines can be further characterized as ei-
ther hard or soft based upon the value of the
results when produced after the deadline has
passed. A deadline is hard if the results have
no value or if their use will result in a catas-
trophic event. In contrast, results which are
produced after a soft deadline may have some
value.

Another distinguishing requirement of real-
time application systems is the ability to co-
ordinate or manage a large number of con-
current activities. Since software is a syn-
chronous entity, this presents special problems.
One instruction follows another in a repeating
synchronous cycle. Even though mechanisms
have been developed to allow for the process-
ing of external asynchronous events, the soft-
ware design efforts required to process and
manage these events and tasks are growing
more complicated.

The design process is complicated further by
spreading this activity over a set of processors
instead of a single processor. The challenges
associated with designing and building real-
time application systems become very complex
when multiple processors are involved. New
requirements such as interprocessor communi-
cation channels and global resources that must
be shared between competing processors are
introduced. The ramifications of multiple pro-
cessors complicate each and every characteris-

tic of a real-time system.

2.2. Real-time Application Systems 11

RTEMS C User Documentation, Release 4.11.3 Chapter 2 Section 2.3

2.3 Real-time Executive

Fortunately, real-time operating systems or
real-time executives serve as a cornerstone on
which to build the application system. A real-
time multitasking executive allows an applica-
tion to be cast into a set of logical, autonomous
processes or tasks which become quite man-
ageable. Each task is internally synchronous,
but different tasks execute independently, re-
sulting in an asynchronous processing stream.
Tasks can be dynamically paused for many rea-
sons resulting in a different task being allowed
to execute for a period of time. The executive
also provides an interface to other system com-
ponents such as interrupt handlers and device
drivers. System components may request the
executive to allocate and coordinate resources,
and to wait for and trigger synchronizing con-
ditions. The executive system calls effectively
extend the CPU instruction set to support effi-
cient multitasking. By causing tasks to travel
through well-defined state transitions, system
calls permit an application to demand-switch
between tasks in response to real-time events.

By proper grouping of responses to stim-
uli into separate tasks, a system can now
asynchronously switch between independent
streams of execution, directly responding to
external stimuli as they occur. This allows
the system design to meet critical performance
specifications which are typically measured
by guaranteed response time and transaction
throughput. The multiprocessor extensions of
RTEMS provide the features necessary to man-
age the extra requirements introduced by a
system distributed across several processors.
It removes the physical barriers of processor
boundaries from the world of the system de-
signer, enabling more critical aspects of the
system to receive the required attention. Such
a system, based on an efficient real-time, mul-
tiprocessor executive, is a more realistic model
of the outside world or environment for which
it is designed. As a result, the system will al-
ways be more logical, efficient, and reliable.

By using the directives provided by RTEMS,
the real-time applications developer is freed
from the problem of controlling and synchro-
nizing multiple tasks and processors. In addi-

tion, one need not develop, test, debug, and
document routines to manage memory, pass
messages, or provide mutual exclusion. The
developer is then able to concentrate solely
on the application. By using standard soft-
ware components, the time and cost required
to develop sophisticated real-time applications
is significantly reduced.

12 Chapter 2. Overview

Chapter 2 Section 2.4 RTEMS C User Documentation, Release 4.11.3

2.4 RTEMS Application Architec-
ture

One important design goal of RTEMS was to
provide a bridge between two critical layers
of typical real-time systems. As shown in the
following figure, RTEMS serves as a buffer be-
tween the project dependent application code
and the target hardware. Most hardware de-
pendencies for real-time applications can be lo-
calized to the low level device drivers.

The RTEMS I/O interface manager provides
an efficient tool for incorporating these hard-
ware dependencies into the system while si-
multaneously providing a general mechanism
to the application code that accesses them.
A well designed real-time system can benefit
from this architecture by building a rich library
of standard application components which can
be used repeatedly in other real-time projects.

2.4. RTEMS Application Architecture 13

RTEMS C User Documentation, Release 4.11.3 Chapter 2 Section 2.5

2.5 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered com-
ponents that work in harmony to provide a set
of services to a real-time application system.
The executive interface presented to the ap-
plication is formed by grouping directives into
logical sets called resource managers. Func-
tions utilized by multiple managers such as
scheduling, dispatching, and object manage-
ment are provided in the executive core. The
executive core depends on a small set of CPU
dependent routines. Together these compo-
nents provide a powerful run time environ-
ment that promotes the development of effi-
cient real-time application systems. The fol-
lowing figure illustrates this organization:

Subsequent chapters present a detailed de-
scription of the capabilities provided by each
of the following RTEMS managers:

• initialization

• task

• interrupt

• clock

• timer

• semaphore

• message

• event

• signal

• partition

• region

• dual ported memory

• I/O

• fatal error

• rate monotonic

• user extensions

• multiprocessing

14 Chapter 2. Overview

Chapter 2 Section 2.6 RTEMS C User Documentation, Release 4.11.3

2.6 User Customization and Exten-
sibility

As thirty-two bit microprocessors have de-
creased in cost, they have become increasingly
common in a variety of embedded systems.
A wide range of custom and general-purpose
processor boards are based on various thirty-
two bit processors. RTEMS was designed to
make no assumptions concerning the charac-
teristics of individual microprocessor families
or of specific support hardware. In addition,
RTEMS allows the system developer a high de-
gree of freedom in customizing and extending
its features.

RTEMS assumes the existence of a supported
microprocessor and sufficient memory for both
RTEMS and the real-time application. Board
dependent components such as clocks, inter-
rupt controllers, or I/O devices can be eas-
ily integrated with RTEMS. The customization
and extensibility features allow RTEMS to effi-
ciently support as many environments as pos-
sible.

2.6. User Customization and Extensibility 15

RTEMS C User Documentation, Release 4.11.3 Chapter 2 Section 2.7

2.7 Portability

The issue of portability was the major factor
in the creation of RTEMS. Since RTEMS is de-
signed to isolate the hardware dependencies in
the specific board support packages, the real-
time application should be easily ported to any
other processor. The use of RTEMS allows the
development of real-time applications which
can be completely independent of a particular
microprocessor architecture.

16 Chapter 2. Overview

Chapter 2 Section 2.8 RTEMS C User Documentation, Release 4.11.3

2.8 Memory Requirements

Since memory is a critical resource in many
real-time embedded systems, RTEMS was
specifically designed to automatically leave out
all services that are not required from the run-
time environment. Features such as network-
ing, various fileystems, and many other fea-
tures are completely optional. This allows
the application designer the flexibility to tai-
lor RTEMS to most efficiently meet system re-
quirements while still satisfying even the most
stringent memory constraints. As a result, the
size of the RTEMS executive is application de-
pendent.

RTEMS requires RAM to manage each instance
of an RTEMS object that is created. Thus
the more RTEMS objects an application needs,
the more memory that must be reserved. See
Chapter 24 - Configuring a System (page 307).

RTEMS utilizes memory for both code and data
space. Although RTEMS’ data space must be in
RAM, its code space can be located in either
ROM or RAM.

2.8. Memory Requirements 17

RTEMS C User Documentation, Release 4.11.3 Chapter 2 Section 2.9

2.9 Audience

This manual was written for experienced real-
time software developers. Although some
background is provided, it is assumed that the
reader is familiar with the concepts of task
management as well as intertask communi-
cation and synchronization. Since directives,
user related data structures, and examples are
presented in C, a basic understanding of the C
programming language is required to fully un-
derstand the material presented. However, be-
cause of the similarity of the Ada and C RTEMS
implementations, users will find that the use
and behavior of the two implementations is
very similar. A working knowledge of the tar-
get processor is helpful in understanding some
of RTEMS’ features. A thorough understand-
ing of the executive cannot be obtained with-
out studying the entire manual because many
of RTEMS’ concepts and features are interre-
lated. Experienced RTEMS users will find that
the manual organization facilitates its use as a
reference document.

18 Chapter 2. Overview

Chapter 2 Section 2.10 RTEMS C User Documentation, Release 4.11.3

2.10 Conventions

The following conventions are used in this
manual:

• Significant words or phrases as well as all
directive names are printed in bold type.

• Items in bold capital letters are constants
defined by RTEMS. Each language in-
terface provided by RTEMS includes a
file containing the standard set of con-
stants, data types, and structure defini-
tions which can be incorporated into the
user application.

• A number of type definitions are pro-
vided by RTEMS and can be found in
rtems.h.

• The characters “0x” preceding a number
indicates that the number is in hexadec-
imal format. Any other numbers are as-
sumed to be in decimal format.

2.10. Conventions 19

RTEMS C User Documentation, Release 4.11.3 Chapter 2 Section 2.11

2.11 Manual Organization

This first chapter has presented the introduc-
tory and background material for the RTEMS
executive. The remaining chapters of this man-
ual present a detailed description of RTEMS
and the environment, including run time be-
havior, it creates for the user.

A chapter is dedicated to each manager and
provides a detailed discussion of each RTEMS
manager and the directives which it provides.
The presentation format for each directive in-
cludes the following sections:

• Calling sequence

• Directive status codes

• Description

• Notes

The following provides an overview of the re-
mainder of this manual:

Chapter 2:
Key Concepts: presents an introduction to
the ideas which are common across multiple
RTEMS managers.

Chapter 3:
RTEMS Data Types: describes the fundamen-
tal data types shared by the services in the
RTEMS Classic API.

Chapter 4:
Scheduling Concepts: details the various
RTEMS scheduling algorithms and task state
transitions.

Chapter 5:
Initialization Manager: describes the func-
tionality and directives provided by the Ini-
tialization Manager.

Chapter 6:
Task Manager: describes the functionality
and directives provided by the Task Manager.

Chapter 7:
Interrupt Manager: describes the functional-
ity and directives provided by the Interrupt
Manager.

Chapter 8:
Clock Manager: describes the functionality

and directives provided by the Clock Man-
ager.

Chapter 9:
Timer Manager: describes the functionality
and directives provided by the Timer Man-
ager.

Chapter 10:
Rate Monotonic Manager: describes the
functionality and directives provided by the
Rate Monotonic Manager.

Chapter 11:
Semaphore Manager: describes the func-
tionality and directives provided by the
Semaphore Manager.

Chapter 12:
Barrier Manager: describes the functionality
and directives provided by the Barrier Man-
ager.

Chapter 13:
Message Manager: describes the functional-
ity and directives provided by the Message
Manager.

Chapter 14:
Event Manager: describes the functionality
and directives provided by the Event Man-
ager.

Chapter 15:
Signal Manager: describes the functionality
and directives provided by the Signal Man-
ager.

Chapter 16:
Partition Manager: describes the functional-
ity and directives provided by the Partition
Manager.

Chapter 17:
Region Manager: describes the functionality
and directives provided by the Region Man-
ager.

Chapter 18:
Dual-Ported Memory Manager: describes the
functionality and directives provided by the
Dual-Ported Memory Manager.

Chapter 19:
I/O Manager: describes the functionality
and directives provided by the I/O Manager.

20 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS C User Documentation, Release 4.11.3

Chapter 20:
Fatal Error Manager: describes the function-
ality and directives provided by the Fatal Er-
ror Manager.

Chapter 21:
Board Support Packages: defines the func-
tionality required of user-supplied board
support packages.

Chapter 22:
User Extensions: shows the user how to ex-
tend RTEMS to incorporate custom features.

Chapter 23:
Configuring a System: details the process
by which one tailors RTEMS for a particu-
lar single-processor or multiprocessor appli-
cation.

Chapter 24:
Multiprocessing Manager: presents a con-
ceptual overview of the multiprocessing ca-
pabilities provided by RTEMS as well as
describing the Multiprocessing Communica-
tions Interface Layer and Multiprocessing
Manager directives.

Chapter 25:
Stack Bounds Checker: presents the capabil-
ities of the RTEMS task stack checker which
can report stack usage as well as detect
bounds violations.

Chapter 26:
CPU Usage Statistics: presents the capabili-
ties of the CPU Usage statistics gathered on
a per task basis along with the mechanisms
for reporting and resetting the statistics.

Chapter 27:
Object Services: presents a collection of
helper services useful when manipulating
RTEMS objects. These include methods to
assist in obtaining an object’s name in print-
able form. Additional services are provided
to decompose an object Id and determine
which API and object class it belongs to.

Chapter 28:
Chains: presents the methods provided to
build, iterate and manipulate doubly-linked
chains. This manager makes the chain im-
plementation used internally by RTEMS to
user space applications.

Chapter 29:
Timespec Helpers: presents a set of helper
services useful when manipulating POSIX
struct timespec instances.

Chapter 30:
Constant Bandwidth Server Scheduler API.

Chapter 31:
Directive Status Codes: provides a definition
of each of the directive status codes refer-
enced in this manual.

Chapter 32:
Example Application: provides a template
for simple RTEMS applications.

Chapter 33:
Glossary: defines terms used throughout this
manual.

2.11. Manual Organization 21

RTEMS C User Documentation, Release 4.11.3 Chapter 2 Section 2.11

22 Chapter 2. Overview

CHAPTER

THREE

KEY CONCEPTS

23

RTEMS C User Documentation, Release 4.11.3 Chapter 3 Section 3.1

3.1 Introduction

The facilities provided by RTEMS are built
upon a foundation of very powerful concepts.
These concepts must be understood before
the application developer can efficiently utilize
RTEMS. The purpose of this chapter is to famil-
iarize one with these concepts.

24 Chapter 3. Key Concepts

Chapter 3 Section 3.2 RTEMS C User Documentation, Release 4.11.3

3.2 Objects

RTEMS provides directives which can be used
to dynamically create, delete, and manipulate
a set of predefined object types. These types
include tasks, message queues, semaphores,
memory regions, memory partitions, timers,
ports, and rate monotonic periods. The object-
oriented nature of RTEMS encourages the cre-
ation of modular applications built upon re-
usable “building block” routines.

All objects are created on the local node as re-
quired by the application and have an RTEMS
assigned ID. All objects have a user-assigned
name. Although a relationship exists between
an object’s name and its RTEMS assigned ID,
the name and ID are not identical. Object
names are completely arbitrary and selected
by the user as a meaningful “tag” which may
commonly reflect the object’s use in the appli-
cation. Conversely, object IDs are designed to
facilitate efficient object manipulation by the
executive.

3.2.1 Object Names

An object name is an unsigned thirty-two bit
entity associated with the object by the user.
The data type rtems_name is used to store ob-
ject names... index:: rtems_build_name

Although not required by RTEMS, object
names are often composed of four ASCII char-
acters which help identify that object. For ex-
ample, a task which causes a light to blink
might be called “LITE”. The rtems_build_name
routine is provided to build an object name
from four ASCII characters. The following ex-
ample illustrates this:

1 rtems_name my_name;
2 my_name = rtems_build_name('L', 'I', 'T',␣

→˓'E');

However, it is not required that the application
use ASCII characters to build object names.
For example, if an application requires one-
hundred tasks, it would be difficult to assign
meaningful ASCII names to each task. A more
convenient approach would be to name them

the binary values one through one-hundred,
respectively.

RTEMS provides a helper routine,
rtems_object_get_name, which can be used to
obtain the name of any RTEMS object using
just its ID. This routine attempts to convert the
name into a printable string.

The following example illustrates the use of
this method to print an object name:

1 #include <rtems.h>
2 #include <rtems/bspIo.h>
3 void print_name(rtems_id id)
4 {
5 char buffer[10]; /* name assumed to␣

→˓be 10 characters or less */
6 char *result;
7 result = rtems_object_get_name(id, ␣

→˓sizeof(buffer), buffer);
8 printk("ID=0x%08x name=%s\n", id, ␣

→˓((result) ? result : "no name"));
9 }

3.2.2 Object IDs

An object ID is a unique unsigned integer value
which uniquely identifies an object instance.
Object IDs are passed as arguments to many
directives in RTEMS and RTEMS translates the
ID to an internal object pointer. The efficient
manipulation of object IDs is critical to the
performance of RTEMS services. Because of
this, there are two object Id formats defined.
Each target architecture specifies which format
it will use. There is a thirty-two bit format
which is used for most of the supported archi-
tectures and supports multiprocessor configu-
rations. There is also a simpler sixteen bit for-
mat which is appropriate for smaller target ar-
chitectures and does not support multiproces-
sor configurations.

3.2.2.1 Thirty-Two Object ID Format

The thirty-two bit format for an object ID is
composed of four parts: API, object class,
node, and index. The data type rtems_id is
used to store object IDs.

3.2. Objects 25

RTEMS C User Documentation, Release 4.11.3 Chapter 3 Section 3.2

1 31 27 26 24 23 16 15 ␣
→˓ 0

2 +---------+-------+--------------+----------
→˓---------------------+

3 | | | | ␣
→˓ |

4 | Class | API | Node | ␣
→˓ Index |

5 | | | | ␣
→˓ |

6 +---------+-------+--------------+----------
→˓---------------------+

The most significant five bits are the object
class. The next three bits indicate the API to
which the object class belongs. The next eight
bits (16-23) are the number of the node on
which this object was created. The node num-
ber is always one (1) in a single processor sys-
tem. The least significant sixteen bits form an
identifier within a particular object type. This
identifier, called the object index, ranges in
value from 1 to the maximum number of ob-
jects configured for this object type.

3.2.2.2 Sixteen Bit Object ID Format

The sixteen bit format for an object ID is com-
posed of three parts: API, object class, and in-
dex. The data type rtems_id is used to store
object IDs.

1 15 11 10 8 7 0
2 +---------+-------+--------------+
3 | | | |
4 | Class | API | Index |
5 | | | |
6 +---------+-------+--------------+

The sixteen-bit format is designed to be as sim-
ilar as possible to the thrity-two bit format.
The differences are limited to the eliminata-
tion of the node field and reduction of the
index field from sixteen-bits to 8-bits. Thus
the sixteen bit format only supports up to
255 object instances per API/Class combina-
tion and single processor systems. As this for-
mat is typically utilized by sixteen-bit proces-
sors with limited address space, this is more
than enough object instances.

3.2.3 Object ID Description

The components of an object ID make it pos-
sible to quickly locate any object in even the
most complicated multiprocessor system. Ob-
ject ID’s are associated with an object by
RTEMS when the object is created and the cor-
responding ID is returned by the appropriate
object create directive. The object ID is re-
quired as input to all directives involving ob-
jects, except those which create an object or
obtain the ID of an object.

The object identification directives can be used
to dynamically obtain a particular object’s ID
given its name. This mapping is accomplished
by searching the name table associated with
this object type. If the name is non-unique,
then the ID associated with the first occurrence
of the name will be returned to the application.
Since object IDs are returned when the object
is created, the object identification directives
are not necessary in a properly designed single
processor application.

In addition, services are provided to portably
examine the subcomponents of an RTEMS ID.
These services are described in detail later in
this manual but are prototyped as follows:

1 uint32_t rtems_object_id_get_api(rtems_id ␣
→˓);

2 uint32_t rtems_object_id_get_class(rtems_
→˓id);

3 uint32_t rtems_object_id_get_node(rtems_id␣
→˓);

4 uint32_t rtems_object_id_get_index(rtems_
→˓id);

An object control block is a data structure de-
fined by RTEMS which contains the informa-
tion necessary to manage a particular object
type. For efficiency reasons, the format of each
object type’s control block is different. How-
ever, many of the fields are similar in function.
The number of each type of control block is
application dependent and determined by the
values specified in the user’s Configuration Ta-
ble. An object control block is allocated at ob-
ject create time and freed when the object is
deleted. With the exception of user extension
routines, object control blocks are not directly
manipulated by user applications.

26 Chapter 3. Key Concepts

Chapter 3 Section 3.3 RTEMS C User Documentation, Release 4.11.3

3.3 Communication and Synchro-
nization

In real-time multitasking applications, the abil-
ity for cooperating execution threads to com-
municate and synchronize with each other is
imperative. A real-time executive should pro-
vide an application with the following capabil-
ities:

• Data transfer between cooperating tasks

• Data transfer between tasks and ISRs

• Synchronization of cooperating tasks

• Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide
some form of communication and/or synchro-
nization. However, managers dedicated specif-
ically to communication and synchronization
provide well established mechanisms which di-
rectly map to the application’s varying needs.
This level of flexibility allows the application
designer to match the features of a particu-
lar manager with the complexity of commu-
nication and synchronization required. The
following managers were specifically designed
for communication and synchronization:

• Semaphore

• Message Queue

• Event

• Signal

The semaphore manager supports mutual ex-
clusion involving the synchronization of access
to one or more shared user resources. Bi-
nary semaphores may utilize the optional pri-
ority inheritance algorithm to avoid the prob-
lem of priority inversion. The message man-
ager supports both communication and syn-
chronization, while the event manager primar-
ily provides a high performance synchroniza-
tion mechanism. The signal manager supports
only asynchronous communication and is typ-
ically used for exception handling.

3.3. Communication and Synchronization 27

RTEMS C User Documentation, Release 4.11.3 Chapter 3 Section 3.4

3.4 Time

The development of responsive real-time ap-
plications requires an understanding of how
RTEMS maintains and supports time-related
operations. The basic unit of time in RTEMS
is known as a tick. The frequency of clock ticks
is completely application dependent and deter-
mines the granularity and accuracy of all inter-
val and calendar time operations.

By tracking time in units of ticks, RTEMS is ca-
pable of supporting interval timing functions
such as task delays, timeouts, timeslicing, the
delayed execution of timer service routines,
and the rate monotonic scheduling of tasks. An
interval is defined as a number of ticks relative
to the current time. For example, when a task
delays for an interval of ten ticks, it is implied
that the task will not execute until ten clock
ticks have occurred. All intervals are specified
using data type rtems_interval.

A characteristic of interval timing is that the
actual interval period may be a fraction of a
tick less than the interval requested. This oc-
curs because the time at which the delay timer
is set up occurs at some time between two
clock ticks. Therefore, the first countdown tick
occurs in less than the complete time interval
for a tick. This can be a problem if the clock
granularity is large.

The rate monotonic scheduling algorithm is a
hard real-time scheduling methodology. This
methodology provides rules which allows one
to guarantee that a set of independent periodic
tasks will always meet their deadlines even un-
der transient overload conditions. The rate
monotonic manager provides directives built
upon the Clock Manager’s interval timer sup-
port routines.

Interval timing is not sufficient for the many
applications which require that time be kept
in wall time or true calendar form. Conse-
quently, RTEMS maintains the current date
and time. This allows selected time operations
to be scheduled at an actual calendar date and
time. For example, a task could request to de-
lay until midnight on New Year’s Eve before
lowering the ball at Times Square. The data
type rtems_time_of_day is used to specify cal-

endar time in RTEMS services. See Chapter
9 Section 2.2 - Time and Date Data Structures
(page 111).

Obviously, the directives which use intervals or
wall time cannot operate without some exter-
nal mechanism which provides a periodic clock
tick. This clock tick is typically provided by a
real time clock or counter/timer device.

28 Chapter 3. Key Concepts

Chapter 3 Section 3.5 RTEMS C User Documentation, Release 4.11.3

3.5 Memory Management

RTEMS memory management facilities can be
grouped into two classes: dynamic memory
allocation and address translation. Dynamic
memory allocation is required by applications
whose memory requirements vary through the
application’s course of execution. Address
translation is needed by applications which
share memory with another CPU or an intel-
ligent Input/Output processor. The following
RTEMS managers provide facilities to manage
memory:

• Region

• Partition

• Dual Ported Memory

RTEMS memory management features allow
an application to create simple memory pools
of fixed size buffers and/or more complex
memory pools of variable size segments. The
partition manager provides directives to man-
age and maintain pools of fixed size entities
such as resource control blocks. Alternatively,
the region manager provides a more general
purpose memory allocation scheme that sup-
ports variable size blocks of memory which
are dynamically obtained and freed by the ap-
plication. The dual-ported memory manager
provides executive support for address transla-
tion between internal and external dual-ported
RAM address space.

3.5. Memory Management 29

RTEMS C User Documentation, Release 4.11.3 Chapter 3 Section 3.5

30 Chapter 3. Key Concepts

CHAPTER

FOUR

RTEMS DATA TYPES

31

RTEMS C User Documentation, Release 4.11.3 Chapter 4 Section 4.1

4.1 Introduction

This chapter contains a complete list of the
RTEMS primitive data types in alphabetical or-
der. This is intended to be an overview and the
user is encouraged to look at the appropriate
chapters in the manual for more information
about the usage of the various data types.

32 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS C User Documentation, Release 4.11.3

4.2 List of Data Types

The following is a complete list of the RTEMS
primitive data types in alphabetical order:

rtems_address
The data type used to manage addresses. It
is equivalent to a void * pointer.

rtems_asr
The return type for an RTEMS ASR.

rtems_asr_entry
The address of the entry point to an RTEMS
ASR.

rtems_attribute
The data type used to manage the attributes
for RTEMS objects. It is primarily used as an
argument to object create routines to specify
characteristics of the new object.

rtems_boolean
May only take on the values of TRUE and
FALSE. This type is deprecated. Use bool in-
stead.

rtems_context
The CPU dependent data structure used to
manage the integer and system register por-
tion of each task’s context.

rtems_context_fp
The CPU dependent data structure used to
manage the floating point portion of each
task’s context.

rtems_device_driver
The return type for a RTEMS device driver
routine.

rtems_device_driver_entry
The entry point to a RTEMS device driver
routine.

rtems_device_major_number
The data type used to manage device major
numbers.

rtems_device_minor_number
The data type used to manage device minor
numbers.

rtems_double
The RTEMS data type that corresponds to
double precision floating point on the tar-

get hardware. This type is deprecated. Use
double instead.

rtems_event_set
The data type used to manage and manipu-
late RTEMS event sets with the Event Man-
ager.

rtems_extension
The return type for RTEMS user extension
routines.

rtems_fatal_extension
The entry point for a fatal error user exten-
sion handler routine.

rtems_id
The data type used to manage and manipu-
late RTEMS object IDs.

rtems_interrupt_frame
The data structure that defines the format of
the interrupt stack frame as it appears to a
user ISR. This data structure may not be de-
fined on all ports.

rtems_interrupt_level
The data structure used with
the rtems_interrupt_disable,
rtems_interrupt_enable, and
rtems_interrupt_flash routines. This
data type is CPU dependent and usually
corresponds to the contents of the processor
register containing the interrupt mask level.

rtems_interval
The data type used to manage and ma-
nipulate time intervals. Intervals are non-
negative integers used to measure the length
of time in clock ticks.

rtems_isr
The return type of a function implementing
an RTEMS ISR.

rtems_isr_entry
The address of the entry point to an RTEMS
ISR. It is equivalent to the entry point of the
function implementing the ISR.

rtems_mp_packet_classes
The enumerated type which specifies the cat-
egories of multiprocessing messages. For ex-
ample, one of the classes is for messages that
must be processed by the Task Manager.

4.2. List of Data Types 33

RTEMS C User Documentation, Release 4.11.3 Chapter 4 Section 4.2

rtems_mode
The data type used to manage and dynam-
ically manipulate the execution mode of an
RTEMS task.

rtems_mpci_entry
The return type of an RTEMS MPCI routine.

rtems_mpci_get_packet_entry
The address of the entry point to the get
packet routine for an MPCI implementation.

rtems_mpci_initialization_entry
The address of the entry point to the initial-
ization routine for an MPCI implementation.

rtems_mpci_receive_packet_entry
The address of the entry point to the receive
packet routine for an MPCI implementation.

rtems_mpci_return_packet_entry
The address of the entry point to the return
packet routine for an MPCI implementation.

rtems_mpci_send_packet_entry
The address of the entry point to the send
packet routine for an MPCI implementation.

rtems_mpci_table
The data structure containing the configura-
tion information for an MPCI.

rtems_name
The data type used to contain the name
of a Classic API object. It is an un-
signed thirty-two bit integer which can be
treated as a numeric value or initialized us-
ing rtems_build_name to contain four ASCII
characters.

rtems_option
The data type used to specify which behav-
ioral options the caller desires. It is com-
monly used with potentially blocking direc-
tives to specify whether the caller is willing
to block or return immediately with an error
indicating that the resource was not avail-
able.

rtems_packet_prefix
The data structure that defines the first bytes
in every packet sent between nodes in an
RTEMS multiprocessor system. It contains
routing information that is expected to be
used by the MPCI layer.

rtems_signal_set
The data type used to manage and manipu-
late RTEMS signal sets with the Signal Man-
ager.

int8_t
The C99 data type that corresponds to
signed eight bit integers. This data type is
defined by RTEMS in a manner that ensures
it is portable across different target proces-
sors.

int16_t
The C99 data type that corresponds to
signed sixteen bit integers. This data type is
defined by RTEMS in a manner that ensures
it is portable across different target proces-
sors.

int32_t
The C99 data type that corresponds to
signed thirty-two bit integers. This data type
is defined by RTEMS in a manner that en-
sures it is portable across different target
processors.

int64_t
The C99 data type that corresponds to
signed sixty-four bit integers. This data type
is defined by RTEMS in a manner that en-
sures it is portable across different target
processors.

rtems_single
The RTEMS data type that corresponds to
single precision floating point on the tar-
get hardware. This type is deprecated. Use
float instead.

rtems_status_codes
The return type for most RTEMS services.
This is an enumerated type of approximately
twenty-five values. In general, when a ser-
vice returns a particular status code, it indi-
cates that a very specific error condition has
occurred.

rtems_task
The return type for an RTEMS Task.

rtems_task_argument
The data type for the argument passed to
each RTEMS task. In RTEMS 4.7 and older,
this is an unsigned thirty-two bit integer. In
RTEMS 4.8 and newer, this is based upon the

34 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS C User Documentation, Release 4.11.3

C99 type uintptr_t which is guaranteed to
be an integer large enough to hold a pointer
on the target architecture.

rtems_task_begin_extension
The entry point for a task beginning execu-
tion user extension handler routine.

rtems_task_create_extension
The entry point for a task creation execution
user extension handler routine.

rtems_task_delete_extension
The entry point for a task deletion user ex-
tension handler routine.

rtems_task_entry
The address of the entry point to an RTEMS
ASR. It is equivalent to the entry point of the
function implementing the ASR.

rtems_task_exitted_extension
The entry point for a task exitted user exten-
sion handler routine.

rtems_task_priority
The data type used to manage and manipu-
late task priorities.

rtems_task_restart_extension
The entry point for a task restart user exten-
sion handler routine.

rtems_task_start_extension
The entry point for a task start user exten-
sion handler routine.

rtems_task_switch_extension
The entry point for a task context switch user
extension handler routine.

rtems_tcb
The data structure associated with each task
in an RTEMS system.

rtems_time_of_day
The data structure used to manage and ma-
nipulate calendar time in RTEMS.

rtems_timer_service_routine
The return type for an RTEMS Timer Service
Routine.

rtems_timer_service_routine_entry
The address of the entry point to an RTEMS
TSR. It is equivalent to the entry point of the
function implementing the TSR.

rtems_vector_number
The data type used to manage and manipu-
late interrupt vector numbers.

uint8_t
The C99 data type that corresponds to un-
signed eight bit integers. This data type is
defined by RTEMS in a manner that ensures
it is portable across different target proces-
sors.

uint16_t
The C99 data type that corresponds to un-
signed sixteen bit integers. This data type is
defined by RTEMS in a manner that ensures
it is portable across different target proces-
sors.

uint32_t
The C99 data type that corresponds to un-
signed thirty-two bit integers. This data type
is defined by RTEMS in a manner that en-
sures it is portable across different target
processors.

uint64_t
The C99 data type that corresponds to un-
signed sixty-four bit integers. This data type
is defined by RTEMS in a manner that en-
sures it is portable across different target
processors.

uintptr_t
The C99 data type that corresponds to the
unsigned integer type that is of sufficient size
to represent addresses as unsigned integers.
This data type is defined by RTEMS in a man-
ner that ensures it is portable across different
target processors.

4.2. List of Data Types 35

RTEMS C User Documentation, Release 4.11.3 Chapter 4 Section 4.2

36 Chapter 4. RTEMS Data Types

CHAPTER

FIVE

SCHEDULING CONCEPTS

37

RTEMS C User Documentation, Release 4.11.3 Chapter 5 Section 5.1

5.1 Introduction

The concept of scheduling in real-time systems
dictates the ability to provide immediate re-
sponse to specific external events, particularly
the necessity of scheduling tasks to run within
a specified time limit after the occurrence of
an event. For example, software embedded in
life-support systems used to monitor hospital
patients must take instant action if a change in
the patient’s status is detected.

The component of RTEMS responsible for pro-
viding this capability is appropriately called
the scheduler. The scheduler’s sole purpose is
to allocate the all important resource of pro-
cessor time to the various tasks competing for
attention.

38 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS C User Documentation, Release 4.11.3

5.2 Scheduling Algorithms

RTEMS provides a plugin framework which al-
lows it to support multiple scheduling algo-
rithms. RTEMS now includes multiple schedul-
ing algorithms in the SuperCore and the user
can select which of these they wish to use in
their application. In addition, the user can im-
plement their own scheduling algorithm and
configure RTEMS to use it.

Supporting multiple scheduling algorithms
gives the end user the option to select the al-
gorithm which is most appropriate to their use
case. Most real-time operating systems sched-
ule tasks using a priority based algorithm, pos-
sibly with preemption control. The classic
RTEMS scheduling algorithm which was the
only algorithm available in RTEMS 4.10 and
earlier, is a priority based scheduling algo-
rithm. This scheduling algoritm is suitable for
single core (e.g. non-SMP) systems and is now
known as the Deterministic Priority Scheduler.
Unless the user configures another scheduling
algorithm, RTEMS will use this on single core
systems.

5.2.1 Priority Scheduling

When using priority based scheduling, RTEMS
allocates the processor using a priority-based,
preemptive algorithm augmented to provide
round-robin characteristics within individual
priority groups. The goal of this algorithm is
to guarantee that the task which is executing
on the processor at any point in time is the one
with the highest priority among all tasks in the
ready state.

When a task is added to the ready chain, it is
placed behind all other tasks of the same pri-
ority. This rule provides a round-robin within
priority group scheduling characteristic. This
means that in a group of equal priority tasks,
tasks will execute in the order they become
ready or FIFO order. Even though there are
ways to manipulate and adjust task priorities,
the most important rule to remember is:

Note: Priority based scheduling algorithms
will always select the highest priority task that

is ready to run when allocating the processor
to a task.

Priority scheduling is the most commonly used
scheduling algorithm. It should be used by
applications in which multiple tasks contend
for CPU time or other resources and there is a
need to ensure certain tasks are given priority
over other tasks.

There are a few common methods of ac-
complishing the mechanics of this algorithm.
These ways involve a list or chain of tasks in
the ready state.

• The least efficient method is to randomly
place tasks in the ready chain forcing the
scheduler to scan the entire chain to de-
termine which task receives the proces-
sor.

• A more efficient method is to schedule
the task by placing it in the proper place
on the ready chain based on the desig-
nated scheduling criteria at the time it
enters the ready state. Thus, when the
processor is free, the first task on the
ready chain is allocated the processor.

• Another mechanism is to maintain a list
of FIFOs per priority. When a task is
readied, it is placed on the rear of the
FIFO for its priority. This method is often
used with a bitmap to assist in locating
which FIFOs have ready tasks on them.

RTEMS currently includes multiple priority
based scheduling algorithms as well as other
algorithms which incorporate deadline. Each
algorithm is discussed in the following sec-
tions.

5.2.2 Deterministic Priority Scheduler

This is the scheduler implementation which
has always been in RTEMS. After the 4.10
release series, it was factored into pluggable
scheduler selection. It schedules tasks using a
priority based algorithm which takes into ac-
count preemption. It is implemented using
an array of FIFOs with a FIFO per priority.
It maintains a bitmap which is used to track
which priorities have ready tasks.

5.2. Scheduling Algorithms 39

RTEMS C User Documentation, Release 4.11.3 Chapter 5 Section 5.2

This algorithm is deterministic (e.g. pre-
dictable and fixed) in execution time. This
comes at the cost of using slightly over three
(3) kilobytes of RAM on a system configured
to support 256 priority levels.

This scheduler is only aware of a single core.

5.2.3 Simple Priority Scheduler

This scheduler implementation has the same
behaviour as the Deterministic Priority Sched-
uler but uses only one linked list to manage all
ready tasks. When a task is readied, a linear
search of that linked list is performed to deter-
mine where to insert the newly readied task.

This algorithm uses much less RAM than the
Deterministic Priority Scheduler but is O(n)
where n is the number of ready tasks. In a
small system with a small number of tasks,
this will not be a performance issue. Reducing
RAM consumption is often critical in small sys-
tems which are incapable of supporting a large
number of tasks.

This scheduler is only aware of a single core.

5.2.4 Simple SMP Priority Scheduler

This scheduler is based upon the Simple Pri-
ority Scheduler and is designed to have the
same behaviour on a single core system. But
this scheduler is capable of scheduling threads
across multiple cores in an SMP system. When
given a choice of replacing one of two threads
at equal priority on different cores, this algo-
rithm favors replacing threads which are pre-
emptible and have executed the longest.

This algorithm is non-deterministic. When
scheduling, it must consider which tasks are
to be executed on each core while avoiding su-
perfluous task migrations.

5.2.5 Earliest Deadline First Scheduler

This is an alternative scheduler in RTEMS for
single core applications. The primary EDF ad-
vantage is high total CPU utilization (theoreti-

cally up to 100%). It assumes that tasks have
priorities equal to deadlines.

This EDF is initially preemptive, however, indi-
vidual tasks may be declared not-preemptive.
Deadlines are declared using only Rate Mono-
tonic manager which goal is to handle periodic
behavior. Period is always equal to deadline.
All ready tasks reside in a single ready queue
implemented using a red-black tree.

This implementation of EDF schedules two dif-
ferent types of task priority types while each
task may switch between the two types within
its execution. If a task does have a deadline
declared using the Rate Monotonic manager,
the task is deadline-driven and its priority is
equal to deadline. On the contrary if a task
does not have any deadline or the deadline is
cancelled using the Rate Monotonic manager,
the task is considered a background task with
priority equal to that assigned upon initializa-
tion in the same manner as for priority sched-
uler. Each background task is of a lower im-
portance than each deadline-driven one and is
scheduled when no deadline-driven task and
no higher priority background task is ready to
run.

Every deadline-driven scheduling algorithm
requires means for tasks to claim a dead-
line. The Rate Monotonic Manager is re-
sponsible for handling periodic execution. In
RTEMS periods are equal to deadlines, thus
if a task announces a period, it has to be fin-
ished until the end of this period. The call
of rtems_rate_monotonic_period passes the
scheduler the length of oncoming deadline.
Moreover, the rtems_rate_monotonic_cancel
and rtems_rate_monotonic_delete calls clear
the deadlines assigned to the task.

5.2.6 Constant Bandwidth Server
Scheduling (CBS)

This is an alternative scheduler in RTEMS for
single core applications. The CBS is a budget
aware extension of EDF scheduler. The main
goal of this scheduler is to ensure temporal iso-
lation of tasks meaning that a task’s execution
in terms of meeting deadlines must not be in-
fluenced by other tasks as if they were run on

40 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS C User Documentation, Release 4.11.3

multiple independent processors.

Each task can be assigned a server (current
implementation supports only one task per
server). The server is characterized by pe-
riod (deadline) and computation time (bud-
get). The ratio budget/period yields band-
width, which is the fraction of CPU to be re-
served by the scheduler for each subsequent
period.

The CBS is equipped with a set of rules applied
to tasks attached to servers ensuring that dead-
line miss because of another task cannot occur.
In case a task breaks one of the rules, its prior-
ity is pulled to background until the end of its
period and then restored again. The rules are:

• Task cannot exceed its registered budget,

• Task cannot be unblocked when a ra-
tio between remaining budget and re-
maining deadline is higher than declared
bandwidth.

The CBS provides an extensive API. Unlike
EDF, the rtems_rate_monotonic_period does
not declare a deadline because it is carried out
using CBS API. This call only announces next
period.

5.2. Scheduling Algorithms 41

RTEMS C User Documentation, Release 4.11.3 Chapter 5 Section 5.3

5.3 Scheduling Modification Mech-
anisms

RTEMS provides four mechanisms which allow
the user to alter the task scheduling decisions:

• user-selectable task priority level

• task preemption control

• task timeslicing control

• manual round-robin selection

Each of these methods provides a powerful
capability to customize sets of tasks to sat-
isfy the unique and particular requirements
encountered in custom real-time applications.
Although each mechanism operates indepen-
dently, there is a precedence relationship
which governs the effects of scheduling mod-
ifications. The evaluation order for schedul-
ing characteristics is always priority, preemp-
tion mode, and timeslicing. When reading the
descriptions of timeslicing and manual round-
robin it is important to keep in mind that pre-
emption (if enabled) of a task by higher prior-
ity tasks will occur as required, overriding the
other factors presented in the description.

5.3.1 Task Priority and Scheduling

The most significant task scheduling modifica-
tion mechanism is the ability for the user to
assign a priority level to each individual task
when it is created and to alter a task’s priority
at run-time. RTEMS supports up to 255 prior-
ity levels. Level 255 is the lowest priority and
level 1 is the highest.

5.3.2 Preemption

Another way the user can alter the basic
scheduling algorithm is by manipulating the
preemption mode flag (RTEMS_PREEMPT_MASK)
of individual tasks. If preemption is disabled
for a task (RTEMS_NO_PREEMPT), then the task
will not relinquish control of the processor un-
til it terminates, blocks, or re-enables preemp-
tion. Even tasks which become ready to run
and possess higher priority levels will not be
allowed to execute. Note that the preemption

setting has no effect on the manner in which a
task is scheduled. It only applies once a task
has control of the processor.

5.3.3 Timeslicing

Timeslicing or round-robin scheduling is an
additional method which can be used to al-
ter the basic scheduling algorithm. Like pre-
emption, timeslicing is specified on a task
by task basis using the timeslicing mode
flag (RTEMS_TIMESLICE_MASK). If timeslicing is
enabled for a task (RTEMS_TIMESLICE), then
RTEMS will limit the amount of time the task
can execute before the processor is allocated to
another task. Each tick of the real-time clock
reduces the currently running task’s timeslice.
When the execution time equals the timeslice,
RTEMS will dispatch another task of the same
priority to execute. If there are no other tasks
of the same priority ready to execute, then the
current task is allocated an additional timeslice
and continues to run. Remember that a higher
priority task will preempt the task (unless pre-
emption is disabled) as soon as it is ready to
run, even if the task has not used up its entire
timeslice.

5.3.4 Manual Round-Robin

The final mechanism for altering the RTEMS
scheduling algorithm is called manual round-
robin. Manual round-robin is invoked by using
the rtems_task_wake_after directive with a
time interval of RTEMS_YIELD_PROCESSOR. This
allows a task to give up the processor and be
immediately returned to the ready chain at the
end of its priority group. If no other tasks of
the same priority are ready to run, then the
task does not lose control of the processor.

42 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.4 RTEMS C User Documentation, Release 4.11.3

5.4 Dispatching Tasks

The dispatcher is the RTEMS component re-
sponsible for allocating the processor to a
ready task. In order to allocate the processor
to one task, it must be deallocated or retrieved
from the task currently using it. This involves
a concept called a context switch. To perform
a context switch, the dispatcher saves the con-
text of the current task and restores the context
of the task which has been allocated to the pro-
cessor. Saving and restoring a task’s context
is the storing/loading of all the essential infor-
mation about a task to enable it to continue ex-
ecution without any effects of the interruption.
For example, the contents of a task’s register
set must be the same when it is given the pro-
cessor as they were when it was taken away.
All of the information that must be saved or
restored for a context switch is located either
in the TCB or on the task’s stacks.

Tasks that utilize a numeric coprocessor and
are created with the RTEMS_FLOATING_POINT at-
tribute require additional operations during a
context switch. These additional operations
are necessary to save and restore the floating
point context of RTEMS_FLOATING_POINT tasks.
To avoid unnecessary save and restore opera-
tions, the state of the numeric coprocessor is
only saved when a RTEMS_FLOATING_POINT task
is dispatched and that task was not the last task
to utilize the coprocessor.

5.4. Dispatching Tasks 43

RTEMS C User Documentation, Release 4.11.3 Chapter 5 Section 5.5

5.5 Task State Transitions

Tasks in an RTEMS system must always be in
one of the five allowable task states. These
states are: executing, ready, blocked, dormant,
and non-existent.

A task occupies the non-existent state before a
rtems_task_create has been issued on its be-
half. A task enters the non-existent state from
any other state in the system when it is deleted
with the rtems_task_delete directive. While a
task occupies this state it does not have a TCB
or a task ID assigned to it; therefore, no other
tasks in the system may reference this task.

When a task is created via the
rtems_task_create directive it enters the
dormant state. This state is not entered
through any other means. Although the
task exists in the system, it cannot actively
compete for system resources. It will remain
in the dormant state until it is started via the
rtems_task_start directive, at which time
it enters the ready state. The task is now
permitted to be scheduled for the processor
and to compete for other system resources.

A task occupies the blocked state whenever
it is unable to be scheduled to run. A run-
ning task may block itself or be blocked by
other tasks in the system. The running task
blocks itself through voluntary operations that
cause the task to wait. The only way a task
can block a task other than itself is with the
rtems_task_suspend directive. A task enters
the blocked state due to any of the following
conditions:

• A task issues a rtems_task_suspend di-
rective which blocks either itself or an-

other task in the system.

• The running task issues a
rtems_barrier_wait directive.

• The running task issues a
rtems_message_queue_receive di-
rective with the wait option and the
message queue is empty.

• The running task issues an
rtems_event_receive directive with
the wait option and the currently pend-
ing events do not satisfy the request.

• The running task issues a
rtems_semaphore_obtain directive
with the wait option and the requested
semaphore is unavailable.

• The running task issues a
rtems_task_wake_after directive which
blocks the task for the given time in-
terval. If the time interval specified is
zero, the task yields the processor and
remains in the ready state.

• The running task issues a
rtems_task_wake_when directive which
blocks the task until the requested date
and time arrives.

• The running task issues a
rtems_rate_monotonic_period di-
rective and must wait for the specified
rate monotonic period to conclude.

• The running task issues a
rtems_region_get_segment directive
with the wait option and there is not
an available segment large enough to
satisfy the task’s request.

A blocked task may also be suspended. There-
fore, both the suspension and the blocking
condition must be removed before the task be-
comes ready to run again.

A task occupies the ready state when it is able
to be scheduled to run, but currently does not
have control of the processor. Tasks of the
same or higher priority will yield the processor
by either becoming blocked, completing their
timeslice, or being deleted. All tasks with the
same priority will execute in FIFO order. A task

44 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS C User Documentation, Release 4.11.3

enters the ready state due to any of the follow-
ing conditions:

• A running task issues a
rtems_task_resume directive for a
task that is suspended and the task is not
blocked waiting on any resource.

• A running task issues a
rtems_message_queue_send,
rtems_message_queue_broadcast, or
a rtems_message_queue_urgent direc-
tive which posts a message to the queue
on which the blocked task is waiting.

• A running task issues an
rtems_event_send directive which
sends an event condition to a task
which is blocked waiting on that event
condition.

• A running task issues a
rtems_semaphore_release directive
which releases the semaphore on which
the blocked task is waiting.

• A timeout interval expires for a task
which was blocked by a call to the
rtems_task_wake_after directive.

• A timeout period expires for a task
which blocked by a call to the
rtems_task_wake_when directive.

• A running task issues a
rtems_region_return_segment di-
rective which releases a segment to the
region on which the blocked task is
waiting and a resulting segment is large
enough to satisfy the task’s request.

• A rate monotonic period expires for
a task which blocked by a call to
the rtems_rate_monotonic_period di-
rective.

• A timeout interval expires for a task
which was blocked waiting on a mes-
sage, event, semaphore, or segment with
a timeout specified.

• A running task issues a directive which
deletes a message queue, a semaphore,
or a region on which the blocked task is
waiting.

• A running task issues a
rtems_task_restart directive for
the blocked task.

• The running task, with its preemption
mode enabled, may be made ready by is-
suing any of the directives that may un-
block a task with a higher priority. This
directive may be issued from the running
task itself or from an ISR. A ready task
occupies the executing state when it has
control of the CPU. A task enters the ex-
ecuting state due to any of the following
conditions:

• The task is the highest priority ready task
in the system.

• The running task blocks and the task is
next in the scheduling queue. The task
may be of equal priority as in round-
robin scheduling or the task may pos-
sess the highest priority of the remaining
ready tasks.

• The running task may reenable its pre-
emption mode and a task exists in the
ready queue that has a higher priority
than the running task.

• The running task lowers its own priority
and another task is of higher priority as
a result.

• The running task raises the priority of a
task above its own and the running task
is in preemption mode.

5.5. Task State Transitions 45

RTEMS C User Documentation, Release 4.11.3 Chapter 5 Section 5.5

46 Chapter 5. Scheduling Concepts

CHAPTER

SIX

INITIALIZATION MANAGER

47

RTEMS C User Documentation, Release 4.11.3 Chapter 6 Section 6.1

6.1 Introduction

The Initialization Manager is responsible for
initiating and shutting down RTEMS. Initiating
RTEMS involves creating and starting all con-
figured initialization tasks, and for invoking
the initialization routine for each user-supplied
device driver. In a multiprocessor configura-
tion, this manager also initializes the interpro-
cessor communications layer. The directives
provided by the Initialization Manager are:

• rtems_initialize_executive (page 54) - Ini-
tialize RTEMS

• rtems_shutdown_executive (page 55) -
Shutdown RTEMS

48 Chapter 6. Initialization Manager

Chapter 6 Section 6.2 RTEMS C User Documentation, Release 4.11.3

6.2 Background

6.2.1 Initialization Tasks

Initialization task(s) are the mechanism by
which RTEMS transfers initial control to the
user’s application. Initialization tasks differ
from other application tasks in that they are
defined in the User Initialization Tasks Ta-
ble and automatically created and started by
RTEMS as part of its initialization sequence.
Since the initialization tasks are scheduled us-
ing the same algorithm as all other RTEMS
tasks, they must be configured at a priority and
mode which will ensure that they will com-
plete execution before other application tasks
execute. Although there is no upper limit on
the number of initialization tasks, an applica-
tion is required to define at least one.

A typical initialization task will create and start
the static set of application tasks. It may also
create any other objects used by the applica-
tion. Initialization tasks which only perform
initialization should delete themselves upon
completion to free resources for other tasks.
Initialization tasks may transform themselves
into a “normal” application task. This trans-
formation typically involves changing priority
and execution mode. RTEMS does not auto-
matically delete the initialization tasks.

6.2.2 System Initialization

System Initialization begins with board reset
and continues through RTEMS initialization,
initialization of all device drivers, and even-
tually a context switch to the first user task.
Remember, that interrupts are disabled dur-
ing initialization and the initialization context
is not a task in any sense and the user should
be very careful during initialization.

The BSP must ensure that the there is enough
stack space reserved for the initialization con-
text to successfully execute the initialization
routines for all device drivers and, in multipro-
cessor configurations, the Multiprocessor Com-
munications Interface Layer initialization rou-
tine.

6.2.3 The Idle Task

The Idle Task is the lowest priority task in a
system and executes only when no other task is
ready to execute. This default implementation
of this task consists of an infinite loop. RTEMS
allows the Idle Task body to be replaced by
a CPU specific implementation, a BSP specific
implementation or an application specific im-
plementation.

The Idle Task is preemptible and WILL be pre-
empted when any other task is made ready to
execute. This characteristic is critical to the
overall behavior of any application.

6.2.4 Initialization Manager Failure

The rtems_fatal_error_occurred
directive will be invoked from
rtems_initialize_executive for any of
the following reasons:

• If either the Configuration Table or the
CPU Dependent Information Table is not
provided.

• If the starting address of the RTEMS
RAM Workspace, supplied by the ap-
plication in the Configuration Table, is
NULL or is not aligned on a four-byte
boundary.

• If the size of the RTEMS RAM Workspace
is not large enough to initialize and con-
figure the system.

• If the interrupt stack size specified is too
small.

• If multiprocessing is configured and the
node entry in the Multiprocessor Config-
uration Table is not between one and the
maximum_nodes entry.

• If a multiprocessor system is being con-
figured and no Multiprocessor Commu-
nications Interface is specified.

• If no user initialization tasks are config-
ured. At least one initialization task must
be configured to allow RTEMS to pass
control to the application at the end of
the executive initialization sequence.

6.2. Background 49

RTEMS C User Documentation, Release 4.11.3 Chapter 6 Section 6.2

• If any of the user initialization tasks can-
not be created or started successfully.

A discussion of RTEMS actions when a fatal er-
ror occurs may be found Chapter 21 Section 3.1
- Announcing a Fatal Error (page 280).

50 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS C User Documentation, Release 4.11.3

6.3 Operations

6.3.1 Initializing RTEMS

The Initialization Manager
rtems_initialize_executive directives
is called by the boot_card routine. The
boot_card routine is invoked by the Board
Support Package once a basic C run-time
environment is set up. This consists of

• a valid and accessible text section, read-
only data, read-write data and zero-
initialized data,

• an initialization stack large enough to
initialize the rest of the Board Support
Package, RTEMS and the device drivers,

• all registers and components mandated
by Application Binary Interface, and

• disabled interrupts.

The rtems_initialize_executive directive
uses a system initialization linker set to ini-
tialize only those parts of the overall RTEMS
feature set that is necessary for a particu-
lar application. See Chapter 36 - Linker Sets
(page 521). Each RTEMS feature used the ap-
plication may optionally register an initializa-
tion handler. The system initialization API is
available via‘‘#included <rtems/sysinit.h>‘‘.

A list of all initialization steps follows. Some
steps are optional depending on the requested
feature set of the application. The initializa-
tion steps are execute in the order presented
here.

RTEMS_SYSINIT_BSP_WORK_AREAS
The work areas consisting of C Program
Heap and the RTEMS Workspace are initial-
ized by the Board Support Package. This step
is mandatory.

RTEMS_SYSINIT_BSP_START
Basic initialization step provided by the
Board Support Package. This step is manda-
tory.

RTEMS_SYSINIT_DATA_STRUCTURES
This directive is called when the Board Sup-
port Package has completed its basic initial-
ization and allows RTEMS to initialize the

application environment based upon the in-
formation in the Configuration Table, User
Initialization Tasks Table, Device Driver Ta-
ble, User Extension Table, Multiprocessor
Configuration Table, and the Multiprocessor
Communications Interface (MPCI) Table.

RTEMS_SYSINIT_BSP_LIBC
Depending on the application configuration
the IO library and root filesystem is initial-
ized. This step is mandatory.

RTEMS_SYSINIT_BEFORE_DRIVERS
This directive performs initialization that
must occur between basis RTEMS data struc-
ture initialization and device driver initial-
ization. In particular, in a multiprocessor
configuration, this directive will create the
MPCI Server Task.

RTEMS_SYSINIT_BSP_PRE_DRIVERS
Initialization step performed right before de-
vice drivers are initialized provided by the
Board Support Package. This step is manda-
tory.

RTEMS_SYSINIT_DEVICE_DRIVERS
This step initializes all statically configured
device drivers and performs all RTEMS ini-
tialization which requires device drivers to
be initialized. This step is mandatory. In
a multiprocessor configuration, this service
will initialize the Multiprocessor Communi-
cations Interface (MPCI) and synchronize
with the other nodes in the system.

RTEMS_SYSINIT_BSP_POST_DRIVERS
Initialization step performed right after de-
vice drivers are initialized provided by the
Board Support Package. This step is manda-
tory.

The final action of the
rtems_initialize_executive directive is
to start multitasking. RTEMS does not return
to the initialization context and the initial-
ization stack may be re-used for interrupt
processing.

Many of RTEMS actions during initialization
are based upon the contents of the Configu-
ration Table. For more information regarding
the format and contents of this table, please
refer to the chapter Chapter 24 - Configuring a
System (page 307).

6.3. Operations 51

RTEMS C User Documentation, Release 4.11.3 Chapter 6 Section 6.3

The final action in the initialization sequence is
the initiation of multitasking. When the sched-
uler and dispatcher are enabled, the highest
priority, ready task will be dispatched to run.
Control will not be returned to the Board Sup-
port Package after multitasking is enabled. The
initialization stack may be re-used for interrupt
processing.

6.3.2 Shutting Down RTEMS

The rtems_shutdown_executive directive is in-
voked by the application to end multitasking
and terminate the system.

52 Chapter 6. Initialization Manager

Chapter 6 Section 6.4 RTEMS C User Documentation, Release 4.11.3

6.4 Directives

This section details the Initialization Manager’s
directives. A subsection is dedicated to each
of this manager’s directives and describes the
calling sequence, related constants, usage, and
status codes.

6.4. Directives 53

RTEMS C User Documentation, Release 4.11.3 Chapter 6 Section 6.4

6.4.1 INITIALIZE_EXECUTIVE - Initialize
RTEMS

CALLING SEQUENCE:

1 void rtems_initialize_executive(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Iterates through the system initialization
linker set and invokes the registered han-
dlers. The final step is to start multitasking.

NOTES:
This directive should be called by boot_card
only.

This directive does not return to the caller.
Errors in the initialization sequence are usu-
ally fatal and lead to a system termination.

54 Chapter 6. Initialization Manager

Chapter 6 Section 6.4 RTEMS C User Documentation, Release 4.11.3

6.4.2 SHUTDOWN_EXECUTIVE - Shut-
down RTEMS

CALLING SEQUENCE:

1 void rtems_shutdown_executive(
2 uint32_t result
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive is called when the applica-
tion wishes to shutdown RTEMS. The sys-
tem is terminated with a fatal source of
RTEMS_FATAL_SOURCE_EXIT and the specified
result code.

NOTES:
This directive must be the last RTEMS direc-
tive invoked by an application and it does not
return to the caller.

This directive may be called any time.

6.4. Directives 55

RTEMS C User Documentation, Release 4.11.3 Chapter 6 Section 6.4

56 Chapter 6. Initialization Manager

CHAPTER

SEVEN

TASK MANAGER

57

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.1

7.1 Introduction

The task manager provides a comprehensive
set of directives to create, delete, and admin-
ister tasks. The directives provided by the task
manager are:

• rtems_task_create (page 68) - Create a
task

• rtems_task_ident (page 70) - Get ID of a
task

• rtems_task_self (page 71) - Obtain ID of
caller

• rtems_task_start (page 72) - Start a task

• rtems_task_restart (page 73) - Restart a
task

• rtems_task_delete (page 74) - Delete a
task

• rtems_task_suspend (page 75) - Suspend
a task

• rtems_task_resume (page 76) - Resume a
task

• rtems_task_is_suspended (page 77) - De-
termine if a task is suspended

• rtems_task_set_priority (page 78) - Set
task priority

• rtems_task_mode (page 79) - Change
current task’s mode

• rtems_task_get_note (page 80) - Get task
notepad entry

• rtems_task_set_note (page 81) - Set task
notepad entry

• rtems_task_wake_after (page 82) - Wake
up after interval

• rtems_task_wake_when (page 83) - Wake
up when specified

• rtems_iterate_over_all_threads (page 84)
- Iterate Over Tasks

• rtems_task_variable_add (page 85) - As-
sociate per task variable

• rtems_task_variable_get (page 86) - Ob-
tain value of a a per task variable

• rtems_task_variable_delete (page 87) -
Remove per task variable

58 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS C User Documentation, Release 4.11.3

7.2 Background

7.2.1 Task Definition

Many definitions of a task have been proposed
in computer literature. Unfortunately, none of
these definitions encompasses all facets of the
concept in a manner which is operating sys-
tem independent. Several of the more com-
mon definitions are provided to enable each
user to select a definition which best matches
their own experience and understanding of the
task concept:

• a “dispatchable” unit.

• an entity to which the processor is allo-
cated.

• an atomic unit of a real-time, multipro-
cessor system.

• single threads of execution which con-
currently compete for resources.

• a sequence of closely related compu-
tations which can execute concurrently
with other computational sequences.

From RTEMS’ perspective, a task is the small-
est thread of execution which can compete on
its own for system resources. A task is mani-
fested by the existence of a task control block
(TCB).

7.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS de-
fined data structure which contains all the in-
formation that is pertinent to the execution of
a task. During system initialization, RTEMS re-
serves a TCB for each task configured. A TCB
is allocated upon creation of the task and is re-
turned to the TCB free list upon deletion of the
task.

The TCB’s elements are modified as a result
of system calls made by the application in re-
sponse to external and internal stimuli. TCBs
are the only RTEMS internal data structure
that can be accessed by an application via user
extension routines. The TCB contains a task’s

name, ID, current priority, current and start-
ing states, execution mode, TCB user extension
pointer, scheduling control structures, as well
as data required by a blocked task.

A task’s context is stored in the TCB when a
task switch occurs. When the task regains con-
trol of the processor, its context is restored
from the TCB. When a task is restarted, the ini-
tial state of the task is restored from the start-
ing context area in the task’s TCB.

7.2.3 Task States

A task may exist in one of the following five
states:

• executing - Currently scheduled to the
CPU

• ready - May be scheduled to the CPU

• blocked - Unable to be scheduled to the
CPU

• dormant - Created task that is not started

• non-existent - Uncreated or deleted task

An active task may occupy the executing,
ready, blocked or dormant state, otherwise the
task is considered non-existent. One or more
tasks may be active in the system simultane-
ously. Multiple tasks communicate, synchro-
nize, and compete for system resources with
each other via system calls. The multiple tasks
appear to execute in parallel, but actually each
is dispatched to the CPU for periods of time de-
termined by the RTEMS scheduling algorithm.
The scheduling of a task is based on its current
state and priority.

7.2.4 Task Priority

A task’s priority determines its importance in
relation to the other tasks executing on the
same processor. RTEMS supports 255 levels of
priority ranging from 1 to 255. The data type
rtems_task_priority is used to store task pri-
orities.

Tasks of numerically smaller priority values are
more important tasks than tasks of numerically
larger priority values. For example, a task at

7.2. Background 59

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.2

priority level 5 is of higher privilege than a task
at priority level 10. There is no limit to the
number of tasks assigned to the same priority.

Each task has a priority associated with it at
all times. The initial value of this priority is
assigned at task creation time. The priority of
a task may be changed at any subsequent time.

Priorities are used by the scheduler to deter-
mine which ready task will be allowed to exe-
cute. In general, the higher the logical priority
of a task, the more likely it is to receive proces-
sor execution time.

7.2.5 Task Mode

A task’s execution mode is a combination of
the following four components:

• preemption

• ASR processing

• timeslicing

• interrupt level

It is used to modify RTEMS’ scheduling process
and to alter the execution environment of the
task. The data type rtems_task_mode is used
to manage the task execution mode.

The preemption component allows a task
to determine when control of the processor
is relinquished. If preemption is disabled
(RTEMS_NO_PREEMPT), the task will retain con-
trol of the processor as long as it is in the
executing state - even if a higher priority
task is made ready. If preemption is enabled
(RTEMS_PREEMPT) and a higher priority task is
made ready, then the processor will be taken
away from the current task immediately and
given to the higher priority task.

The timeslicing component is used by the
RTEMS scheduler to determine how the pro-
cessor is allocated to tasks of equal priority.
If timeslicing is enabled (RTEMS_TIMESLICE),
then RTEMS will limit the amount of time
the task can execute before the processor is
allocated to another ready task of equal pri-
ority. The length of the timeslice is appli-
cation dependent and specified in the Con-
figuration Table. If timeslicing is disabled

(RTEMS_NO_TIMESLICE), then the task will be
allowed to execute until a task of higher pri-
ority is made ready. If RTEMS_NO_PREEMPT is se-
lected, then the timeslicing component is ig-
nored by the scheduler.

The asynchronous signal processing compo-
nent is used to determine when received sig-
nals are to be processed by the task. If signal
processing is enabled (RTEMS_ASR), then sig-
nals sent to the task will be processed the next
time the task executes. If signal processing is
disabled (RTEMS_NO_ASR), then all signals re-
ceived by the task will remain posted until sig-
nal processing is enabled. This component af-
fects only tasks which have established a rou-
tine to process asynchronous signals.

The interrupt level component is used
to determine which interrupts will be
enabled when the task is executing.
RTEMS_INTERRUPT_LEVEL(n) specifies that
the task will execute at interrupt level n.

RTEMS_PREEMPT enable preemption
(default)

RTEMS_NO_PREEMPT disable preemption
RTEMS_NO_
TIMESLICE

disable timeslicing
(default)

RTEMS_TIMESLICE enable timeslicing
RTEMS_ASR enable ASR

processing (default)
RTEMS_NO_ASR disable ASR

processing
RTEMS_INTERRUPT_
LEVEL(0)

enable all interrupts
(default)

RTEMS_INTERRUPT_
LEVEL(n)

execute at interrupt
level n

The set of default modes may be selected by
specifying the RTEMS_DEFAULT_MODES constant.

7.2.6 Accessing Task Arguments

All RTEMS tasks are invoked with a single
argument which is specified when they are
started or restarted. The argument is com-
monly used to communicate startup informa-
tion to the task. The simplest manner in which
to define a task which accesses it argument is:

60 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS C User Documentation, Release 4.11.3

1 rtems_task user_task(
2 rtems_task_argument argument
3);

Application tasks requiring more information
may view this single argument as an index into
an array of parameter blocks.

7.2.7 Floating Point Considerations

Creating a task with the
RTEMS_FLOATING_POINT attribute flag results in
additional memory being allocated for the TCB
to store the state of the numeric coprocessor
during task switches. This additional memory
is NOT allocated for RTEMS_NO_FLOATING_POINT
tasks. Saving and restoring the context of
a RTEMS_FLOATING_POINT task takes longer
than that of a RTEMS_NO_FLOATING_POINT task
because of the relatively large amount of time
required for the numeric coprocessor to save
or restore its computational state.

Since RTEMS was designed specifically for em-
bedded military applications which are float-
ing point intensive, the executive is optimized
to avoid unnecessarily saving and restoring the
state of the numeric coprocessor. The state of
the numeric coprocessor is only saved when
a RTEMS_FLOATING_POINT task is dispatched
and that task was not the last task to utilize
the coprocessor. In a system with only one
RTEMS_FLOATING_POINT task, the state of the
numeric coprocessor will never be saved or re-
stored.

Although the overhead imposed by
RTEMS_FLOATING_POINT tasks is minimal,
some applications may wish to com-
pletely avoid the overhead associated with
RTEMS_FLOATING_POINT tasks and still utilize
a numeric coprocessor. By preventing a task
from being preempted while performing
a sequence of floating point operations, a
RTEMS_NO_FLOATING_POINT task can utilize
the numeric coprocessor without incurring
the overhead of a RTEMS_FLOATING_POINT
context switch. This approach also avoids the
allocation of a floating point context area.
However, if this approach is taken by the ap-
plication designer, NO tasks should be created

as RTEMS_FLOATING_POINT tasks. Otherwise,
the floating point context will not be correctly
maintained because RTEMS assumes that the
state of the numeric coprocessor will not be
altered by RTEMS_NO_FLOATING_POINT tasks.

If the supported processor type does not have
hardware floating capabilities or a standard
numeric coprocessor, RTEMS will not provide
built-in support for hardware floating point
on that processor. In this case, all tasks
are considered RTEMS_NO_FLOATING_POINT
whether created as RTEMS_FLOATING_POINT or
RTEMS_NO_FLOATING_POINT tasks. A floating
point emulation software library must be
utilized for floating point operations.

On some processors, it is possible to dis-
able the floating point unit dynamically. If
this capability is supported by the target
processor, then RTEMS will utilize this ca-
pability to enable the floating point unit
only for tasks which are created with the
RTEMS_FLOATING_POINT attribute. The conse-
quence of a RTEMS_NO_FLOATING_POINT task at-
tempting to access the floating point unit is
CPU dependent but will generally result in an
exception condition.

7.2.8 Per Task Variables

Per task variables are deprecated, see the
warning below.

Per task variables are used to support global
variables whose value may be unique to a
task. After indicating that a variable should be
treated as private (i.e. per-task) the task can
access and modify the variable, but the mod-
ifications will not appear to other tasks, and
other tasks’ modifications to that variable will
not affect the value seen by the task. This is
accomplished by saving and restoring the vari-
able’s value each time a task switch occurs to
or from the calling task.

The value seen by other tasks, including those
which have not added the variable to their set
and are thus accessing the variable as a com-
mon location shared among tasks, cannot be
affected by a task once it has added a variable
to its local set. Changes made to the variable
by other tasks will not affect the value seen by

7.2. Background 61

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.2

a task which has added the variable to its pri-
vate set.

This feature can be used when a routine is
to be spawned repeatedly as several indepen-
dent tasks. Although each task will have
its own stack, and thus separate stack vari-
ables, they will all share the same static and
global variables. To make a variable not
shareable (i.e. a “global” variable that is
specific to a single task), the tasks can call
rtems_task_variable_add to make a separate
copy of the variable for each task, but all at the
same physical address.

Task variables increase the context switch time
to and from the tasks that own them so it is
desirable to minimize the number of task vari-
ables. One efficient method is to have a sin-
gle task variable that is a pointer to a dynam-
ically allocated structure containing the task’s
private “global” data.

A critical point with per-task variables is that
each task must separately request that the
same global variable is per-task private.

7.2.9 Building a Task Attribute Set

In general, an attribute set is built by a bitwise
OR of the desired components. The set of valid
task attribute components is listed below:

RTEMS_NO_
FLOATING_POINT

does not use
coprocessor (default)

RTEMS_FLOATING_
POINT

uses numeric
coprocessor

RTEMS_LOCAL local task (default)
RTEMS_GLOBAL global task

Attribute values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each attribute appears exactly once in the com-
ponent list. A component listed as a default is
not required to appear in the component list,
although it is a good programming practice
to specify default components. If all defaults
are desired, then RTEMS_DEFAULT_ATTRIBUTES
should be used.

This example demonstrates the attribute_set
parameter needed to create a local task
which utilizes the numeric coprocessor.

The attribute_set parameter could be
RTEMS_FLOATING_POINT or RTEMS_LOCAL |
RTEMS_FLOATING_POINT. The attribute_set pa-
rameter can be set to RTEMS_FLOATING_POINT
because RTEMS_LOCAL is the default for all
created tasks. If the task were global and
used the numeric coprocessor, then the at-
tribute_set parameter would be RTEMS_GLOBAL
| RTEMS_FLOATING_POINT.

7.2.10 Building a Mode and Mask

In general, a mode and its corresponding mask
is built by a bitwise OR of the desired compo-
nents. The set of valid mode constants and
each mode’s corresponding mask constant is
listed below:

RTEMS_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
enables preemption

RTEMS_NO_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
disables preemption

RTEMS_NO_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK and
disables timeslicing

RTEMS_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK and
enables timeslicing

RTEMS_ASR is masked by
RTEMS_ASR_MASK and enables
ASR processing

RTEMS_NO_
ASR

is masked by
RTEMS_ASR_MASK and
disables ASR processing

RTEMS_
INTERRUPT_
LEVEL(0)

is masked by
RTEMS_INTERRUPT_MASK and
enables all interrupts

RTEMS_
INTERRUPT_
LEVEL(n)

is masked by
RTEMS_INTERRUPT_MASK and
sets interrupts level n

Mode values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long
as each mode appears exactly once in the
component list. A mode component listed
as a default is not required to appear in
the mode component list, although it is a
good programming practice to specify de-
fault components. If all defaults are desired,

62 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS C User Documentation, Release 4.11.3

the mode RTEMS_DEFAULT_MODES and the mask
RTEMS_ALL_MODE_MASKS should be used.

The following example demonstrates the
mode and mask parameters used with
the rtems_task_mode directive to place
a task at interrupt level 3 and make
it non-preemptible. The mode should
be set to RTEMS_INTERRUPT_LEVEL(3)
| RTEMS_NO_PREEMPT to indicate the
desired preemption mode and inter-
rupt level, while the mask parameter
should be set to RTEMS_INTERRUPT_MASK |
RTEMS_NO_PREEMPT_MASK to indicate that the
calling task’s interrupt level and preemption
mode are being altered.

7.2. Background 63

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.3

7.3 Operations

7.3.1 Creating Tasks

The rtems_task_create directive creates a
task by allocating a task control block, assign-
ing the task a user-specified name, allocating it
a stack and floating point context area, setting
a user-specified initial priority, setting a user-
specified initial mode, and assigning it a task
ID. Newly created tasks are initially placed in
the dormant state. All RTEMS tasks execute in
the most privileged mode of the processor.

7.3.2 Obtaining Task IDs

When a task is created, RTEMS generates
a unique task ID and assigns it to the cre-
ated task until it is deleted. The task ID
may be obtained by either of two methods.
First, as the result of an invocation of the
rtems_task_create directive, the task ID is
stored in a user provided location. Second,
the task ID may be obtained later using the
rtems_task_ident directive. The task ID is
used by other directives to manipulate this
task.

7.3.3 Starting and Restarting Tasks

The rtems_task_start directive is used to
place a dormant task in the ready state. This
enables the task to compete, based on its cur-
rent priority, for the processor and other sys-
tem resources. Any actions, such as suspen-
sion or change of priority, performed on a task
prior to starting it are nullified when the task
is started.

With the rtems_task_start directive the user
specifies the task’s starting address and argu-
ment. The argument is used to communicate
some startup information to the task. As part
of this directive, RTEMS initializes the task’s
stack based upon the task’s initial execution
mode and start address. The starting argument
is passed to the task in accordance with the tar-
get processor’s calling convention.

The rtems_task_restart directive restarts a
task at its initial starting address with its orig-
inal priority and execution mode, but with a
possibly different argument. The new argu-
ment may be used to distinguish between the
original invocation of the task and subsequent
invocations. The task’s stack and control block
are modified to reflect their original creation
values. Although references to resources that
have been requested are cleared, resources al-
located by the task are NOT automatically re-
turned to RTEMS. A task cannot be restarted
unless it has previously been started (i.e. dor-
mant tasks cannot be restarted). All restarted
tasks are placed in the ready state.

7.3.4 Suspending and Resuming Tasks

The rtems_task_suspend directive is used to
place either the caller or another task into a
suspended state. The task remains suspended
until a rtems_task_resume directive is issued.
This implies that a task may be suspended as
well as blocked waiting either to acquire a re-
source or for the expiration of a timer.

The rtems_task_resume directive is used to re-
move another task from the suspended state.
If the task is not also blocked, resuming it will
place it in the ready state, allowing it to once
again compete for the processor and resources.
If the task was blocked as well as suspended,
this directive clears the suspension and leaves
the task in the blocked state.

Suspending a task which is already sus-
pended or resuming a task which is not
suspended is considered an error. The
rtems_task_is_suspended can be used to de-
termine if a task is currently suspended.

7.3.5 Delaying the Currently Executing
Task

The rtems_task_wake_after directive creates
a sleep timer which allows a task to go to sleep
for a specified interval. The task is blocked
until the delay interval has elapsed, at which
time the task is unblocked. A task calling the
rtems_task_wake_after directive with a delay
interval of RTEMS_YIELD_PROCESSOR ticks will

64 Chapter 7. Task Manager

Chapter 7 Section 7.3 RTEMS C User Documentation, Release 4.11.3

yield the processor to any other ready task of
equal or greater priority and remain ready to
execute.

The rtems_task_wake_when directive creates a
sleep timer which allows a task to go to sleep
until a specified date and time. The calling task
is blocked until the specified date and time has
occurred, at which time the task is unblocked.

7.3.6 Changing Task Priority

The rtems_task_set_priority directive is
used to obtain or change the current pri-
ority of either the calling task or another
task. If the new priority requested is
RTEMS_CURRENT_PRIORITY or the task’s actual
priority, then the current priority will be re-
turned and the task’s priority will remain un-
changed. If the task’s priority is altered, then
the task will be scheduled according to its new
priority.

The rtems_task_restart directive resets the
priority of a task to its original value.

7.3.7 Changing Task Mode

The rtems_task_mode directive is used to ob-
tain or change the current execution mode of
the calling task. A task’s execution mode is
used to enable preemption, timeslicing, ASR
processing, and to set the task’s interrupt level.

The rtems_task_restart directive resets the
mode of a task to its original value.

7.3.8 Notepad Locations

RTEMS provides sixteen notepad locations
for each task. Each notepad location
may contain a note consisting of four
bytes of information. RTEMS provides
two directives, rtems_task_set_note and
rtems_task_get_note, that enable a user to
access and change the notepad locations.
The rtems_task_set_note directive enables
the user to set a task’s notepad entry to a spec-
ified note. The rtems_task_get_note directive
allows the user to obtain the note contained in

any one of the sixteen notepads of a specified
task.

7.3.9 Task Deletion

RTEMS provides the rtems_task_delete direc-
tive to allow a task to delete itself or any other
task. This directive removes all RTEMS ref-
erences to the task, frees the task’s control
block, removes it from resource wait queues,
and deallocates its stack as well as the optional
floating point context. The task’s name and ID
become inactive at this time, and any subse-
quent references to either of them is invalid. In
fact, RTEMS may reuse the task ID for another
task which is created later in the application.

Unexpired delay timers (i.e. those
used by rtems_task_wake_after and
rtems_task_wake_when) and timeout timers
associated with the task are automatically
deleted, however, other resources dynamically
allocated by the task are NOT automatically
returned to RTEMS. Therefore, before a task
is deleted, all of its dynamically allocated
resources should be deallocated by the user.
This may be accomplished by instructing
the task to delete itself rather than directly
deleting the task. Other tasks may instruct a
task to delete itself by sending a “delete self”
message, event, or signal, or by restarting the
task with special arguments which instruct the
task to delete itself.

7.3.10 Transition Advice for Obsolete Di-
rectives

7.3.10.1 Notepads

Task notepads and the associated di-
rectives rtems_task_get_note and
rtems_task_set_note were removed after
the 4.11 Release Series. These were never
thread-safe to access and subject to conflicting
use of the notepad index by libraries which
were designed independently.

It is recommended that applications be modi-
fied to use services which are thread safe and
not subject to issues with multiple applications
conflicting over the key (e.g. notepad index)

7.3. Operations 65

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.3

selection. For most applications, POSIX Keys
should be used. These are available in all
RTEMS build configurations. It is also possi-
ble that Thread Local Storage is an option for
some use cases.

66 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4 Directives

This section details the task manager’s direc-
tives. A subsection is dedicated to each of this
manager’s directives and describes the calling
sequence, related constants, usage, and status
codes.

7.4. Directives 67

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.1 TASK_CREATE - Create a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_create(
2 rtems_name name,
3 rtems_task_priority initial_priority,
4 size_t stack_size,
5 rtems_mode initial_modes,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

task created
successfully

RTEMS_
INVALID_
ADDRESS

id is NULL

RTEMS_
INVALID_NAME

invalid task name

RTEMS_
INVALID_
PRIORITY

invalid task priority

RTEMS_MP_NOT_
CONFIGURED

multiprocessing not
configured

RTEMS_TOO_
MANY

too many tasks created

RTEMS_
UNSATISFIED

not enough memory for
stack/FP context

RTEMS_TOO_
MANY

too many global objects

DESCRIPTION:
This directive creates a task which resides on
the local node. It allocates and initializes a
TCB, a stack, and an optional floating point
context area. The mode parameter contains
values which sets the task’s initial execution
mode. The RTEMS_FLOATING_POINT attribute
should be specified if the created task is to
use a numeric coprocessor. For performance
reasons, it is recommended that tasks not us-
ing the numeric coprocessor should specify
the RTEMS_NO_FLOATING_POINT attribute. If
the RTEMS_GLOBAL attribute is specified, the
task can be accessed from remote nodes. The
task id, returned in id, is used in other task
related directives to access the task. When
created, a task is placed in the dormant state
and can only be made ready to execute using
the directive rtems_task_start.

NOTES:
This directive will not cause the calling task
to be preempted.

Valid task priorities range from a high of 1 to
a low of 255.

If the requested stack size is less than the
configured minimum stack size, then RTEMS
will use the configured minimum as the
stack size for this task. In addition to being
able to specify the task stack size as a inte-
ger, there are two constants which may be
specified:

RTEMS_MINIMUM_STACK_SIZE
The minimum stack size RECOMMENDED
for use on this processor. This value is se-
lected by the RTEMS developers conserva-
tively to minimize the risk of blown stacks
for most user applications. Using this con-
stant when specifying the task stack size,
indicates that the stack size will be at least
RTEMS_MINIMUM_STACK_SIZE bytes in size.
If the user configured minimum stack size
is larger than the recommended minimum,
then it will be used.

RTEMS_CONFIGURED_MINIMUM_STACK_SIZE
Indicates this task is to be created with
a stack size of the minimum stack size
that was configured by the application.
If not explicitly configured by the ap-
plication, the default configured mini-
mum stack size is the processor dependent
value RTEMS_MINIMUM_STACK_SIZE. Since
this uses the configured minimum stack
size value, you may get a stack size that is
smaller or larger than the recommended
minimum. This can be used to provide
large stacks for all tasks on complex ap-
plications or small stacks on applications
that are trying to conserve memory.

Application developers should consider the
stack usage of the device drivers when calcu-
lating the stack size required for tasks which
utilize the driver.

The following task attribute constants are
defined by RTEMS:

68 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

RTEMS_NO_
FLOATING_POINT

does not use
coprocessor (default)

RTEMS_
FLOATING_POINT

uses numeric
coprocessor

RTEMS_LOCAL local task (default)
RTEMS_GLOBAL global task

The following task mode constants are de-
fined by RTEMS:

RTEMS_PREEMPT enable preemption
(default)

RTEMS_NO_
PREEMPT

disable preemption

RTEMS_NO_
TIMESLICE

disable timeslicing
(default)

RTEMS_TIMESLICE enable timeslicing
RTEMS_ASR enable ASR

processing (default)
RTEMS_NO_ASR disable ASR

processing
RTEMS_
INTERRUPT_
LEVEL(0)

enable all interrupts
(default)

RTEMS_
INTERRUPT_
LEVEL(n)

execute at interrupt
level n

The interrupt level portion of the task ex-
ecution mode supports a maximum of 256
interrupt levels. These levels are mapped
onto the interrupt levels actually supported
by the target processor in a processor depen-
dent fashion.

Tasks should not be made global unless re-
mote tasks must interact with them. This
avoids the system overhead incurred by the
creation of a global task. When a global task
is created, the task’s name and id must be
transmitted to every node in the system for
insertion in the local copy of the global ob-
ject table.

The total number of global objects, in-
cluding tasks, is limited by the maxi-
mum_global_objects field in the Configura-
tion Table.

7.4. Directives 69

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.2 TASK_IDENT - Get ID of a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL task identified

successfully
RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NAME

invalid task name

RTEMS_INVALID_
NODE

invalid node id

DESCRIPTION:
This directive obtains the task id associated
with the task name specified in name. A
task may obtain its own id by specifying
RTEMS_SELF or its own task name in name.
If the task name is not unique, then the task
id returned will match one of the tasks with
that name. However, this task id is not guar-
anteed to correspond to the desired task.
The task id, returned in id, is used in other
task related directives to access the task.

NOTES:
This directive will not cause the running task
to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all
nodes are searched with the local node being
searched first. All other nodes are searched
with the lowest numbered node searched
first.

If node is a valid node number which does
not represent the local node, then only the
tasks exported by the designated node are
searched.

This directive does not generate activity on
remote nodes. It accesses only the local copy
of the global object table.

70 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.3 TASK_SELF - Obtain ID of caller

CALLING SEQUENCE:

1 rtems_id rtems_task_self(void);

DIRECTIVE STATUS CODES:
Returns the object Id of the calling task.

DESCRIPTION:
This directive returns the Id of the calling
task.

NOTES:
If called from an interrupt service routine,
this directive will return the Id of the inter-
rupted task.

7.4. Directives 71

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.4 TASK_START - Start a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_start(
2 rtems_id id,
3 rtems_task_entry entry_point,
4 rtems_task_argument argument
5);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL ask started

successfully
RTEMS_INVALID_
ADDRESS

invalid task entry
point

RTEMS_INVALID_ID invalid task id
RTEMS_INCORRECT_
STATE

task not in the
dormant state

RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

cannot start
remote task

DESCRIPTION:
This directive readies the task, specified by
id, for execution based on the priority and
execution mode specified when the task was
created. The starting address of the task is
given in entry_point. The task’s starting ar-
gument is contained in argument. This ar-
gument can be a single value or used as an
index into an array of parameter blocks. The
type of this numeric argument is an unsigned
integer type with the property that any valid
pointer to void can be converted to this type
and then converted back to a pointer to void.
The result will compare equal to the original
pointer.

NOTES:
The calling task will be preempted if its pre-
emption mode is enabled and the task being
started has a higher priority.

Any actions performed on a dormant task
such as suspension or change of priority are
nullified when the task is initiated via the
rtems_task_start directive.

72 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.5 TASK_RESTART - Restart a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_restart(
2 rtems_id id,
3 rtems_task_argument argument
4);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL task restarted

successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INCORRECT_
STATE

task never
started

RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

cannot restart
remote task

DESCRIPTION:
This directive resets the task specified by
id to begin execution at its original starting
address. The task’s priority and execution
mode are set to the original creation values.
If the task is currently blocked, RTEMS auto-
matically makes the task ready. A task can be
restarted from any state, except the dormant
state.

The task’s starting argument is contained in
argument. This argument can be a single
value or an index into an array of parameter
blocks. The type of this numeric argument is
an unsigned integer type with the property
that any valid pointer to void can be con-
verted to this type and then converted back
to a pointer to void. The result will compare
equal to the original pointer. This new ar-
gument may be used to distinguish between
the initial rtems_task_start of the task and
any ensuing calls to rtems_task_restart of
the task. This can be beneficial in delet-
ing a task. Instead of deleting a task using
the rtems_task_delete directive, a task can
delete another task by restarting that task,
and allowing that task to release resources
back to RTEMS and then delete itself.

NOTES:
If id is RTEMS_SELF, the calling task will be
restarted and will not return from this direc-
tive.

The calling task will be preempted if its pre-

emption mode is enabled and the task being
restarted has a higher priority.

The task must reside on the local node,
even if the task was created with the
RTEMS_GLOBAL option.

7.4. Directives 73

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.6 TASK_DELETE - Delete a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL task deleted

successfully
RTEMS_INVALID_ID task id invalid
RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

cannot restart
remote task

DESCRIPTION:
This directive deletes a task, either the call-
ing task or another task, as specified by id.
RTEMS stops the execution of the task and
reclaims the stack memory, any allocated de-
lay or timeout timers, the TCB, and, if the
task is RTEMS_FLOATING_POINT, its floating
point context area. RTEMS does not reclaim
the following resources: region segments,
partition buffers, semaphores, timers, or rate
monotonic periods.

NOTES:
A task is responsible for releasing its re-
sources back to RTEMS before deletion. To
insure proper deallocation of resources, a
task should not be deleted unless it is un-
able to execute or does not hold any RTEMS
resources. If a task holds RTEMS resources,
the task should be allowed to deallocate its
resources before deletion. A task can be di-
rected to release its resources and delete it-
self by restarting it with a special argument
or by sending it a message, an event, or a
signal.

Deletion of the current task (RTEMS_SELF)
will force RTEMS to select another task to
execute.

When a global task is deleted, the task id
must be transmitted to every node in the sys-
tem for deletion from the local copy of the
global object table.

The task must reside on the local node,
even if the task was created with the
RTEMS_GLOBAL option.

74 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.7 TASK_SUSPEND - Suspend a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_suspend(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL task suspended

successfully
RTEMS_INVALID_ID task id invalid
RTEMS_ALREADY_
SUSPENDED

task already
suspended

DESCRIPTION:
This directive suspends the task specified by
id from further execution by placing it in the
suspended state. This state is additive to any
other blocked state that the task may already
be in. The task will not execute again until
another task issues the rtems_task_resume
directive for this task and any blocked state
has been removed.

NOTES:
The requesting task can suspend itself by
specifying RTEMS_SELF as id. In this case, the
task will be suspended and a successful re-
turn code will be returned when the task is
resumed.

Suspending a global task which does not re-
side on the local node will generate a request
to the remote node to suspend the specified
task.

If the task specified by id is already sus-
pended, then the RTEMS_ALREADY_SUSPENDED
status code is returned.

7.4. Directives 75

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.8 TASK_RESUME - Resume a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_resume(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL task resumed

successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INCORRECT_
STATE

task not suspended

DESCRIPTION:
This directive removes the task specified by
id from the suspended state. If the task is
in the ready state after the suspension is re-
moved, then it will be scheduled to run. If
the task is still in a blocked state after the
suspension is removed, then it will remain
in that blocked state.

NOTES:
The running task may be preempted if its
preemption mode is enabled and the local
task being resumed has a higher priority.

Resuming a global task which does not re-
side on the local node will generate a request
to the remote node to resume the specified
task.

If the task specified by id is not suspended,
then the RTEMS_INCORRECT_STATE status code
is returned.

76 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.9 TASK_IS_SUSPENDED - Determine
if a task is Suspended

CALLING SEQUENCE:

1 rtems_status_code rtems_task_is_suspended(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL task is NOT

suspended
RTEMS_ALREADY_
SUSPENDED

task is currently
suspended

RTEMS_INVALID_ID task id invalid
RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

not supported on
remote tasks

DESCRIPTION:
This directive returns a status code indicat-
ing whether or not the specified task is cur-
rently suspended.

NOTES:
This operation is not currently supported on
remote tasks.

7.4. Directives 77

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.10 TASK_SET_PRIORITY - Set task
priority

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_priority(
2 rtems_id id,
3 rtems_task_priority new_priority,
4 rtems_task_priority *old_priority
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

task priority set
successfully

RTEMS_INVALID_
ID

invalid task id

RTEMS_INVALID_
ADDRESS

invalid return
argument pointer

RTEMS_INVALID_
PRIORITY

invalid task priority

DESCRIPTION:
This directive manipulates the prior-
ity of the task specified by id. An id
of RTEMS_SELF is used to indicate the
calling task. When new_priority is not
equal to RTEMS_CURRENT_PRIORITY, the
specified task’s previous priority is re-
turned in old_priority. When new_priority
is RTEMS_CURRENT_PRIORITY, the speci-
fied task’s current priority is returned in
old_priority. Valid priorities range from a
high of 1 to a low of 255.

NOTES:
The calling task may be preempted if its pre-
emption mode is enabled and it lowers its
own priority or raises another task’s priority.

In case the new priority equals the current
priority of the task, then nothing happens.

Setting the priority of a global task which
does not reside on the local node will gener-
ate a request to the remote node to change
the priority of the specified task.

If the task specified by id is currently holding
any binary semaphores which use the pri-
ority inheritance algorithm, then the task’s
priority cannot be lowered immediately. If
the task’s priority were lowered immedi-
ately, then priority inversion results. The re-
quested lowering of the task’s priority will

occur when the task has released all pri-
ority inheritance binary semaphores. The
task’s priority can be increased regardless of
the task’s use of priority inheritance binary
semaphores.

78 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.11 TASK_MODE - Change the current
task mode

CALLING SEQUENCE:

1 rtems_status_code rtems_task_mode(
2 rtems_mode mode_set,
3 rtems_mode mask,
4 rtems_mode *previous_mode_set
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

task mode set
successfully

RTEMS_INVALID_
ADDRESS

previous_mode_set
is NULL

DESCRIPTION:
This directive manipulates the execution
mode of the calling task. A task’s execu-
tion mode enables and disables preemption,
timeslicing, asynchronous signal processing,
as well as specifying the current interrupt
level. To modify an execution mode, the
mode class(es) to be changed must be spec-
ified in the mask parameter and the desired
mode(s) must be specified in the mode pa-
rameter.

NOTES:
The calling task will be preempted if it en-
ables preemption and a higher priority task
is ready to run.

Enabling timeslicing has no effect if preemp-
tion is disabled. For a task to be timesliced,
that task must have both preemption and
timeslicing enabled.

A task can obtain its current execution mode,
without modifying it, by calling this directive
with a mask value of RTEMS_CURRENT_MODE.

To temporarily disable the processing of a
valid ASR, a task should call this directive
with the RTEMS_NO_ASR indicator specified in
mode.

The set of task mode constants and each
mode’s corresponding mask constant is pro-
vided in the following table:

RTEMS_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
enables preemption

RTEMS_NO_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
disables preemption

RTEMS_NO_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK
and disables timeslicing

RTEMS_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK
and enables timeslicing

RTEMS_ASR is masked by
RTEMS_ASR_MASK and
enables ASR processing

RTEMS_NO_
ASR

is masked by
RTEMS_ASR_MASK and
disables ASR processing

RTEMS_
INTERRUPT_
LEVEL(0)

is masked by
RTEMS_INTERRUPT_MASK
and enables all interrupts

RTEMS_
INTERRUPT_
LEVEL(n)

is masked by
RTEMS_INTERRUPT_MASK
and sets interrupts level n

7.4. Directives 79

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.12 TASK_GET_NOTE - Get task
notepad entry

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_note(
2 rtems_id id,
3 uint32_t notepad,
4 uint32_t *note
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

note value obtained
successfully

RTEMS_INVALID_
ADDRESS

note parameter is
NULL

RTEMS_INVALID_
ID

invalid task id

RTEMS_INVALID_
NUMBER

invalid notepad
location

DESCRIPTION:
This directive returns the note contained in
the notepad location of the task specified by
id.

NOTES:
This directive will not cause the running task
to be preempted.

If id is set to RTEMS_SELF, the calling task ac-
cesses its own notepad.

The sixteen notepad locations can be ac-
cessed using the constants RTEMS_NOTEPAD_0
through RTEMS_NOTEPAD_15.

Getting a note of a global task which does
not reside on the local node will generate
a request to the remote node to obtain the
notepad entry of the specified task.

80 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.13 TASK_SET_NOTE - Set task
notepad entry

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_note(
2 rtems_id id,
3 uint32_t notepad,
4 uint32_t note
5);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL note set

successfully
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_
NUMBER

invalid notepad
location

DESCRIPTION:
This directive sets the notepad entry for the
task specified by id to the value note.

NOTES:
If id is set to RTEMS_SELF, the calling task ac-
cesses its own notepad.

This directive will not cause the running task
to be preempted.

The sixteen notepad locations can be ac-
cessed using the constants RTEMS_NOTEPAD_0
through RTEMS_NOTEPAD_15.

Setting a note of a global task which does not
reside on the local node will generate a re-
quest to the remote node to set the notepad
entry of the specified task.

7.4. Directives 81

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.14 TASK_WAKE_AFTER - Wake up af-
ter interval

CALLING SEQUENCE:

1 rtems_status_code rtems_task_wake_after(
2 rtems_interval ticks
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL always successful

DESCRIPTION:
This directive blocks the calling task for
the specified number of system clock ticks.
When the requested interval has elapsed, the
task is made ready. The clock tick directives
automatically updates the delay period.

NOTES:
Setting the system date and time with the
rtems_clock_set directive has no effect on
a rtems_task_wake_after blocked task.

A task may give up the processor and remain
in the ready state by specifying a value of
RTEMS_YIELD_PROCESSOR in ticks.

The maximum timer interval that can be
specified is the maximum value which can
be represented by the uint32_t type.

A clock tick is required to support the func-
tionality of this directive.

82 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.15 TASK_WAKE_WHEN - Wake up
when specified

CALLING SEQUENCE:

1 rtems_status_code rtems_task_wake_when(
2 rtems_time_of_day *time_buffer
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

awakened at
date/time
successfully

RTEMS_INVALID_
ADDRESS

time_buffer is NULL

RTEMS_INVALID_
TIME_OF_DAY

invalid time buffer

RTEMS_NOT_
DEFINED

system date and time
is not set

DESCRIPTION:
This directive blocks a task until the date
and time specified in time_buffer. At the re-
quested date and time, the calling task will
be unblocked and made ready to execute.

NOTES:
The ticks portion of time_buffer structure is
ignored. The timing granularity of this direc-
tive is a second.

A clock tick is required to support the func-
tionality of this directive.

7.4. Directives 83

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.16 ITERATE_OVER_ALL_THREADS -
Iterate Over Tasks

CALLING SEQUENCE:

1 typedef void (*rtems_per_thread_
→˓routine)(Thread_Control *the_thread);

2 void rtems_iterate_over_all_threads(
3 rtems_per_thread_routine routine
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive iterates over all of the existant
threads in the system and invokes routine
on each of them. The user should be careful
in accessing the contents of the_thread.

This routine is intended for use in diagnostic
utilities and is not intented for routine use in
an operational system.

NOTES:
There is NO protection while this routine is
called. Thus it is possible that the_thread
could be deleted while this is operating. By
not having protection, the user is free to
invoke support routines from the C Library
which require semaphores for data struc-
tures.

84 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.17 TASK_VARIABLE_ADD - Associate
per task variable

Warning: This directive is deprecated and
task variables will be removed.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_add(
2 rtems_id tid,
3 void **task_variable,
4 void (*dtor)(void *)
5);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL per task variable

added successfully
RTEMS_INVALID_
ADDRESS

task_variable is
NULL

RTEMS_INVALID_ID invalid task id
RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_
ON_REMOTE_OBJECT

not supported on
remote tasks

DESCRIPTION:
This directive adds the memory location
specified by the ptr argument to the context
of the given task. The variable will then be
private to the task. The task can access and
modify the variable, but the modifications
will not appear to other tasks, and other
tasks’ modifications to that variable will not
affect the value seen by the task. This is ac-
complished by saving and restoring the vari-
able’s value each time a task switch occurs to
or from the calling task. If the dtor argument
is non-NULL it specifies the address of a ‘de-
structor’ function which will be called when
the task is deleted. The argument passed to
the destructor function is the task’s value of
the variable.

NOTES:
Task variables increase the context switch
time to and from the tasks that own them so
it is desirable to minimize the number of task
variables. One efficient method is to have a
single task variable that is a pointer to a dy-
namically allocated structure containing the
task’s private ‘global’ data. In this case the

destructor function could be ‘free’.

Per-task variables are disabled in SMP con-
figurations and this service is not available.

7.4. Directives 85

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

7.4.18 TASK_VARIABLE_GET - Obtain
value of a per task variable

Warning: This directive is deprecated and
task variables will be removed.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_get(
2 rtems_id tid,
3 void **task_variable,
4 void **task_variable_value
5);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL per task variable

obtained
successfully

RTEMS_INVALID_
ADDRESS

task_variable is
NULL

RTEMS_INVALID_
ADDRESS

task_variable_
value is
NULL

RTEMS_INVALID_
ADDRESS

task_variable is
not found

RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_
ON_REMOTE_OBJECT

not supported on
remote tasks

DESCRIPTION:
This directive looks up the private value of a
task variable for a specified task and stores
that value in the location pointed to by the
result argument. The specified task is usu-
ally not the calling task, which can get its
private value by directly accessing the vari-
able.

NOTES:
If you change memory which
task_variable_value points to, remem-
ber to declare that memory as volatile,
so that the compiler will optimize it
correctly. In this case both the pointer
task_variable_value and data referenced
by task_variable_value should be consid-
ered volatile.

Per-task variables are disabled in SMP con-
figurations and this service is not available.

86 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS C User Documentation, Release 4.11.3

7.4.19 TASK_VARIABLE_DELETE - Re-
move per task variable

Warning: This directive is deprecated and
task variables will be removed.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_
→˓delete(

2 rtems_id id,
3 void **task_variable
4);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL per task variable

deleted successfully
RTEMS_INVALID_ID invalid task id
RTEMS_NO_MEMORY invalid task id
RTEMS_INVALID_
ADDRESS

task_variable is
NULL

RTEMS_ILLEGAL_
ON_REMOTE_OBJECT

not supported on
remote tasks

DESCRIPTION:
This directive removes the given location
from a task’s context.

NOTES:
Per-task variables are disabled in SMP con-
figurations and this service is not available.

7.4. Directives 87

RTEMS C User Documentation, Release 4.11.3 Chapter 7 Section 7.4

88 Chapter 7. Task Manager

CHAPTER

EIGHT

INTERRUPT MANAGER

89

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.1

8.1 Introduction

Any real-time executive must provide a mech-
anism for quick response to externally gen-
erated interrupts to satisfy the critical time
constraints of the application. The interrupt
manager provides this mechanism for RTEMS.
This manager permits quick interrupt response
times by providing the critical ability to alter
task execution which allows a task to be pre-
empted upon exit from an ISR. The interrupt
manager includes the following directive:

• rtems_interrupt_catch (page 96) - Estab-
lish an ISR

• rtems_interrupt_disable (page 97) - Dis-
able Interrupts

• rtems_interrupt_enable (page 98) - En-
able Interrupts

• rtems_interrupt_flash (page 99) - Flash
Interrupt

• rtems_interrupt_local_disable (page 100)
- Disable Interrupts on Current Processor

• rtems_interrupt_local_enable (page 101)
- Enable Interrupts on Current Processor

• rtems_interrupt_lock_initialize
(page 102) - Initialize an ISR Lock

• rtems_interrupt_lock_acquire (page 103)
- Acquire an ISR Lock

• rtems_interrupt_lock_release (page 104) -
Release an ISR Lock

• rtems_interrupt_lock_acquire_isr
(page 105) - Acquire an ISR Lock
from ISR

• rtems_interrupt_lock_release_isr
(page 106) - Release an ISR Lock
from ISR

• rtems_interrupt_is_in_progress
(page 107) - Is an ISR in Progress

90 Chapter 8. Interrupt Manager

Chapter 8 Section 8.2 RTEMS C User Documentation, Release 4.11.3

8.2 Background

8.2.1 Processing an Interrupt

The interrupt manager allows the application
to connect a function to a hardware inter-
rupt vector. When an interrupt occurs, the
processor will automatically vector to RTEMS.
RTEMS saves and restores all registers which
are not preserved by the normal C calling con-
vention for the target processor and invokes
the user’s ISR. The user’s ISR is responsible for
processing the interrupt, clearing the interrupt
if necessary, and device specific manipulation.

The rtems_interrupt_catch directive con-
nects a procedure to an interrupt vector.
The vector number is managed using the
rtems_vector_number data type.

The interrupt service routine is assumed to
abide by these conventions and have a proto-
type similar to the following:

1 rtems_isr user_isr(
2 rtems_vector_number vector
3);

The vector number argument is provided by
RTEMS to allow the application to identify the
interrupt source. This could be used to allow a
single routine to service interrupts from multi-
ple instances of the same device. For example,
a single routine could service interrupts from
multiple serial ports and use the vector num-
ber to identify which port requires servicing.

To minimize the masking of lower or equal pri-
ority level interrupts, the ISR should perform
the minimum actions required to service the
interrupt. Other non-essential actions should
be handled by application tasks. Once the
user’s ISR has completed, it returns control to
the RTEMS interrupt manager which will per-
form task dispatching and restore the registers
saved before the ISR was invoked.

The RTEMS interrupt manager guarantees that
proper task scheduling and dispatching are
performed at the conclusion of an ISR. A sys-
tem call made by the ISR may have readied
a task of higher priority than the interrupted
task. Therefore, when the ISR completes, the

postponed dispatch processing must be per-
formed. No dispatch processing is performed
as part of directives which have been invoked
by an ISR.

Applications must adhere to the following rule
if proper task scheduling and dispatching is to
be performed:

Note: The interrupt manager must be used
for all ISRs which may be interrupted by the
highest priority ISR which invokes an RTEMS
directive.

Consider a processor which allows a numeri-
cally low interrupt level to interrupt a numer-
ically greater interrupt level. In this example,
if an RTEMS directive is used in a level 4 ISR,
then all ISRs which execute at levels 0 through
4 must use the interrupt manager.

Interrupts are nested whenever an interrupt
occurs during the execution of another ISR.
RTEMS supports efficient interrupt nesting by
allowing the nested ISRs to terminate with-
out performing any dispatch processing. Only
when the outermost ISR terminates will the
postponed dispatching occur.

8.2.2 RTEMS Interrupt Levels

Many processors support multiple interrupt
levels or priorities. The exact number of in-
terrupt levels is processor dependent. RTEMS
internally supports 256 interrupt levels which
are mapped to the processor’s interrupt lev-
els. For specific information on the mapping
between RTEMS and the target processor’s in-
terrupt levels, refer to the Interrupt Processing
chapter of the Applications Supplement docu-
ment for a specific target processor.

8.2.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical
sections of code may be executed. When these
sections are encountered, RTEMS disables all
maskable interrupts before the execution of
the section and restores them to the previous
level upon completion of the section. RTEMS

8.2. Background 91

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.2

has been optimized to ensure that interrupts
are disabled for a minimum length of time.
The maximum length of time interrupts are
disabled by RTEMS is processor dependent and
is detailed in the Timing Specification chapter
of the Applications Supplement document for
a specific target processor.

Non-maskable interrupts (NMI) cannot be dis-
abled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a
directive is invoked, unpredictable results may
occur due to the inability of RTEMS to pro-
tect its critical sections. However, ISRs that
make no system calls may safely execute as
non-maskable interrupts.

92 Chapter 8. Interrupt Manager

Chapter 8 Section 8.3 RTEMS C User Documentation, Release 4.11.3

8.3 Operations

8.3.1 Establishing an ISR

The rtems_interrupt_catch directive estab-
lishes an ISR for the system. The address of
the ISR and its associated CPU vector number
are specified to this directive. This directive in-
stalls the RTEMS interrupt wrapper in the pro-
cessor’s Interrupt Vector Table and the address
of the user’s ISR in the RTEMS’ Vector Table.
This directive returns the previous contents of
the specified vector in the RTEMS’ Vector Ta-
ble.

8.3.2 Directives Allowed from an ISR

Using the interrupt manager ensures that
RTEMS knows when a directive is being called
from an ISR. The ISR may then use system
calls to synchronize itself with an application
task. The synchronization may involve mes-
sages, events or signals being passed by the
ISR to the desired task. Directives invoked by
an ISR must operate only on objects which re-
side on the local node. The following is a list
of RTEMS system calls that may be made from
an ISR:

• Task Management Although it is accept-
able to operate on the RTEMS_SELF task
(e.g. the currently executing task), while
in an ISR, this will refer to the inter-
rupted task. Most of the time, it is an
application implementation error to use
RTEMS_SELF from an ISR.

– rtems_task_suspend

– rtems_task_resume

• Interrupt Management

– rtems_interrupt_enable

– rtems_interrupt_disable

– rtems_interrupt_flash

– rtems_interrupt_lock_acquire

– rtems_interrupt_lock_release

– rtems_interrupt_lock_acquire_isr

– rtems_interrupt_lock_release_isr

– rtems_interrupt_is_in_progress

– rtems_interrupt_catch

• Clock Management

– rtems_clock_set

– rtems_clock_get

– rtems_clock_get_tod

– rtems_clock_get_tod_timeval

– rtems_clock_get_seconds_since_epoch

– rtems_clock_get_ticks_per_second

– rtems_clock_get_ticks_since_boot

– rtems_clock_get_uptime

– rtems_timecounter_tick

– rtems_timecounter_simple_downcounter_tick

– rtems_timecounter_simple_upcounter_tick

• Timer Management

– rtems_timer_cancel

– rtems_timer_reset

– rtems_timer_fire_after

– rtems_timer_fire_when

– rtems_timer_server_fire_after

– rtems_timer_server_fire_when

• Event Management

– rtems_event_send

– rtems_event_system_send

– rtems_event_transient_send

• Semaphore Management

– rtems_semaphore_release

• Message Management

– rtems_message_queue_send

– rtems_message_queue_urgent

• Signal Management

– rtems_signal_send

• Dual-Ported Memory Management

8.3. Operations 93

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.3

– rtems_port_external_to_internal

– rtems_port_internal_to_external

• IO Management The following services
are safe to call from an ISR if and only if
the device driver service invoked is also
safe. The IO Manager itself is safe but the
invoked driver entry point may or may
not be.

– rtems_io_initialize

– rtems_io_open

– rtems_io_close

– rtems_io_read

– rtems_io_write

– rtems_io_control

• Fatal Error Management

– rtems_fatal

– rtems_fatal_error_occurred

• Multiprocessing

– rtems_multiprocessing_announce

94 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS C User Documentation, Release 4.11.3

8.4 Directives

This section details the interrupt manager’s di-
rectives. A subsection is dedicated to each
of this manager’s directives and describes the
calling sequence, related constants, usage, and
status codes.

8.4. Directives 95

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.4

8.4.1 INTERRUPT_CATCH - Establish an
ISR

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_catch(
2 rtems_isr_entry new_isr_handler,
3 rtems_vector_number vector,
4 rtems_isr_entry *old_isr_handler
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

ISR established
successfully

RTEMS_
INVALID_
NUMBER

illegal vector number

RTEMS_
INVALID_
ADDRESS

illegal ISR entry point or
invalid old_isr_handler

DESCRIPTION:
This directive establishes an interrupt service
routine (ISR) for the specified interrupt vec-
tor number. The new_isr_handler parame-
ter specifies the entry point of the ISR. The
entry point of the previous ISR for the speci-
fied vector is returned in old_isr_handler.

To release an interrupt vector, pass the old
handler’s address obtained when the vector
was first capture.

NOTES:
This directive will not cause the calling task
to be preempted.

96 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS C User Documentation, Release 4.11.3

8.4.2 INTERRUPT_DISABLE - Disable In-
terrupts

CALLING SEQUENCE:

1 void rtems_interrupt_disable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive disables all maskable inter-
rupts and returns the previous level. A later
invocation of the rtems_interrupt_enable
directive should be used to restore the inter-
rupt level.

Macro

This directive is implemented as a macro
which modifies the level parameter.

NOTES:
This directive will not cause the calling task
to be preempted.

This directive is only available on uni-
processor configurations. The directive
rtems_interrupt_local_disable is avail-
able on all configurations.

8.4. Directives 97

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.4

8.4.3 INTERRUPT_ENABLE - Enable In-
terrupts

CALLING SEQUENCE:

1 void rtems_interrupt_enable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive enables maskable interrupts to
the level which was returned by a previ-
ous call to rtems_interrupt_disable. Im-
mediately prior to invoking this directive,
maskable interrupts should be disabled by
a call to rtems_interrupt_disable and will
be enabled when this directive returns to the
caller.

NOTES:
This directive will not cause the calling task
to be preempted.

This directive is only available on uni-
processor configurations. The directive
rtems_interrupt_local_enable is available
on all configurations.

98 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS C User Documentation, Release 4.11.3

8.4.4 INTERRUPT_FLASH - Flash Inter-
rupts

CALLING SEQUENCE:

1 void rtems_interrupt_flash(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive temporarily enables mask-
able interrupts to the level which
was returned by a previous call to
rtems_interrupt_disable. Immediately
prior to invoking this directive, maskable
interrupts should be disabled by a call
to rtems_interrupt_disable and will be
redisabled when this directive returns to the
caller.

NOTES:
This directive will not cause the calling task
to be preempted.

This directive is only available on uni-
processor configurations. The directives
rtems_interrupt_local_disable and
rtems_interrupt_local_enable is available
on all configurations.

8.4. Directives 99

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.4

8.4.5 INTERRUPT_LOCAL_DISABLE - Dis-
able Interrupts on Current Processor

CALLING SEQUENCE:

1 void rtems_interrupt_local_disable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive disables all maskable
interrupts and returns the previous
level. A later invocation of the
rtems_interrupt_local_enable direc-
tive should be used to restore the interrupt
level.

Macro

This directive is implemented as a macro
which modifies the level parameter.

NOTES:
This directive will not cause the calling task
to be preempted.

On SMP configurations this will not ensure
system wide mutual exclusion. Use interrupt
locks instead.

100 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS C User Documentation, Release 4.11.3

8.4.6 INTERRUPT_LOCAL_ENABLE - En-
able Interrupts on Current Processor

CALLING SEQUENCE:

1 void rtems_interrupt_local_enable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive enables maskable interrupts to
the level which was returned by a previ-
ous call to rtems_interrupt_local_disable.
Immediately prior to invoking this directive,
maskable interrupts should be disabled by a
call to rtems_interrupt_local_disable and
will be enabled when this directive returns
to the caller.

NOTES:
This directive will not cause the calling task
to be preempted.

8.4. Directives 101

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.4

8.4.7 INTERRUPT_LOCK_INITIALIZE -
Initialize an ISR Lock

CALLING SEQUENCE:

1 void rtems_interrupt_lock_initialize(
2 rtems_interrupt_lock *lock,
3 const char *name
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Initializes an interrupt lock. The name must
be persistent throughout the lifetime of the
lock.

NOTES:
Concurrent initialization leads to unpre-
dictable results.

102 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS C User Documentation, Release 4.11.3

8.4.8 INTERRUPT_LOCK_ACQUIRE - Ac-
quire an ISR Lock

CALLING SEQUENCE:

1 void rtems_interrupt_lock_acquire(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_

→˓context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Interrupts will be disabled. On SMP configu-
rations this directive acquires a SMP lock.

NOTES:
A separate lock context must be provided for
each acquire/release pair, for example an au-
tomatic variable.

An attempt to recursively acquire the lock
may result in an infinite loop with interrupts
disabled.

This directive will not cause the calling
thread to be preempted. This directive can
be used in thread and interrupt context.

8.4. Directives 103

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.4

8.4.9 INTERRUPT_LOCK_RELEASE - Re-
lease an ISR Lock

CALLING SEQUENCE:

1 void rtems_interrupt_lock_release(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_

→˓context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt status will be restored. On
SMP configurations this directive releases a
SMP lock.

NOTES:
The lock context must be the one used to ac-
quire the lock, otherwise the result is unpre-
dictable.

This directive will not cause the calling
thread to be preempted. This directive can
be used in thread and interrupt context.

104 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS C User Documentation, Release 4.11.3

8.4.10 INTERRUPT_LOCK_ACQUIRE_ISR
- Acquire an ISR Lock from ISR

CALLING SEQUENCE:

1 void rtems_interrupt_lock_acquire_isr(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_

→˓context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt status will remain unchanged.
On SMP configurations this directive ac-
quires a SMP lock.

NOTES:
A separate lock context must be provided for
each acquire/release pair, for example an au-
tomatic variable.

An attempt to recursively acquire the lock
may result in an infinite loop.

This directive is intended for device drivers
and should be called from the corresponding
interrupt service routine.

In case the corresponding interrupt service
routine can be interrupted by higher prior-
ity interrupts and these interrupts enter the
critical section protected by this lock, then
the result is unpredictable.

8.4. Directives 105

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.4

8.4.11 INTERRUPT_LOCK_RELEASE_ISR
- Release an ISR Lock from ISR

CALLING SEQUENCE:

1 void rtems_interrupt_lock_release_isr(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_

→˓context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt status will remain unchanged.
In SMP configurations, this directive releases
an SMP lock.

NOTES:
The lock context must be the one used to ac-
quire the lock, otherwise the result is unpre-
dictable.

This directive is intended for device drivers
and should be called from the corresponding
interrupt service routine.

106 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS C User Documentation, Release 4.11.3

8.4.12 INTERRUPT_IS_IN_PROGRESS -
Is an ISR in Progress

CALLING SEQUENCE:

1 bool rtems_interrupt_is_in_progress(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive returns TRUE if the processor
is currently servicing an interrupt and FALSE
otherwise. A return value of TRUE indicates
that the caller is an interrupt service routine,
NOT a task. The directives available to an
interrupt service routine are restricted.

NOTES:
This directive will not cause the calling task
to be preempted.

8.4. Directives 107

RTEMS C User Documentation, Release 4.11.3 Chapter 8 Section 8.4

108 Chapter 8. Interrupt Manager

CHAPTER

NINE

CLOCK MANAGER

109

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.1

9.1 Introduction

The clock manager provides support for time
of day and other time related capabilities. The
directives provided by the clock manager are:

• rtems_clock_set (page 115) - Set date and
time

• rtems_clock_get (page 116) - Get date
and time information

• rtems_clock_get_tod (page 117) - Get
date and time in TOD format

• rtems_clock_get_tod_timeval (page 118) -
Get date and time in timeval format

• rtems_clock_get_seconds_since_epoch
(page 119) - Get seconds since epoch

• rtems_clock_get_ticks_per_second
(page 120) - Get ticks per second

• rtems_clock_get_ticks_since_boot
(page 121) - Get current ticks counter
value

• rtems_clock_tick_later (page 122) - Get
tick value in the future

• rtems_clock_tick_later_usec (page 123) -
Get tick value in the future in microsec-
onds

• rtems_clock_tick_before (page 124) - Is
tick value is before a point in time

• rtems_clock_get_uptime (page 125) - Get
time since boot

• rtems_clock_get_uptime_timeval
(page 126) - Get time since boot in
timeval format

• rtems_clock_get_uptime_seconds
(page 127) - Get seconds since boot

• rtems_clock_get_uptime_nanoseconds
(page 128) - Get nanoseconds since boot

110 Chapter 9. Clock Manager

Chapter 9 Section 9.2 RTEMS C User Documentation, Release 4.11.3

9.2 Background

9.2.1 Required Support

For the features provided by the clock manager
to be utilized, periodic timer interrupts are re-
quired. Therefore, a real-time clock or hard-
ware timer is necessary to create the timer in-
terrupts. The clock tick directive is normally
called by the timer ISR to announce to RTEMS
that a system clock tick has occurred. Elapsed
time is measured in ticks. A tick is defined to
be an integral number of microseconds which
is specified by the user in the Configuration Ta-
ble.

9.2.2 Time and Date Data Structures

The clock facilities of the clock manager oper-
ate upon calendar time. These directives uti-
lize the following date and time structure for
the native time and date format:

1 struct rtems_tod_control {
2 uint32_t year; /* greater than 1987 */
3 uint32_t month; /* 1 - 12 */
4 uint32_t day; /* 1 - 31 */
5 uint32_t hour; /* 0 - 23 */
6 uint32_t minute; /* 0 - 59 */
7 uint32_t second; /* 0 - 59 */
8 uint32_t ticks; /* elapsed between ␣

→˓seconds */
9 };

10 typedef struct rtems_tod_control rtems_time_
→˓of_day;

The native date and time format is the only for-
mat supported when setting the system date
and time using the rtems_clock_set direc-
tive. Some applications expect to operate on
a UNIX-style date and time data structure. The
rtems_clock_get_tod_timeval always returns
the date and time in struct timeval format.
The rtems_clock_get directive can optionally
return the current date and time in this format.

The struct timeval data structure has two
fields: tv_sec and tv_usec which are seconds
and microseconds, respectively. The tv_sec
field in this data structure is the number of sec-
onds since the POSIX epoch of January 1, 1970

but will never be prior to the RTEMS epoch of
January 1, 1988.

9.2.3 Clock Tick and Timeslicing

Timeslicing is a task scheduling discipline in
which tasks of equal priority are executed for
a specific period of time before control of the
CPU is passed to another task. It is also some-
times referred to as the automatic round-robin
scheduling algorithm. The length of time allo-
cated to each task is known as the quantum or
timeslice.

The system’s timeslice is defined as an integral
number of ticks, and is specified in the Con-
figuration Table. The timeslice is defined for
the entire system of tasks, but timeslicing is en-
abled and disabled on a per task basis.

The clock tick directives implement timeslic-
ing by decrementing the running task’s time-
remaining counter when both timeslicing and
preemption are enabled. If the task’s timeslice
has expired, then that task will be preempted
if there exists a ready task of equal priority.

9.2.4 Delays

A sleep timer allows a task to delay
for a given interval or up until a given
time, and then wake and continue execu-
tion. This type of timer is created auto-
matically by the rtems_task_wake_after and
rtems_task_wake_when directives and, as a re-
sult, does not have an RTEMS ID. Once ac-
tivated, a sleep timer cannot be explicitly
deleted. Each task may activate one and only
one sleep timer at a time.

9.2.5 Timeouts

Timeouts are a special type of timer auto-
matically created when the timeout option is
used on the rtems_message_queue_receive,
rtems_event_receive,
rtems_semaphore_obtain and
rtems_region_get_segment directives. Each
task may have one and only one timeout active

9.2. Background 111

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.2

at a time. When a timeout expires, it unblocks
the task with a timeout status code.

112 Chapter 9. Clock Manager

Chapter 9 Section 9.3 RTEMS C User Documentation, Release 4.11.3

9.3 Operations

9.3.1 Announcing a Tick

RTEMS provides the several clock tick direc-
tives which are called from the user’s real-time
clock ISR to inform RTEMS that a tick has
elapsed. Depending on the timer hardware
capabilities the clock driver must choose the
most appropriate clock tick directive. The tick
frequency value, defined in microseconds, is a
configuration parameter found in the Configu-
ration Table. RTEMS divides one million mi-
croseconds (one second) by the number of mi-
croseconds per tick to determine the number
of calls to the clock tick directive per second.
The frequency of clock tick calls determines
the resolution (granularity) for all time depen-
dent RTEMS actions. For example, calling the
clock tick directive ten times per second yields
a higher resolution than calling the clock tick
two times per second. The clock tick directives
are responsible for maintaining both calendar
time and the dynamic set of timers.

9.3.2 Setting the Time

The rtems_clock_set directive allows a task or
an ISR to set the date and time maintained by
RTEMS. If setting the date and time causes any
outstanding timers to pass their deadline, then
the expired timers will be fired during the in-
vocation of the rtems_clock_set directive.

9.3.3 Obtaining the Time

The rtems_clock_get directive allows a task
or an ISR to obtain the current date and time
or date and time related information. The
current date and time can be returned in ei-
ther native or UNIX-style format. Additionally,
the application can obtain date and time re-
lated information such as the number of sec-
onds since the RTEMS epoch, the number of
ticks since the executive was initialized, and
the number of ticks per second. The informa-
tion returned by the rtems_clock_get direc-
tive is dependent on the option selected by the

caller. This is specified using one of the follow-
ing constants associated with the enumerated
type rtems_clock_get_options:

RTEMS_CLOCK_GET_TOD
obtain native style date and time

RTEMS_CLOCK_GET_TIME_VALUE
obtain UNIX-style date and time

RTEMS_CLOCK_GET_TICKS_SINCE_BOOT
obtain number of ticks since RTEMS was ini-
tialized

RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH
obtain number of seconds since RTEMS
epoch

RTEMS_CLOCK_GET_TICKS_PER_SECOND
obtain number of clock ticks per second

Calendar time operations will return an error
code if invoked before the date and time have
been set.

9.3. Operations 113

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4 Directives

This section details the clock manager’s direc-
tives. A subsection is dedicated to each of this
manager’s directives and describes the calling
sequence, related constants, usage, and status
codes.

114 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS C User Documentation, Release 4.11.3

9.4.1 CLOCK_SET - Set date and time

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_set(
2 rtems_time_of_day *time_buffer
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

date and time set
successfully

RTEMS_INVALID_
ADDRESS

time_buffer is NULL

RTEMS_INVALID_
CLOCK

invalid time of day

DESCRIPTION:
This directive sets the system date and time.
The date, time, and ticks in the time_buffer
structure are all range-checked, and an error
is returned if any one is out of its valid range.

NOTES:
Years before 1988 are invalid.

The system date and time are based on the
configured tick rate (number of microsec-
onds in a tick).

Setting the time forward may cause a higher
priority task, blocked waiting on a specific
time, to be made ready. In this case, the
calling task will be preempted after the next
clock tick.

Re-initializing RTEMS causes the system
date and time to be reset to an uninitialized
state. Another call to rtems_clock_set is re-
quired to re-initialize the system date and
time to application specific specifications.

9.4. Directives 115

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4.2 CLOCK_GET - Get date and time in-
formation

Warning: This directive is deprecated and
will be removed.

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get(
2 rtems_clock_get_options option,
3 void *time_buffer
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

current time obtained
successfully

RTEMS_NOT_
DEFINED

system date and time
is not set

RTEMS_INVALID_
ADDRESS

time_buffer is NULL

DESCRIPTION:
This directive obtains the system date and
time. If the caller is attempting to obtain
the date and time (i.e. option is set to either
RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH,
RTEMS_CLOCK_GET_TOD, or
RTEMS_CLOCK_GET_TIME_VALUE) and the
date and time has not been set with a
previous call to rtems_clock_set, then
the RTEMS_NOT_DEFINED status code is
returned. The caller can always obtain
the number of ticks per second (option
is RTEMS_CLOCK_GET_TICKS_PER_SECOND)
and the number of ticks since the
executive was initialized option is
RTEMS_CLOCK_GET_TICKS_SINCE_BOOT).

The option argument may taken on
any value of the enumerated type
rtems_clock_get_options. The data
type expected for time_buffer is based on
the value of option as indicated below:

Option Return type
RTEMS_CLOCK_GET_TOD (rtems_time_

of_day
*)

RTEMS_CLOCK_GET_
SECONDS_SINCE_EPOCH

(rtems_
interval
*)

RTEMS_CLOCK_GET_
TICKS_SINCE_BOOT

(rtems_
interval
*)

RTEMS_CLOCK_GET_
TICKS_PER_SECOND

(rtems_
interval
*)

RTEMS_CLOCK_GET_TIME_
VALUE

(struct
timeval *)

NOTES:
This directive is callable from an ISR.

This directive will not cause the running
task to be preempted. Re-initializing RTEMS
causes the system date and time to be re-
set to an uninitialized state. Another call to
rtems_clock_set is required to re-initialize
the system date and time to application spe-
cific specifications.

116 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS C User Documentation, Release 4.11.3

9.4.3 CLOCK_GET_TOD - Get date and
time in TOD format

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_tod(
2 rtems_time_of_day *time_buffer
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

current time obtained
successfully

RTEMS_NOT_
DEFINED

system date and time
is not set

RTEMS_INVALID_
ADDRESS

time_buffer is NULL

DESCRIPTION:
This directive obtains the system date and
time. If the date and time has not been
set with a previous call to rtems_clock_set,
then the RTEMS_NOT_DEFINED status code is
returned.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running
task to be preempted. Re-initializing RTEMS
causes the system date and time to be re-
set to an uninitialized state. Another call to
rtems_clock_set is required to re-initialize
the system date and time to application spe-
cific specifications.

9.4. Directives 117

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4.4 CLOCK_GET_TOD_TIMEVAL - Get
date and time in timeval format

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_tod_
→˓interval(

2 struct timeval *time
3);

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive obtains the system date and
time in POSIX struct timeval format. If
the date and time has not been set with a
previous call to rtems_clock_set, then the
RTEMS_NOT_DEFINED status code is returned.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running
task to be preempted. Re-initializing RTEMS
causes the system date and time to be re-
set to an uninitialized state. Another call to
rtems_clock_set is required to re-initialize
the system date and time to application spe-
cific specifications.

118 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS C User Documentation, Release 4.11.3

9.4.5 CLOCK_GET_SECONDS_SINCE_EPOCH
- Get seconds since epoch

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_seconds_
→˓since_epoch(

2 rtems_interval *the_interval
3);

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive returns the number of sec-
onds since the RTEMS epoch and the cur-
rent system date and time. If the date
and time has not been set with a pre-
vious call to rtems_clock_set, then the
RTEMS_NOT_DEFINED status code is returned.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running
task to be preempted. Re-initializing RTEMS
causes the system date and time to be re-
set to an uninitialized state. Another call to
rtems_clock_set is required to re-initialize
the system date and time to application spe-
cific specifications.

9.4. Directives 119

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4.6 CLOCK_GET_TICKS_PER_SECOND
- Get ticks per second

CALLING SEQUENCE:

1 rtems_interval rtems_clock_get_ticks_per_
→˓second(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive returns the number of clock
ticks per second. This is strictly based upon
the microseconds per clock tick that the ap-
plication has configured.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task
to be preempted.

120 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS C User Documentation, Release 4.11.3

9.4.7 CLOCK_GET_TICKS_SINCE_BOOT -
Get current ticks counter value

CALLING SEQUENCE:

1 rtems_interval rtems_clock_get_ticks_
→˓since_boot(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:

This directive returns the current
tick counter value. With a 1ms
clock tick, this counter overflows
after 50 days since boot. This is
the historical measure of uptime
in an RTEMS system. The newer
service rtems_clock_get_uptime is
another and potentially more accu-
rate way of obtaining similar infor-
mation.

NOTES:

This directive is callable from an
ISR.

This directive will not cause the
running task to be preempted.

9.4. Directives 121

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4.8 CLOCK_TICK_LATER - Get tick
value in the future

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_later(
2 rtems_interval delta
3);

DESCRIPTION:
Returns the ticks counter value delta ticks in
the future.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task
to be preempted.

122 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS C User Documentation, Release 4.11.3

9.4.9 CLOCK_TICK_LATER_USEC - Get
tick value in the future in microsec-
onds

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_later_
→˓usec(

2 rtems_interval delta_in_usec
3);

DESCRIPTION:
Returns the ticks counter value at least delta
microseconds in the future.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task
to be preempted.

9.4. Directives 123

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4.10 CLOCK_TICK_BEFORE - Is tick
value is before a point in time

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_before(
2 rtems_interval tick
3);

DESCRIPTION:
Returns true if the current ticks counter
value indicates a time before the time speci-
fied by the tick value and false otherwise.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task
to be preempted.

EXAMPLE:

1 status busy(void)
2 {
3 rtems_interval timeout = rtems_clock_

→˓tick_later_usec(10000);
4 do {
5 if (ok()) {
6 return success;
7 }
8 } while (rtems_clock_tick_before(␣

→˓timeout));
9 return timeout;

10 }

124 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS C User Documentation, Release 4.11.3

9.4.11 CLOCK_GET_UPTIME - Get the
time since boot

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_uptime(
2 struct timespec *uptime
3);

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive returns the seconds and
nanoseconds since the system was booted. If
the BSP supports nanosecond clock accuracy,
the time reported will probably be different
on every call.

NOTES:
This directive may be called from an ISR.

9.4. Directives 125

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4.12 CLOCK_GET_UPTIME_TIMEVAL -
Get the time since boot in timeval
format

CALLING SEQUENCE:

1 void rtems_clock_get_uptime_timeval(
2 struct timeval *uptime
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive returns the seconds and mi-
croseconds since the system was booted. If
the BSP supports nanosecond clock accuracy,
the time reported will probably be different
on every call.

NOTES:
This directive may be called from an ISR.

126 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS C User Documentation, Release 4.11.3

9.4.13 CLOCK_GET_UPTIME_SECONDS -
Get the seconds since boot

CALLING SEQUENCE:

1 time_t rtems_clock_get_uptime_
→˓seconds(void);

DIRECTIVE STATUS CODES:
The system uptime in seconds.

DESCRIPTION:
This directive returns the seconds since the
system was booted.

NOTES:
This directive may be called from an ISR.

9.4. Directives 127

RTEMS C User Documentation, Release 4.11.3 Chapter 9 Section 9.4

9.4.14 CLOCK_GET_UPTIME_NANOSECONDS
- Get the nanoseconds since boot

CALLING SEQUENCE:

1 uint64_t rtems_clock_get_uptime_
→˓nanoseconds(void);

DIRECTIVE STATUS CODES:
The system uptime in nanoseconds.

DESCRIPTION:
This directive returns the nanoseconds since
the system was booted.

NOTES:
This directive may be called from an ISR.

128 Chapter 9. Clock Manager

CHAPTER

TEN

TIMER MANAGER

129

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.1

10.1 Introduction

The timer manager provides support for timer
facilities. The directives provided by the timer
manager are:

• rtems_timer_create (page 134) - Create a
timer

• rtems_timer_ident (page 135) - Get ID of
a timer

• rtems_timer_cancel (page 136) - Cancel a
timer

• rtems_timer_delete (page 137) - Delete a
timer

• rtems_timer_fire_after (page 138) - Fire
timer after interval

• rtems_timer_fire_when (page 139) - Fire
timer when specified

• rtems_timer_initiate_server (page 140) -
Initiate server for task-based timers

• rtems_timer_server_fire_after (page 141)
- Fire task-based timer after interval

• rtems_timer_server_fire_when (page 142)
- Fire task-based timer when specified

• rtems_timer_reset (page 143) - Reset an
interval timer

130 Chapter 10. Timer Manager

Chapter 10 Section 10.2 RTEMS C User Documentation, Release 4.11.3

10.2 Background

10.2.1 Required Support

A clock tick is required to support the function-
ality provided by this manager.

10.2.2 Timers

A timer is an RTEMS object which allows the
application to schedule operations to occur at
specific times in the future. User supplied
timer service routines are invoked by either a
clock tick directive or a special Timer Server
task when the timer fires. Timer service rou-
tines may perform any operations or directives
which normally would be performed by the ap-
plication code which invoked a clock tick direc-
tive.

The timer can be used to implement watchdog
routines which only fire to denote that an ap-
plication error has occurred. The timer is reset
at specific points in the application to ensure
that the watchdog does not fire. Thus, if the
application does not reset the watchdog timer,
then the timer service routine will fire to indi-
cate that the application has failed to reach a
reset point. This use of a timer is sometimes
referred to as a “keep alive” or a “deadman”
timer.

10.2.3 Timer Server

The Timer Server task is responsible for ex-
ecuting the timer service routines associated
with all task-based timers. This task executes
at a priority higher than any RTEMS applica-
tion task, and is created non-preemptible, and
thus can be viewed logically as the lowest pri-
ority interrupt.

By providing a mechanism where timer service
routines execute in task rather than interrupt
space, the application is allowed a bit more
flexibility in what operations a timer service
routine can perform. For example, the Timer
Server can be configured to have a floating
point context in which case it would be safe to

perform floating point operations from a task-
based timer. Most of the time, executing float-
ing point instructions from an interrupt service
routine is not considered safe. However, since
the Timer Server task is non-preemptible, only
directives allowed from an ISR can be called in
the timer service routine.

The Timer Server is designed to remain
blocked until a task-based timer fires. This
reduces the execution overhead of the Timer
Server.

10.2.4 Timer Service Routines

The timer service routine should adhere to C
calling conventions and have a prototype simi-
lar to the following:

1 rtems_timer_service_routine user_routine(
2 rtems_id timer_id,
3 void *user_data
4);

Where the timer_id parameter is the RTEMS
object ID of the timer which is being fired and
user_data is a pointer to user-defined informa-
tion which may be utilized by the timer ser-
vice routine. The argument user_data may be
NULL.

10.2. Background 131

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.3

10.3 Operations

10.3.1 Creating a Timer

The rtems_timer_create directive creates a
timer by allocating a Timer Control Block
(TMCB), assigning the timer a user-specified
name, and assigning it a timer ID. Newly cre-
ated timers do not have a timer service routine
associated with them and are not active.

10.3.2 Obtaining Timer IDs

When a timer is created, RTEMS generates
a unique timer ID and assigns it to the cre-
ated timer until it is deleted. The timer ID
may be obtained by either of two methods.
First, as the result of an invocation of the
rtems_timer_create directive, the timer ID is
stored in a user provided location. Second,
the timer ID may be obtained later using the
rtems_timer_ident directive. The timer ID
is used by other directives to manipulate this
timer.

10.3.3 Initiating an Interval Timer

The rtems_timer_fire_after and
rtems_timer_server_fire_after directives
initiate a timer to fire a user provided timer
service routine after the specified number of
clock ticks have elapsed. When the interval
has elapsed, the timer service routine will
be invoked from a clock tick directive if it
was initiated by the rtems_timer_fire_after
directive and from the Timer Server task if ini-
tiated by the rtems_timer_server_fire_after
directive.

10.3.4 Initiating a Time of Day Timer

The rtems_timer_fire_when and
rtems_timer_server_fire_when directive
initiate a timer to fire a user provided timer
service routine when the specified time of
day has been reached. When the interval
has elapsed, the timer service routine will
be invoked from a clock tick directive by
the rtems_timer_fire_when directive and

from the Timer Server task if initiated by the
rtems_timer_server_fire_when directive.

10.3.5 Canceling a Timer

The rtems_timer_cancel directive is used
to halt the specified timer. Once canceled,
the timer service routine will not fire unless
the timer is reinitiated. The timer can be
reinitiated using the rtems_timer_reset,
rtems_timer_fire_after, and
rtems_timer_fire_when directives.

10.3.6 Resetting a Timer

The rtems_timer_reset directive is used to
restore an interval timer initiated by a pre-
vious invocation of rtems_timer_fire_after
or rtems_timer_server_fire_after to its orig-
inal interval length. If the timer has
not been used or the last usage of this
timer was by the rtems_timer_fire_when
or rtems_timer_server_fire_when directive,
then an error is returned. The timer service
routine is not changed or fired by this direc-
tive.

10.3.7 Initiating the Timer Server

The rtems_timer_initiate_server directive
is used to allocate and start the execution
of the Timer Server task. The application
can specify both the stack size and attributes
of the Timer Server. The Timer Server ex-
ecutes at a priority higher than any appli-
cation task and thus the user can expect to
be preempted as the result of executing the
rtems_timer_initiate_server directive.

10.3.8 Deleting a Timer

The rtems_timer_delete directive is used to
delete a timer. If the timer is running and
has not expired, the timer is automatically can-
celed. The timer’s control block is returned to
the TMCB free list when it is deleted. A timer
can be deleted by a task other than the task
which created the timer. Any subsequent ref-
erences to the timer’s name and ID are invalid.

132 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS C User Documentation, Release 4.11.3

10.4 Directives

This section details the timer manager’s direc-
tives. A subsection is dedicated to each of this
manager’s directives and describes the calling
sequence, related constants, usage, and status
codes.

10.4. Directives 133

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.4

10.4.1 TIMER_CREATE - Create a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_create(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL timer created

successfully
RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NAME

invalid timer name

RTEMS_TOO_MANY too many timers
created

DESCRIPTION:
This directive creates a timer. The assigned
timer id is returned in id. This id is used to
access the timer with other timer manager
directives. For control and maintenance of
the timer, RTEMS allocates a TMCB from the
local TMCB free pool and initializes it.

NOTES:
This directive will not cause the calling task
to be preempted.

134 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS C User Documentation, Release 4.11.3

10.4.2 TIMER_IDENT - Get ID of a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

timer identified
successfully

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NAME

timer name not
found

DESCRIPTION:
This directive obtains the timer id associated
with the timer name to be acquired. If the
timer name is not unique, then the timer id
will match one of the timers with that name.
However, this timer id is not guaranteed to
correspond to the desired timer. The timer
id is used to access this timer in other timer
related directives.

NOTES:
This directive will not cause the running task
to be preempted.

10.4. Directives 135

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.4

10.4.3 TIMER_CANCEL - Cancel a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_cancel(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

timer canceled
successfully

RTEMS_
INVALID_ID

invalid timer id

DESCRIPTION:
This directive cancels the timer id.
This timer will be reinitiated by the
next invocation of rtems_timer_reset,
rtems_timer_fire_after, or
rtems_timer_fire_when with this id.

NOTES:
This directive will not cause the running task
to be preempted.

136 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS C User Documentation, Release 4.11.3

10.4.4 TIMER_DELETE - Delete a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

timer deleted
successfully

RTEMS_INVALID_
ID

invalid timer id

DESCRIPTION:
This directive deletes the timer specified by
id. If the timer is running, it is automatically
canceled. The TMCB for the deleted timer is
reclaimed by RTEMS.

NOTES:
This directive will not cause the running task
to be preempted.

A timer can be deleted by a task other than
the task which created the timer.

10.4. Directives 137

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.4

10.4.5 TIMER_FIRE_AFTER - Fire timer
after interval

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_fire_after(
2 rtems_id id,
3 rtems_interval ␣

→˓ticks,
4 rtems_timer_service_routine_entry ␣

→˓routine,
5 void ␣

→˓*user_data
6);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL timer initiated

successfully
RTEMS_INVALID_
ADDRESS

routine is NULL

RTEMS_INVALID_ID invalid timer id
RTEMS_INVALID_
NUMBER

invalid interval

DESCRIPTION:
This directive initiates the timer specified by
id. If the timer is running, it is automatically
canceled before being initiated. The timer is
scheduled to fire after an interval ticks clock
ticks has passed. When the timer fires, the
timer service routine routine will be invoked
with the argument user_data.

NOTES:
This directive will not cause the running task
to be preempted.

138 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS C User Documentation, Release 4.11.3

10.4.6 TIMER_FIRE_WHEN - Fire timer
when specified

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_fire_when(
2 rtems_id id,
3 rtems_time_of_day ␣

→˓*wall_time,
4 rtems_timer_service_routine_entry ␣

→˓routine,
5 void ␣

→˓*user_data
6);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

timer initiated
successfully

RTEMS_INVALID_
ADDRESS

routine is NULL

RTEMS_INVALID_
ADDRESS

wall_time is NULL

RTEMS_INVALID_
ID

invalid timer id

RTEMS_NOT_
DEFINED

system date and time
is not set

RTEMS_INVALID_
CLOCK

invalid time of day

DESCRIPTION:
This directive initiates the timer specified by
id. If the timer is running, it is automatically
canceled before being initiated. The timer
is scheduled to fire at the time of day speci-
fied by wall_time. When the timer fires, the
timer service routine routine will be invoked
with the argument user_data.

NOTES:
This directive will not cause the running task
to be preempted.

10.4. Directives 139

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.4

10.4.7 TIMER_INITIATE_SERVER - Initi-
ate server for task-based timers

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_initiate_
→˓server(

2 uint32_t priority,
3 uint32_t stack_size,
4 rtems_attribute attribute_set
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

Timer Server initiated
successfully

RTEMS_TOO_
MANY

too many tasks created

DESCRIPTION:
This directive initiates the Timer Server
task. This task is responsible for ex-
ecuting all timers initiated via the
rtems_timer_server_fire_after or
rtems_timer_server_fire_when directives.

NOTES:
This directive could cause the calling task to
be preempted.

The Timer Server task is created using the
rtems_task_create service and must be ac-
counted for when configuring the system.

Even through this directive invokes the
rtems_task_create and rtems_task_start
directives, it should only fail due to resource
allocation problems.

140 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS C User Documentation, Release 4.11.3

10.4.8 TIMER_SERVER_FIRE_AFTER -
Fire task-based timer after interval

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_server_fire_
→˓after(

2 rtems_id id,
3 rtems_interval ␣

→˓ticks,
4 rtems_timer_service_routine_entry ␣

→˓routine,
5 void ␣

→˓*user_data
6);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL timer initiated

successfully
RTEMS_INVALID_
ADDRESS

routine is NULL

RTEMS_INVALID_ID invalid timer id
RTEMS_INVALID_
NUMBER

invalid interval

RTEMS_INCORRECT_
STATE

Timer Server not
initiated

DESCRIPTION:
This directive initiates the timer specified by
id and specifies that when it fires it will be
executed by the Timer Server.

If the timer is running, it is automatically
canceled before being initiated. The timer is
scheduled to fire after an interval ticks clock
ticks has passed. When the timer fires, the
timer service routine routine will be invoked
with the argument user_data.

NOTES:
This directive will not cause the running task
to be preempted.

10.4. Directives 141

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.4

10.4.9 TIMER_SERVER_FIRE_WHEN
- Fire task-based timer when
specified

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_server_fire_
→˓when(

2 rtems_id id,
3 rtems_time_of_day ␣

→˓*wall_time,
4 rtems_timer_service_routine_entry ␣

→˓routine,
5 void ␣

→˓*user_data
6);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

timer initiated
successfully

RTEMS_INVALID_
ADDRESS

routine is NULL

RTEMS_INVALID_
ADDRESS

wall_time is NULL

RTEMS_INVALID_
ID

invalid timer id

RTEMS_NOT_
DEFINED

system date and time
is not set

RTEMS_INVALID_
CLOCK

invalid time of day

RTEMS_
INCORRECT_
STATE

Timer Server not
initiated

DESCRIPTION:
This directive initiates the timer specified by
id and specifies that when it fires it will be
executed by the Timer Server.

If the timer is running, it is automatically
canceled before being initiated. The timer
is scheduled to fire at the time of day speci-
fied by wall_time. When the timer fires, the
timer service routine routine will be invoked
with the argument user_data.

NOTES:
This directive will not cause the running task
to be preempted.

142 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS C User Documentation, Release 4.11.3

10.4.10 TIMER_RESET - Reset an interval
timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_reset(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

timer reset successfully

RTEMS_
INVALID_
ID

invalid timer id

RTEMS_
NOT_
DEFINED

attempted to reset a when
or newly created timer

DESCRIPTION:
This directive resets the timer associ-
ated with id. This timer must have
been previously initiated with ei-
ther the rtems_timer_fire_after or
rtems_timer_server_fire_after directive.
If active the timer is canceled, after which
the timer is reinitiated using the same
interval and timer service routine which
the original rtems_timer_fire_after or
rtems_timer_server_fire_after directive
used.

NOTES:
If the timer has not been used or
the last usage of this timer was
by a rtems_timer_fire_when or
rtems_timer_server_fire_when direc-
tive, then the RTEMS_NOT_DEFINED error is
returned.

Restarting a cancelled after timer results in
the timer being reinitiated with its previous
timer service routine and interval.

This directive will not cause the running task
to be preempted.

10.4. Directives 143

RTEMS C User Documentation, Release 4.11.3 Chapter 10 Section 10.4

144 Chapter 10. Timer Manager

CHAPTER

ELEVEN

RATE MONOTONIC MANAGER

145

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.1

11.1 Introduction

The rate monotonic manager provides facilities
to implement tasks which execute in a periodic
fashion. Critically, it also gathers information
about the execution of those periods and can
provide important statistics to the user which
can be used to analyze and tune the applica-
tion. The directives provided by the rate mono-
tonic manager are:

• rtems_rate_monotonic_create (page 156)
- Create a rate monotonic period

• rtems_rate_monotonic_ident (page 157) -
Get ID of a period

• rtems_rate_monotonic_cancel (page 158)
- Cancel a period

• rtems_rate_monotonic_delete (page 159)
- Delete a rate monotonic period

• rtems_rate_monotonic_period (page 160)
- Conclude current/Start next period

• rtems_rate_monotonic_get_status
(page 161) - Obtain status from a
period

• rtems_rate_monotonic_get_statistics
(page 162) - Obtain statistics from a
period

• rtems_rate_monotonic_reset_statistics
(page 163) - Reset statistics for a period

• rtems_rate_monotonic_reset_all_statistics
(page 164) - Reset statistics for all
periods

• rtems_rate_monotonic_report_statistics
(page 165) - Print period statistics report

146 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS C User Documentation, Release 4.11.3

11.2 Background

The rate monotonic manager provides facili-
ties to manage the execution of periodic tasks.
This manager was designed to support appli-
cation designers who utilize the Rate Mono-
tonic Scheduling Algorithm (RMS) to ensure
that their periodic tasks will meet their dead-
lines, even under transient overload condi-
tions. Although designed for hard real-time
systems, the services provided by the rate
monotonic manager may be used by any ap-
plication which requires periodic tasks.

11.2.1 Rate Monotonic Manager Required
Support

A clock tick is required to support the function-
ality provided by this manager.

11.2.2 Period Statistics

This manager maintains a set of statistics on
each period object. These statistics are reset
implictly at period creation time and may be
reset or obtained at any time by the applica-
tion. The following is a list of the information
kept:

owner
is the id of the thread that owns this period.

count
is the total number of periods executed.

missed_count
is the number of periods that were missed.

min_cpu_time
is the minimum amount of CPU execution
time consumed on any execution of the peri-
odic loop.

max_cpu_time
is the maximum amount of CPU execution
time consumed on any execution of the peri-
odic loop.

total_cpu_time
is the total amount of CPU execution time
consumed by executions of the periodic
loop.

min_wall_time
is the minimum amount of wall time that
passed on any execution of the periodic loop.

max_wall_time
is the maximum amount of wall time that
passed on any execution of the periodic loop.

total_wall_time
is the total amount of wall time that passed
during executions of the periodic loop.

Each period is divided into two consecutive
phases. The period starts with the active phase
of the task and is followed by the inactive
phase of the task. In the inactive phase the task
is blocked and waits for the start of the next pe-
riod. The inactive phase is skipped in case of
a period miss. The wall time includes the time
during the active phase of the task on which
the task is not executing on a processor. The
task is either blocked (for example it waits for
a resource) or a higher priority tasks executes,
thus preventing it from executing. In case the
wall time exceeds the period time, then this is
a period miss. The gap between the wall time
and the period time is the margin between a
period miss or success.

The period statistics information is inexpen-
sive to maintain and can provide very use-
ful insights into the execution characteristics
of a periodic task loop. But it is just infor-
mation. The period statistics reported must
be analyzed by the user in terms of what the
applications is. For example, in an applica-
tion where priorities are assigned by the Rate
Monotonic Algorithm, it would be very unde-
sirable for high priority (i.e. frequency) tasks
to miss their period. Similarly, in nearly any
application, if a task were supposed to execute
its periodic loop every 10 milliseconds and it
averaged 11 milliseconds, then application re-
quirements are not being met.

The information reported can be used to deter-
mine the “hot spots” in the application. Given
a period’s id, the user can determine the length
of that period. From that information and the
CPU usage, the user can calculate the percent-
age of CPU time consumed by that periodic
task. For example, a task executing for 20 mil-
liseconds every 200 milliseconds is consuming
10 percent of the processor’s execution time.

11.2. Background 147

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.2

This is usually enough to make it a good can-
didate for optimization.

However, execution time alone is not enough
to gauge the value of optimizing a particular
task. It is more important to optimize a task
executing 2 millisecond every 10 milliseconds
(20 percent of the CPU) than one executing
10 milliseconds every 100 (10 percent of the
CPU). As a general rule of thumb, the higher
frequency at which a task executes, the more
important it is to optimize that task.

11.2.3 Rate Monotonic Manager Defini-
tions

A periodic task is one which must be executed
at a regular interval. The interval between
successive iterations of the task is referred to
as its period. Periodic tasks can be character-
ized by the length of their period and execu-
tion time. The period and execution time of
a task can be used to determine the processor
utilization for that task. Processor utilization is
the percentage of processor time used and can
be calculated on a per-task or system-wide ba-
sis. Typically, the task’s worst-case execution
time will be less than its period. For exam-
ple, a periodic task’s requirements may state
that it should execute for 10 milliseconds ev-
ery 100 milliseconds. Although the execution
time may be the average, worst, or best case,
the worst-case execution time is more appro-
priate for use when analyzing system behavior
under transient overload conditions... index::
aperiodic task, definition

In contrast, an aperiodic task executes at irreg-
ular intervals and has only a soft deadline. In
other words, the deadlines for aperiodic tasks
are not rigid, but adequate response times are
desirable. For example, an aperiodic task may
process user input from a terminal.

Finally, a sporadic task is an aperiodic task
with a hard deadline and minimum interar-
rival time. The minimum interarrival time is
the minimum period of time which exists be-
tween successive iterations of the task. For ex-
ample, a sporadic task could be used to process
the pressing of a fire button on a joystick. The
mechanical action of the fire button ensures a

minimum time period between successive acti-
vations, but the missile must be launched by a
hard deadline.

11.2.4 Rate Monotonic Scheduling Algo-
rithm

The Rate Monotonic Scheduling Algorithm
(RMS) is important to real-time systems de-
signers because it allows one to guarantee that
a set of tasks is schedulable. A set of tasks is
said to be schedulable if all of the tasks can
meet their deadlines. RMS provides a set of
rules which can be used to perform a guar-
anteed schedulability analysis for a task set.
This analysis determines whether a task set is
schedulable under worst-case conditions and
emphasizes the predictability of the system’s
behavior. It has been proven that:

RMS

RMS is an optimal static priority algorithm
for scheduling independent, preemptible,
periodic tasks on a single processor.

RMS is optimal in the sense that if a set of tasks
can be scheduled by any static priority algo-
rithm, then RMS will be able to schedule that
task set. RMS bases it schedulability analysis
on the processor utilization level below which
all deadlines can be met.

RMS calls for the static assignment of task pri-
orities based upon their period. The shorter
a task’s period, the higher its priority. For ex-
ample, a task with a 1 millisecond period has
higher priority than a task with a 100 millisec-
ond period. If two tasks have the same period,
then RMS does not distinguish between the
tasks. However, RTEMS specifies that when
given tasks of equal priority, the task which has
been ready longest will execute first. RMS’s
priority assignment scheme does not provide
one with exact numeric values for task priori-
ties. For example, consider the following task
set and priority assignments:

148 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS C User Documentation, Release 4.11.3

Task Period (in milliseconds) Priority
1 100 Low
2 50 Medium
3 50 Medium
4 25 High

RMS only calls for task 1 to have the lowest
priority, task 4 to have the highest priority, and
tasks 2 and 3 to have an equal priority between
that of tasks 1 and 4. The actual RTEMS prior-
ities assigned to the tasks must only adhere to
those guidelines.

Many applications have tasks with both hard
and soft deadlines. The tasks with hard dead-
lines are typically referred to as the critical
task set, with the soft deadline tasks being the
non-critical task set. The critical task set can
be scheduled using RMS, with the non-critical
tasks not executing under transient overload,
by simply assigning priorities such that the
lowest priority critical task (i.e. longest pe-
riod) has a higher priority than the highest
priority non-critical task. Although RMS may
be used to assign priorities to the non-critical
tasks, it is not necessary. In this instance,
schedulability is only guaranteed for the crit-
ical task set.

11.2.5 Schedulability Analysis

RMS allows application designers to ensure
that tasks can meet all deadlines, even under
transient overload, without knowing exactly
when any given task will execute by applying
proven schedulability analysis rules.

11.2.5.1 Assumptions

The schedulability analysis rules for RMS were
developed based on the following assump-
tions:

• The requests for all tasks for which hard
deadlines exist are periodic, with a con-
stant interval between requests.

• Each task must complete before the next
request for it occurs.

• The tasks are independent in that a task

does not depend on the initiation or com-
pletion of requests for other tasks.

• The execution time for each task with-
out preemption or interruption is con-
stant and does not vary.

• Any non-periodic tasks in the system are
special. These tasks displace periodic
tasks while executing and do not have
hard, critical deadlines.

Once the basic schedulability analysis is under-
stood, some of the above assumptions can be
relaxed and the side-effects accounted for.

11.2.5.2 Processor Utilization Rule

The Processor Utilization Rule requires that
processor utilization be calculated based upon
the period and execution time of each task.
The fraction of processor time spent executing
task index is Time(index) / Period(index).
The processor utilization can be calculated as
follows:

1 Utilization = 0
2 for index = 1 to maximum_tasks
3 Utilization = Utilization + (Time(index)/

→˓Period(index))

To ensure schedulability even under transient
overload, the processor utilization must ad-
here to the following rule:

1 Utilization = maximum_tasks * (2**(1/maximum_
→˓tasks) - 1)

As the number of tasks increases, the above
formula approaches ln(2) for a worst-case uti-
lization factor of approximately 0.693. Many
tasks sets can be scheduled with a greater uti-
lization factor. In fact, the average processor
utilization threshold for a randomly generated
task set is approximately 0.88.

11.2.5.3 Processor Utilization Rule Example

This example illustrates the application of the
Processor Utilization Rule to an application
with three critical periodic tasks. The follow-
ing table details the RMS priority, period, exe-

11.2. Background 149

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.2

cution time, and processor utilization for each
task:

Task RMS
Prior-
ity

Pe-
riod

Execu-
tion
Time

Processor
Utilization

1 High 100 15 0.15
2 Medium 200 50 0.25
3 Low 300 100 0.33

The total processor utilization for this task set
is 0.73 which is below the upper bound of 3 *
(2**(1/3) - 1), or 0.779, imposed by the Pro-
cessor Utilization Rule. Therefore, this task set
is guaranteed to be schedulable using RMS.

11.2.5.4 First Deadline Rule

If a given set of tasks do exceed the processor
utilization upper limit imposed by the Proces-
sor Utilization Rule, they can still be guaran-
teed to meet all their deadlines by application
of the First Deadline Rule. This rule can be
stated as follows:

For a given set of independent periodic tasks, if
each task meets its first deadline when all tasks
are started at the same time, then the dead-
lines will always be met for any combination
of start times.

A key point with this rule is that ALL periodic
tasks are assumed to start at the exact same
instant in time. Although this assumption may
seem to be invalid, RTEMS makes it quite easy
to ensure. By having a non-preemptible user
initialization task, all application tasks, regard-
less of priority, can be created and started be-
fore the initialization deletes itself. This tech-
nique ensures that all tasks begin to compete
for execution time at the same instant - when
the user initialization task deletes itself.

11.2.5.5 First Deadline Rule Example

The First Deadline Rule can ensure schedula-
bility even when the Processor Utilization Rule
fails. The example below is a modification of
the Processor Utilization Rule example where
task execution time has been increased from
15 to 25 units. The following table details the

RMS priority, period, execution time, and pro-
cessor utilization for each task:

Task RMS
Prior-
ity

Pe-
riod

Execu-
tion
Time

Processor
Utilization

1 High 100 25 0.25
2 Medium 200 50 0.25
3 Low 300 100 0.33

The total processor utilization for the modified
task set is 0.83 which is above the upper bound
of 3 * (2**(1/3) - 1), or 0.779, imposed by
the Processor Utilization Rule. Therefore, this
task set is not guaranteed to be schedulable
using RMS. However, the First Deadline Rule
can guarantee the schedulability of this task
set. This rule calls for one to examine each oc-
currence of deadline until either all tasks have
met their deadline or one task failed to meet its
first deadline. The following table details the
time of each deadline occurrence, the maxi-
mum number of times each task may have run,
the total execution time, and whether all the
deadlines have been met:

Dead-
line
Time

Task
1

Task
2

Task
3

Total Ex-
ecution
Time

All
Dead-
lines
Met?

100 1 1 1 25 + 50
+ 100 =
175

NO

200 2 1 1 50 + 50
+ 100 =
200

YES

The key to this analysis is to recognize when
each task will execute. For example at time
100, task 1 must have met its first deadline,
but tasks 2 and 3 may also have begun execu-
tion. In this example, at time 100 tasks 1 and
2 have completed execution and thus have met
their first deadline. Tasks 1 and 2 have used
(25 + 50) = 75 time units, leaving (100 - 75)
= 25 time units for task 3 to begin. Because
task 3 takes 100 ticks to execute, it will not
have completed execution at time 100. Thus
at time 100, all of the tasks except task 3 have
met their first deadline.

At time 200, task 1 must have met its second
deadline and task 2 its first deadline. As a re-
sult, of the first 200 time units, task 1 uses (2

150 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS C User Documentation, Release 4.11.3

* 25) = 50 and task 2 uses 50, leaving (200 -
100) time units for task 3. Task 3 requires 100
time units to execute, thus it will have com-
pleted execution at time 200. Thus, all of the
tasks have met their first deadlines at time 200,
and the task set is schedulable using the First
Deadline Rule.

11.2.5.6 Relaxation of Assumptions

The assumptions used to develop the RMS
schedulability rules are uncommon in most
real-time systems. For example, it was as-
sumed that tasks have constant unvarying exe-
cution time. It is possible to relax this assump-
tion, simply by using the worst-case execution
time of each task.

Another assumption is that the tasks are inde-
pendent. This means that the tasks do not wait
for one another or contend for resources. This
assumption can be relaxed by accounting for
the amount of time a task spends waiting to
acquire resources. Similarly, each task’s execu-
tion time must account for any I/O performed
and any RTEMS directive calls.

In addition, the assumptions did not account
for the time spent executing interrupt service
routines. This can be accounted for by in-
cluding all the processor utilization by inter-
rupt service routines in the utilization calcu-
lation. Similarly, one should also account for
the impact of delays in accessing local memory
caused by direct memory access and other pro-
cessors accessing local dual-ported memory.

The assumption that nonperiodic tasks are
used only for initialization or failure-recovery
can be relaxed by placing all periodic tasks in
the critical task set. This task set can be sched-
uled and analyzed using RMS. All nonperiodic
tasks are placed in the non-critical task set. Al-
though the critical task set can be guaranteed
to execute even under transient overload, the
non-critical task set is not guaranteed to exe-
cute.

In conclusion, the application designer must be
fully cognizant of the system and its run-time
behavior when performing schedulability anal-
ysis for a system using RMS. Every hardware

and software factor which impacts the execu-
tion time of each task must be accounted for in
the schedulability analysis.

11.2.5.7 Further Reading

For more information on Rate Monotonic
Scheduling and its schedulability analysis, the
reader is referred to the following:

• C. L. Liu and J. W. Layland. “Schedul-
ing Algorithms for Multiprogramming in
a Hard Real Time Environment.” Journal
of the Association of Computing Machin-
ery. January 1973. pp. 46-61.

• John Lehoczky, Lui Sha, and Ye Ding.
“The Rate Monotonic Scheduling Algo-
rithm: Exact Characterization and Aver-
age Case Behavior.” IEEE Real-Time Sys-
tems Symposium. 1989. pp. 166-171.

• Lui Sha and John Goodenough. “Real-
Time Scheduling theory and Ada.” IEEE
Computer. April 1990. pp. 53-62.

• Alan Burns. “Scheduling hard real-time
systems: a review.” Software Engineering
Journal. May 1991. pp. 116-128.

11.2. Background 151

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.3

11.3 Operations

11.3.1 Creating a Rate Monotonic Period

The rtems_rate_monotonic_create directive
creates a rate monotonic period which is to
be used by the calling task to delineate a pe-
riod. RTEMS allocates a Period Control Block
(PCB) from the PCB free list. This data struc-
ture is used by RTEMS to manage the newly
created rate monotonic period. RTEMS returns
a unique period ID to the application which is
used by other rate monotonic manager direc-
tives to access this rate monotonic period.

11.3.2 Manipulating a Period

The rtems_rate_monotonic_period directive
is used to establish and maintain periodic
execution utilizing a previously created rate
monotonic period. Once initiated by the
rtems_rate_monotonic_period directive, the
period is said to run until it either expires or
is reinitiated. The state of the rate monotonic
period results in one of the following scenar-
ios:

• If the rate monotonic period is running,
the calling task will be blocked for the re-
mainder of the outstanding period and,
upon completion of that period, the pe-
riod will be reinitiated with the specified
period.

• If the rate monotonic period is not cur-
rently running and has not expired, it is
initiated with a length of period ticks and
the calling task returns immediately.

• If the rate monotonic period has ex-
pired before the task invokes the
rtems_rate_monotonic_period direc-
tive, the period will be initiated with a
length of period ticks and the calling
task returns immediately with a timeout
error status.

11.3.3 Obtaining the Status of a Period

If the rtems_rate_monotonic_period di-
rective is invoked with a period of

RTEMS_PERIOD_STATUS ticks, the current
state of the specified rate monotonic period
will be returned. The following table details
the relationship between the period’s status
and the directive status code returned by the
rtems_rate_monotonic_period directive:

RTEMS_
SUCCESSFUL

period is running

RTEMS_TIMEOUT period has expired
RTEMS_NOT_
DEFINED

period has never been
initiated

Obtaining the status of a rate monotonic pe-
riod does not alter the state or length of that
period.

11.3.4 Canceling a Period

The rtems_rate_monotonic_cancel directive
is used to stop the period maintained by
the specified rate monotonic period. The
period is stopped and the rate mono-
tonic period can be reinitiated using the
rtems_rate_monotonic_period directive.

11.3.5 Deleting a Rate Monotonic Period

The rtems_rate_monotonic_delete directive
is used to delete a rate monotonic period. If
the period is running and has not expired,
the period is automatically canceled. The rate
monotonic period’s control block is returned to
the PCB free list when it is deleted. A rate
monotonic period can be deleted by a task
other than the task which created the period.

11.3.6 Examples

The following sections illustrate common uses
of rate monotonic periods to construct periodic
tasks.

11.3.7 Simple Periodic Task

This example consists of a single periodic task
which, after initialization, executes every 100
clock ticks.

152 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.3 RTEMS C User Documentation, Release 4.11.3

1 rtems_task Periodic_task(rtems_task_
→˓argument arg)

2 {
3 rtems_name name;
4 rtems_id period;
5 rtems_status_code status;
6 name = rtems_build_name('P', 'E', 'R',

→˓'D');
7 status = rtems_rate_monotonic_create(␣

→˓name, &period);
8 if (status != RTEMS_STATUS_SUCCESSFUL␣

→˓) {
9 printf("rtems_monotonic_create ␣

→˓failed with status of %d.\n", rc);
10 exit(1);
11 }
12 while (1) {
13 if (rtems_rate_monotonic_period(␣

→˓period, 100) == RTEMS_TIMEOUT)
14 break;
15 /* Perform some periodic actions */
16 }
17 /* missed period so delete period and␣

→˓SELF */
18 status = rtems_rate_monotonic_delete(␣

→˓period);
19 if (status != RTEMS_STATUS_SUCCESSFUL␣

→˓) {
20 printf("rtems_rate_monotonic_delete␣

→˓failed with status of %d.\n", status);
21 exit(1);
22 }
23 status = rtems_task_delete(SELF); /

→˓* should not return */
24 printf("rtems_task_delete returned with␣

→˓status of %d.\n", status);
25 exit(1);
26 }

The above task creates a rate mono-
tonic period as part of its initialization.
The first time the loop is executed, the
rtems_rate_monotonic_period directive will
initiate the period for 100 ticks and return
immediately. Subsequent invocations of the
rtems_rate_monotonic_period directive will
result in the task blocking for the remainder
of the 100 tick period. If, for any reason, the
body of the loop takes more than 100 ticks to
execute, the rtems_rate_monotonic_period
directive will return the RTEMS_TIMEOUT status.
If the above task misses its deadline, it will
delete the rate monotonic period and itself.

11.3.8 Task with Multiple Periods

This example consists of a single periodic task
which, after initialization, performs two sets
of actions every 100 clock ticks. The first set
of actions is performed in the first forty clock
ticks of every 100 clock ticks, while the second
set of actions is performed between the forti-
eth and seventieth clock ticks. The last thirty
clock ticks are not used by this task.

1 rtems_task Periodic_task(rtems_task_
→˓argument arg)

2 {
3 rtems_name name_1, name_2;
4 rtems_id period_1, period_2;
5 rtems_status_code status;
6 name_1 = rtems_build_name('P', 'E', 'R

→˓', '1');
7 name_2 = rtems_build_name('P', 'E', 'R

→˓', '2');
8 (void) rtems_rate_monotonic_create(␣

→˓name_1, &period_1);
9 (void) rtems_rate_monotonic_create(␣

→˓name_2, &period_2);
10 while (1) {
11 if (rtems_rate_monotonic_period(␣

→˓period_1, 100) == TIMEOUT)
12 break;
13 if (rtems_rate_monotonic_period(␣

→˓period_2, 40) == TIMEOUT)
14 break;
15 /*
16 * Perform first set of actions␣

→˓between clock
17 * ticks 0 and 39 of every 100␣

→˓ticks.
18 */
19 if (rtems_rate_monotonic_period(␣

→˓period_2, 30) == TIMEOUT)
20 break;
21 /*
22 * Perform second set of actions␣

→˓between clock 40 and 69
23 * of every 100 ticks. THEN ...
24 *
25 * Check to make sure we didn't␣

→˓miss the period_2 period.
26 */
27 if (rtems_rate_monotonic_period(␣

→˓period_2, STATUS) == TIMEOUT)
28 break;
29 (void) rtems_rate_monotonic_cancel(␣

→˓period_2);
30 }
31 /* missed period so delete period and␣

→˓SELF */

11.3. Operations 153

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.3

32 (void) rtems_rate_monotonic_delete(␣
→˓period_1);

33 (void) rtems_rate_monotonic_delete(␣
→˓period_2);

34 (void) task_delete(SELF);
35 }

The above task creates two rate mono-
tonic periods as part of its initialization.
The first time the loop is executed, the
rtems_rate_monotonic_period directive will
initiate the period_1 period for 100 ticks and
return immediately. Subsequent invocations
of the rtems_rate_monotonic_period directive
for period_1 will result in the task blocking
for the remainder of the 100 tick period. The
period_2 period is used to control the execu-
tion time of the two sets of actions within each
100 tick period established by period_1. The
rtems_rate_monotonic_cancel(period_2)
call is performed to ensure that the period_2
period does not expire while the task is blocked
on the period_1 period. If this cancel op-
eration were not performed, every time the
rtems_rate_monotonic_period(period_2,40
) call is executed, except for the initial one, a
directive status of RTEMS_TIMEOUT is returned.
It is important to note that every time this call
is made, the period_2 period will be initiated
immediately and the task will not block.

If, for any reason, the task misses any dead-
line, the rtems_rate_monotonic_period direc-
tive will return the RTEMS_TIMEOUT directive
status. If the above task misses its deadline,
it will delete the rate monotonic periods and
itself.

154 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS C User Documentation, Release 4.11.3

11.4 Directives

This section details the rate monotonic man-
ager’s directives. A subsection is dedicated to
each of this manager’s directives and describes
the calling sequence, related constants, usage,
and status codes.

11.4. Directives 155

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.4

11.4.1 RATE_MONOTONIC_CREATE -
Create a rate monotonic period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓create(

2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

rate monotonic period
created successfully

RTEMS_
INVALID_
NAME

invalid period name

RTEMS_TOO_
MANY

too many periods created

DESCRIPTION:
This directive creates a rate monotonic pe-
riod. The assigned rate monotonic id is re-
turned in id. This id is used to access the
period with other rate monotonic manager
directives. For control and maintenance of
the rate monotonic period, RTEMS allocates
a PCB from the local PCB free pool and ini-
tializes it.

NOTES:
This directive will not cause the calling task
to be preempted.

156 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS C User Documentation, Release 4.11.3

11.4.2 RATE_MONOTONIC_IDENT - Get
ID of a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓ident(

2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

period identified
successfully

RTEMS_INVALID_
NAME

period name not
found

DESCRIPTION:
This directive obtains the period id associ-
ated with the period name to be acquired.
If the period name is not unique, then the
period id will match one of the periods with
that name. However, this period id is not
guaranteed to correspond to the desired pe-
riod. The period id is used to access this pe-
riod in other rate monotonic manager direc-
tives.

NOTES:
This directive will not cause the running task
to be preempted.

11.4. Directives 157

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.4

11.4.3 RATE_MONOTONIC_CANCEL -
Cancel a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓cancel(

2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

period canceled
successfully

RTEMS_
INVALID_ID

invalid rate monotonic
period id

RTEMS_NOT_
OWNER_OF_
RESOURCE

rate monotonic period
not created by calling
task

DESCRIPTION:

This directive cancels the rate
monotonic period id. This
period will be reinitiated
by the next invocation of
rtems_rate_monotonic_period
with id.

NOTES:
This directive will not cause the running task
to be preempted.

The rate monotonic period specified by id
must have been created by the calling task.

158 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS C User Documentation, Release 4.11.3

11.4.4 RATE_MONOTONIC_DELETE -
Delete a rate monotonic period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓delete(

2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

period deleted
successfully

RTEMS_
INVALID_ID

invalid rate monotonic
period id

DESCRIPTION:

This directive deletes the rate
monotonic period specified by id.
If the period is running, it is au-
tomatically canceled. The PCB for
the deleted period is reclaimed by
RTEMS.

NOTES:
This directive will not cause the running task
to be preempted.

A rate monotonic period can be deleted by
a task other than the task which created the
period.

11.4. Directives 159

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.4

11.4.5 RATE_MONOTONIC_PERIOD
- Conclude current/Start next
period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓period(

2 rtems_id id,
3 rtems_interval length
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

period initiated successfully

RTEMS_
INVALID_
ID

invalid rate monotonic
period id

RTEMS_
NOT_
OWNER_OF_
RESOURCE

period not created by calling
task

RTEMS_
NOT_
DEFINED

period has never been
initiated (only possible
when period is set to
PERIOD_STATUS)

RTEMS_
TIMEOUT

period has expired

DESCRIPTION:
This directive initiates the rate monotonic
period id with a length of period ticks. If id is
running, then the calling task will block for
the remainder of the period before reinitiat-
ing the period with the specified period. If id
was not running (either expired or never ini-
tiated), the period is immediately initiated
and the directive returns immediately.

If invoked with a period of
RTEMS_PERIOD_STATUS ticks, the current
state of id will be returned. The directive
status indicates the current state of the
period. This does not alter the state or
period of the period.

NOTES:
This directive will not cause the running task
to be preempted.

160 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS C User Documentation, Release 4.11.3

11.4.6 RATE_MONOTONIC_GET_STATUS
- Obtain status from a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓get_status(

2 rtems_id id,
3 rtems_rate_monotonic_period_status ␣

→˓*status
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

period initiated
successfully

RTEMS_INVALID_
ID

invalid rate
monotonic period id

RTEMS_INVALID_
ADDRESS

invalid address of
status

*DESCRIPTION:
This directive returns status information as-
sociated with the rate monotonic period id
in the following data structure:

1 typedef struct {
2 rtems_id ␣

→˓owner;
3 rtems_rate_monotonic_period_states ␣

→˓state;
4 rtems_rate_monotonic_period_time_t ␣

→˓since_last_period;
5 rtems_thread_cpu_usage_t ␣

→˓executed_since_last_period;
6 } rtems_rate_monotonic_period_status;

A configure time option can be used to
select whether the time information is given
in ticks or seconds and nanoseconds. The
default is seconds and nanoseconds. If the
period’s state is RATE_MONOTONIC_INACTIVE,
both time values will be set to 0. Other-
wise, both time values will contain time
information since the last invocation of the
rtems_rate_monotonic_period directive.
More specifically, the ticks_since_last_period
value contains the elapsed time which
has occurred since the last invocation
of the rtems_rate_monotonic_period
directive and the
ticks_executed_since_last_period con-
tains how much processor time the owning
task has consumed since the invocation

of the rtems_rate_monotonic_period
directive.

NOTES:
This directive will not cause the running task
to be preempted.

11.4. Directives 161

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.4

11.4.7 RATE_MONOTONIC_GET_STATISTICS
- Obtain statistics from a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓get_statistics(

2 rtems_id ␣
→˓ id,

3 rtems_rate_monotonic_period_statistics␣
→˓*statistics

4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

period initiated
successfully

RTEMS_INVALID_
ID

invalid rate
monotonic period id

RTEMS_INVALID_
ADDRESS

invalid address of
statistics

DESCRIPTION:
This directive returns statistics information
associated with the rate monotonic period id
in the following data structure:

1 typedef struct {
2 uint32_t count;
3 uint32_t missed_count;
4 #ifdef RTEMS_ENABLE_NANOSECOND_CPU_

→˓USAGE_STATISTICS
5 struct timespec min_cpu_time;
6 struct timespec max_cpu_time;
7 struct timespec total_cpu_time;
8 #else
9 uint32_t min_cpu_time;

10 uint32_t max_cpu_time;
11 uint32_t total_cpu_time;
12 #endif
13 #ifdef RTEMS_ENABLE_NANOSECOND_RATE_

→˓MONOTONIC_STATISTICS
14 struct timespec min_wall_time;
15 struct timespec max_wall_time;
16 struct timespec total_wall_time;
17 #else
18 uint32_t min_wall_time;
19 uint32_t max_wall_time;
20 uint32_t total_wall_time;
21 #endif
22 } rtems_rate_monotonic_period_statistics;

This directive returns the current statistics
information for the period instance asso-
caited with id. The information returned is
indicated by the structure above.

NOTES:
This directive will not cause the running task
to be preempted.

162 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS C User Documentation, Release 4.11.3

11.4.8 RATE_MONOTONIC_RESET_STATISTICS
- Reset statistics for a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_
→˓reset_statistics(

2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

period initiated
successfully

RTEMS_
INVALID_ID

invalid rate monotonic
period id

DESCRIPTION:
This directive resets the statistics informa-
tion associated with this rate monotonic pe-
riod instance.

NOTES:
This directive will not cause the running task
to be preempted.

11.4. Directives 163

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.4

11.4.9 RATE_MONOTONIC_RESET_ALL_STATISTICS
- Reset statistics for all periods

CALLING SEQUENCE:

1 void rtems_rate_monotonic_reset_all_
→˓statistics(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive resets the statistics informa-
tion associated with all rate monotonic pe-
riod instances.

NOTES:
This directive will not cause the running task
to be preempted.

164 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS C User Documentation, Release 4.11.3

11.4.10 RATE_MONOTONIC_REPORT_STATISTICS
- Print period statistics report

CALLING SEQUENCE:

1 void rtems_rate_monotonic_report_
→˓statistics(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive prints a report on all active pe-
riods which have executed at least one pe-
riod. The following is an example of the out-
put generated by this directive.

1 ID OWNER PERIODS MISSED CPU␣
→˓TIME WALL TIME

2 MIN/MAX/AVG MIN/MAX/AVG
3 0x42010001 TA1 502 0 0/1/

→˓0.99 0/0/0.00
4 0x42010002 TA2 502 0 0/1/

→˓0.99 0/0/0.00
5 0x42010003 TA3 501 0 0/1/

→˓0.99 0/0/0.00
6 0x42010004 TA4 501 0 0/1/

→˓0.99 0/0/0.00
7 0x42010005 TA5 10 0 0/1/

→˓0.90 0/0/0.00

NOTES:
This directive will not cause the running task
to be preempted.

11.4. Directives 165

RTEMS C User Documentation, Release 4.11.3 Chapter 11 Section 11.4

166 Chapter 11. Rate Monotonic Manager

CHAPTER

TWELVE

SEMAPHORE MANAGER

167

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.1

12.1 Introduction

The semaphore manager utilizes standard Di-
jkstra counting semaphores to provide syn-
chronization and mutual exclusion capabili-
ties. The directives provided by the semaphore
manager are:

• rtems_semaphore_create (page 176) -
Create a semaphore

• rtems_semaphore_ident (page 178) - Get
ID of a semaphore

• rtems_semaphore_delete (page 179) -
Delete a semaphore

• rtems_semaphore_obtain (page 180) - Ac-
quire a semaphore

• rtems_semaphore_release (page 181) -
Release a semaphore

• rtems_semaphore_flush (page 182) - Un-
block all tasks waiting on a semaphore

• rtems_semaphore_set_priority (page 183)
- Set priority by scheduler for a
semaphore

168 Chapter 12. Semaphore Manager

Chapter 12 Section 12.2 RTEMS C User Documentation, Release 4.11.3

12.2 Background

A semaphore can be viewed as a pro-
tected variable whose value can be modified
only with the rtems_semaphore_create,
rtems_semaphore_obtain, and
rtems_semaphore_release directives.
RTEMS supports both binary and counting
semaphores. A binary semaphore is restricted
to values of zero or one, while a counting
semaphore can assume any non-negative
integer value.

A binary semaphore can be used to control ac-
cess to a single resource. In particular, it can
be used to enforce mutual exclusion for a criti-
cal section in user code. In this instance, the
semaphore would be created with an initial
count of one to indicate that no task is exe-
cuting the critical section of code. Upon en-
try to the critical section, a task must issue
the rtems_semaphore_obtain directive to pre-
vent other tasks from entering the critical sec-
tion. Upon exit from the critical section, the
task must issue the rtems_semaphore_release
directive to allow another task to execute the
critical section.

A counting semaphore can be used to control
access to a pool of two or more resources.
For example, access to three printers could
be administered by a semaphore created with
an initial count of three. When a task re-
quires access to one of the printers, it issues
the rtems_semaphore_obtain directive to ob-
tain access to a printer. If a printer is not
currently available, the task can wait for a
printer to become available or return immedi-
ately. When the task has completed printing,
it should issue the rtems_semaphore_release
directive to allow other tasks access to the
printer.

Task synchronization may be achieved by cre-
ating a semaphore with an initial count of
zero. One task waits for the arrival of another
task by issuing a rtems_semaphore_obtain di-
rective when it reaches a synchronization
point. The other task performs a correspond-
ing rtems_semaphore_release operation when
it reaches its synchronization point, thus un-
blocking the pending task.

12.2.1 Nested Resource Access

Deadlock occurs when a task owning a bi-
nary semaphore attempts to acquire that same
semaphore and blocks as result. Since the
semaphore is allocated to a task, it cannot
be deleted. Therefore, the task that cur-
rently holds the semaphore and is also blocked
waiting for that semaphore will never execute
again.

RTEMS addresses this problem by allow-
ing the task holding the binary semaphore
to obtain the same binary semaphore mul-
tiple times in a nested manner. Each
rtems_semaphore_obtain must be accompa-
nied with a rtems_semaphore_release. The
semaphore will only be made available for ac-
quisition by other tasks when the outermost
rtems_semaphore_obtain is matched with a
rtems_semaphore_release.

Simple binary semaphores do not allow nested
access and so can be used for task synchroniza-
tion.

12.2.2 Priority Inversion

Priority inversion is a form of indefinite post-
ponement which is common in multitasking,
preemptive executives with shared resources.
Priority inversion occurs when a high priority
tasks requests access to shared resource which
is currently allocated to low priority task. The
high priority task must block until the low pri-
ority task releases the resource. This prob-
lem is exacerbated when the low priority task
is prevented from executing by one or more
medium priority tasks. Because the low pri-
ority task is not executing, it cannot complete
its interaction with the resource and release
that resource. The high priority task is effec-
tively prevented from executing by lower pri-
ority tasks.

12.2.3 Priority Inheritance

Priority inheritance is an algorithm that calls
for the lower priority task holding a resource
to have its priority increased to that of the
highest priority task blocked waiting for that

12.2. Background 169

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.2

resource. Each time a task blocks attempting
to obtain the resource, the task holding the re-
source may have its priority increased.

On SMP configurations, in case the task hold-
ing the resource and the task that blocks at-
tempting to obtain the resource are in different
scheduler instances, the priority of the holder
is raised to the pseudo-interrupt priority (pri-
ority boosting). The pseudo-interrupt priority
is the highest priority.

RTEMS supports priority inheritance for local,
binary semaphores that use the priority task
wait queue blocking discipline. When a task
of higher priority than the task holding the
semaphore blocks, the priority of the task hold-
ing the semaphore is increased to that of the
blocking task. When the task holding the task
completely releases the binary semaphore (i.e.
not for a nested release), the holder’s priority
is restored to the value it had before any higher
priority was inherited.

The RTEMS implementation of the priority in-
heritance algorithm takes into account the sce-
nario in which a task holds more than one bi-
nary semaphore. The holding task will exe-
cute at the priority of the higher of the highest
ceiling priority or at the priority of the high-
est priority task blocked waiting for any of the
semaphores the task holds. Only when the task
releases ALL of the binary semaphores it holds
will its priority be restored to the normal value.

12.2.4 Priority Ceiling

Priority ceiling is an algorithm that calls for
the lower priority task holding a resource to
have its priority increased to that of the high-
est priority task which will EVER block wait-
ing for that resource. This algorithm addresses
the problem of priority inversion although it
avoids the possibility of changing the priority
of the task holding the resource multiple times.
The priority ceiling algorithm will only change
the priority of the task holding the resource a
maximum of one time. The ceiling priority is
set at creation time and must be the priority
of the highest priority task which will ever at-
tempt to acquire that semaphore.

RTEMS supports priority ceiling for local, bi-
nary semaphores that use the priority task wait
queue blocking discipline. When a task of
lower priority than the ceiling priority suc-
cessfully obtains the semaphore, its priority is
raised to the ceiling priority. When the task
holding the task completely releases the binary
semaphore (i.e. not for a nested release), the
holder’s priority is restored to the value it had
before any higher priority was put into effect.

The need to identify the highest priority task
which will attempt to obtain a particular
semaphore can be a difficult task in a large,
complicated system. Although the priority ceil-
ing algorithm is more efficient than the priority
inheritance algorithm with respect to the max-
imum number of task priority changes which
may occur while a task holds a particular
semaphore, the priority inheritance algorithm
is more forgiving in that it does not require this
apriori information.

The RTEMS implementation of the priority
ceiling algorithm takes into account the sce-
nario in which a task holds more than one bi-
nary semaphore. The holding task will exe-
cute at the priority of the higher of the highest
ceiling priority or at the priority of the high-
est priority task blocked waiting for any of the
semaphores the task holds. Only when the task
releases ALL of the binary semaphores it holds
will its priority be restored to the normal value.

12.2.5 Multiprocessor Resource Sharing
Protocol

The Multiprocessor Resource Sharing Proto-
col (MrsP) is defined in A. Burns and A.J.
Wellings, A Schedulability Compatible Multipro-
cessor Resource Sharing Protocol - MrsP, Pro-
ceedings of the 25th Euromicro Conference on
Real-Time Systems (ECRTS 2013), July 2013. It
is a generalization of the Priority Ceiling Pro-
tocol to SMP systems. Each MrsP semaphore
uses a ceiling priority per scheduler instance.
These ceiling priorities can be specified with
rtems_semaphore_set_priority(). A task ob-
taining or owning a MrsP semaphore will exe-
cute with the ceiling priority for its scheduler
instance as specified by the MrsP semaphore
object. Tasks waiting to get ownership of a

170 Chapter 12. Semaphore Manager

Chapter 12 Section 12.2 RTEMS C User Documentation, Release 4.11.3

MrsP semaphore will not relinquish the pro-
cessor voluntarily. In case the owner of a MrsP
semaphore gets preempted it can ask all tasks
waiting for this semaphore to help out and
temporarily borrow the right to execute on one
of their assigned processors.

12.2.6 Building a Semaphore Attribute
Set

In general, an attribute set is built by a bitwise
OR of the desired attribute components. The
following table lists the set of valid semaphore
attributes:

RTEMS_FIFO tasks wait by FIFO
(default)

RTEMS_
PRIORITY

tasks wait by priority

RTEMS_
BINARY_
SEMAPHORE

restrict values to 0 and 1

RTEMS_
COUNTING_
SEMAPHORE

no restriction on values
(default)

RTEMS_
SIMPLE_
BINARY_
SEMAPHORE

restrict values to 0 and 1,
do not allow nested access,
allow deletion of locked
semaphore.

RTEMS_NO_
INHERIT_
PRIORITY

do not use priority
inheritance (default)

RTEMS_
INHERIT_
PRIORITY

use priority inheritance

RTEMS_NO_
PRIORITY_
CEILING

do not use priority ceiling
(default)

RTEMS_
PRIORITY_
CEILING

use priority ceiling

RTEMS_NO_
MULTIPROCESSOR_
RESOURCE_
SHARING

do not use Multiprocessor
Resource Sharing Protocol
(default)

RTEMS_
MULTIPROCESSOR_
RESOURCE_
SHARING

use Multiprocessor
Resource Sharing Protocol

RTEMS_LOCAL local semaphore (default)
RTEMS_GLOBAL global semaphore

Attribute values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each attribute appears exactly once in the com-
ponent list. An attribute listed as a default is
not required to appear in the attribute list, al-
though it is a good programming practice to
specify default attributes. If all defaults are de-
sired, the attribute RTEMS_DEFAULT_ATTRIBUTES
should be specified on this call.

This example demonstrates the attribute_set
parameter needed to create a local semaphore
with the task priority waiting queue disci-
pline. The attribute_set parameter passed to
the rtems_semaphore_create directive could
be either RTEMS_PRIORITY or RTEMS_LOCAL |
RTEMS_PRIORITY. The attribute_set parame-
ter can be set to RTEMS_PRIORITY because
RTEMS_LOCAL is the default for all created tasks.
If a similar semaphore were to be known glob-
ally, then the attribute_set parameter would be
RTEMS_GLOBAL | RTEMS_PRIORITY.

Some combinatinos of these attributes are in-
valid. For example, priority ordered block-
ing discipline must be applied to a binary
semaphore in order to use either the prior-
ity inheritance or priority ceiling functionality.
The following tree figure illustrates the valid
combinations.

12.2.7 Building a SEMAPHORE_OBTAIN
Option Set

In general, an option is built by a bitwise OR
of the desired option components. The set of
valid options for the rtems_semaphore_obtain
directive are listed in the following table:

12.2. Background 171

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.2

RTEMS_WAIT task will wait for semaphore
(default)

RTEMS_NO_
WAIT

task should not wait

Option values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each attribute appears exactly once in the com-
ponent list. An option listed as a default is not
required to appear in the list, although it is a
good programming practice to specify default
options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on
this call.

This example demonstrates the option pa-
rameter needed to poll for a semaphore.
The option parameter passed to the
rtems_semaphore_obtain directive should
be RTEMS_NO_WAIT.

172 Chapter 12. Semaphore Manager

Chapter 12 Section 12.3 RTEMS C User Documentation, Release 4.11.3

12.3 Operations

12.3.1 Creating a Semaphore

The rtems_semaphore_create directive creates
a binary or counting semaphore with a user-
specified name as well as an initial count. If
a binary semaphore is created with a count of
zero (0) to indicate that it has been allocated,
then the task creating the semaphore is con-
sidered the current holder of the semaphore.
At create time the method for ordering wait-
ing tasks in the semaphore’s task wait queue
(by FIFO or task priority) is specified. Ad-
ditionally, the priority inheritance or priority
ceiling algorithm may be selected for local, bi-
nary semaphores that use the priority task wait
queue blocking discipline. If the priority ceil-
ing algorithm is selected, then the highest pri-
ority of any task which will attempt to ob-
tain this semaphore must be specified. RTEMS
allocates a Semaphore Control Block (SMCB)
from the SMCB free list. This data structure is
used by RTEMS to manage the newly created
semaphore. Also, a unique semaphore ID is
generated and returned to the calling task.

12.3.2 Obtaining Semaphore IDs

When a semaphore is created, RTEMS gen-
erates a unique semaphore ID and assigns it
to the created semaphore until it is deleted.
The semaphore ID may be obtained by ei-
ther of two methods. First, as the result of
an invocation of the rtems_semaphore_create
directive, the semaphore ID is stored in
a user provided location. Second, the
semaphore ID may be obtained later using
the rtems_semaphore_ident directive. The
semaphore ID is used by other semaphore
manager directives to access this semaphore.

12.3.3 Acquiring a Semaphore

The rtems_semaphore_obtain directive is used
to acquire the specified semaphore. A sim-
plified version of the rtems_semaphore_obtain
directive can be described as follows:

If the semaphore’s count is greater
than zero then decrement the
semaphore’s count else wait for
release of semaphore then return
SUCCESSFUL.

When the semaphore cannot be immediately
acquired, one of the following situations ap-
plies:

• By default, the calling task will wait for-
ever to acquire the semaphore.

• Specifying RTEMS_NO_WAIT forces an im-
mediate return with an error status code.

• Specifying a timeout limits the interval
the task will wait before returning with
an error status code.

If the task waits to acquire the semaphore,
then it is placed in the semaphore’s task
wait queue in either FIFO or task priority or-
der. If the task blocked waiting for a bi-
nary semaphore using priority inheritance and
the task’s priority is greater than that of the
task currently holding the semaphore, then
the holding task will inherit the priority of
the blocking task. All tasks waiting on a
semaphore are returned an error code when
the semaphore is deleted.

When a task successfully obtains a semaphore
using priority ceiling and the priority ceiling
for this semaphore is greater than that of the
holder, then the holder’s priority will be ele-
vated.

12.3.4 Releasing a Semaphore

The rtems_semaphore_release direc-
tive is used to release the specified
semaphore. A simplified version of the
rtems_semaphore_release directive can be
described as follows:

If there sre no tasks are waiting
on this semaphore then increment
the semaphore’s count else assign
semaphore to a waiting task and
return SUCCESSFUL.

If this is the outermost release of a binary
semaphore that uses priority inheritance or
priority ceiling and the task does not currently

12.3. Operations 173

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.3

hold any other binary semaphores, then the
task performing the rtems_semaphore_release
will have its priority restored to its normal
value.

12.3.5 Deleting a Semaphore

The rtems_semaphore_delete directive re-
moves a semaphore from the system and frees
its control block. A semaphore can be deleted
by any local task that knows the semaphore’s
ID. As a result of this directive, all tasks
blocked waiting to acquire the semaphore will
be readied and returned a status code which
indicates that the semaphore was deleted.
Any subsequent references to the semaphore’s
name and ID are invalid.

174 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS C User Documentation, Release 4.11.3

12.4 Directives

This section details the semaphore manager’s
directives. A subsection is dedicated to each
of this manager’s directives and describes the
calling sequence, related constants, usage, and
status codes.

12.4. Directives 175

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.4

12.4.1 SEMAPHORE_CREATE - Create a
semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_create(
2 rtems_name name,
3 uint32_t count,
4 rtems_attribute attribute_set,
5 rtems_task_priority priority_ceiling,
6 rtems_id *id
7);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

semaphore created
successfully

RTEMS_
INVALID_NAME

invalid semaphore
name

RTEMS_
INVALID_
ADDRESS

id is NULL

RTEMS_TOO_
MANY

too many semaphores
created

RTEMS_NOT_
DEFINED

invalid attribute set

RTEMS_
INVALID_
NUMBER

invalid starting count
for binary semaphore

RTEMS_MP_
NOT_
CONFIGURED

multiprocessing not
configured

RTEMS_TOO_
MANY

too many global objects

DESCRIPTION:
This directive creates a semaphore which
resides on the local node. The created
semaphore has the user-defined name spec-
ified in name and the initial count specified
in count. For control and maintenance of the
semaphore, RTEMS allocates and initializes
a SMCB. The RTEMS-assigned semaphore id
is returned in id. This semaphore id is used
with other semaphore related directives to
access the semaphore.

Specifying PRIORITY in attribute_set causes
tasks waiting for a semaphore to be serviced
according to task priority. When FIFO is se-
lected, tasks are serviced in First In-First Out
order.

NOTES:
This directive will not cause the calling task
to be preempted.

The priority inheritance and priority ceiling
algorithms are only supported for local, bi-
nary semaphores that use the priority task
wait queue blocking discipline.

The following semaphore attribute constants
are defined by RTEMS:

RTEMS_FIFO tasks wait by FIFO
(default)

RTEMS_
PRIORITY

tasks wait by priority

RTEMS_
BINARY_
SEMAPHORE

restrict values to 0 and 1

RTEMS_
COUNTING_
SEMAPHORE

no restriction on values
(default)

RTEMS_
SIMPLE_
BINARY_
SEMAPHORE

restrict values to 0 and 1,
block on nested access,
allow deletion of locked
semaphore.

RTEMS_NO_
INHERIT_
PRIORITY

do not use priority
inheritance (default)

RTEMS_
INHERIT_
PRIORITY

use priority inheritance

RTEMS_NO_
PRIORITY_
CEILING

do not use priority
ceiling (default)

RTEMS_
PRIORITY_
CEILING

use priority ceiling

RTEMS_NO_
MULTIPROCESSOR_
RESOURCE_
SHARING

do not use
Multiprocessor Resource
Sharing Protocol
(default)

RTEMS_
MULTIPROCESSOR_
RESOURCE_
SHARING

use Multiprocessor
Resource Sharing
Protocol

RTEMS_LOCAL local semaphore
(default)

RTEMS_
GLOBAL

global semaphore

Semaphores should not be made global un-
less remote tasks must interact with the cre-

176 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS C User Documentation, Release 4.11.3

ated semaphore. This is to avoid the system
overhead incurred by the creation of a global
semaphore. When a global semaphore is cre-
ated, the semaphore’s name and id must be
transmitted to every node in the system for
insertion in the local copy of the global ob-
ject table.

Note, some combinations of attributes are
not valid. See the earlier discussion on this.

The total number of global objects, includ-
ing semaphores, is limited by the maxi-
mum_global_objects field in the Configura-
tion Table.

It is not allowed to create an ini-
tially locked MrsP semaphore and the
RTEMS_INVALID_NUMBER status code will be
returned on SMP configurations in this case.
This prevents lock order reversal problems
with the allocator mutex.

12.4. Directives 177

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.4

12.4.2 SEMAPHORE_IDENT - Get ID of a
semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

semaphore identified
successfully

RTEMS_
INVALID_NAME

semaphore name not
found

RTEMS_
INVALID_NODE

invalid node id

DESCRIPTION:
This directive obtains the semaphore id as-
sociated with the semaphore name. If
the semaphore name is not unique, then
the semaphore id will match one of the
semaphores with that name. However, this
semaphore id is not guaranteed to cor-
respond to the desired semaphore. The
semaphore id is used by other semaphore re-
lated directives to access the semaphore.

NOTES:
This directive will not cause the running task
to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all
nodes are searched with the local node being
searched first. All other nodes are searched
with the lowest numbered node searched
first.

If node is a valid node number which does
not represent the local node, then only
the semaphores exported by the designated
node are searched.

This directive does not generate activity on
remote nodes. It accesses only the local copy
of the global object table.

178 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS C User Documentation, Release 4.11.3

12.4.3 SEMAPHORE_DELETE - Delete a
semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL semaphore deleted

successfully
RTEMS_INVALID_ID invalid semaphore

id
RTEMS_RESOURCE_
IN_USE

binary semaphore
is in use

RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

cannot delete
remote semaphore

DESCRIPTION:
This directive deletes the semaphore speci-
fied by id. All tasks blocked waiting to ac-
quire the semaphore will be readied and re-
turned a status code which indicates that the
semaphore was deleted. The SMCB for this
semaphore is reclaimed by RTEMS.

NOTES:
The calling task will be preempted if it is en-
abled by the task’s execution mode and a
higher priority local task is waiting on the
deleted semaphore. The calling task will
NOT be preempted if all of the tasks that are
waiting on the semaphore are remote tasks.

The calling task does not have to be the task
that created the semaphore. Any local task
that knows the semaphore id can delete the
semaphore.

When a global semaphore is deleted, the
semaphore id must be transmitted to every
node in the system for deletion from the lo-
cal copy of the global object table.

The semaphore must reside on the local
node, even if the semaphore was created
with the RTEMS_GLOBAL option.

Proxies, used to represent remote tasks, are
reclaimed when the semaphore is deleted.

12.4. Directives 179

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.4

12.4.4 SEMAPHORE_OBTAIN - Acquire a
semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_obtain(
2 rtems_id id,
3 rtems_option option_set,
4 rtems_interval timeout
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

semaphore obtained
successfully

RTEMS_
UNSATISFIED

semaphore not
available

RTEMS_TIMEOUT timed out waiting for
semaphore

RTEMS_OBJECT_
WAS_DELETED

semaphore deleted
while waiting

RTEMS_INVALID_
ID

invalid semaphore id

DESCRIPTION:
This directive acquires the semaphore
specified by id. The RTEMS_WAIT and
RTEMS_NO_WAIT components of the options
parameter indicate whether the calling task
wants to wait for the semaphore to be-
come available or return immediately if the
semaphore is not currently available. With
either RTEMS_WAIT or RTEMS_NO_WAIT, if the
current semaphore count is positive, then it
is decremented by one and the semaphore is
successfully acquired by returning immedi-
ately with a successful return code.

If the calling task chooses to return imme-
diately and the current semaphore count is
zero or negative, then a status code is re-
turned indicating that the semaphore is not
available. If the calling task chooses to wait
for a semaphore and the current semaphore
count is zero or negative, then it is decre-
mented by one and the calling task is placed
on the semaphore’s wait queue and blocked.
If the semaphore was created with the
RTEMS_PRIORITY attribute, then the calling
task is inserted into the queue according to
its priority. However, if the semaphore was
created with the RTEMS_FIFO attribute, then
the calling task is placed at the rear of the

wait queue. If the binary semaphore was cre-
ated with the RTEMS_INHERIT_PRIORITY at-
tribute, then the priority of the task currently
holding the binary semaphore is guaranteed
to be greater than or equal to that of the
blocking task. If the binary semaphore was
created with the RTEMS_PRIORITY_CEILING
attribute, a task successfully obtains the
semaphore, and the priority of that task
is greater than the ceiling priority for this
semaphore, then the priority of the task ob-
taining the semaphore is elevated to that of
the ceiling.

The timeout parameter specifies the maxi-
mum interval the calling task is willing to
be blocked waiting for the semaphore. If it
is set to RTEMS_NO_TIMEOUT, then the calling
task will wait forever. If the semaphore is
available or the RTEMS_NO_WAIT option com-
ponent is set, then timeout is ignored.

Deadlock situations are detected for MrsP
semaphores and the RTEMS_UNSATISFIED sta-
tus code will be returned on SMP configura-
tions in this case.

NOTES:
The following semaphore acquisition option
constants are defined by RTEMS:

RTEMS_
WAIT

task will wait for
semaphore (default)

RTEMS_NO_
WAIT

task should not wait

Attempting to obtain a global semaphore
which does not reside on the local node will
generate a request to the remote node to ac-
cess the semaphore. If the semaphore is not
available and RTEMS_NO_WAIT was not speci-
fied, then the task must be blocked until the
semaphore is released. A proxy is allocated
on the remote node to represent the task un-
til the semaphore is released.

A clock tick is required to support the time-
out functionality of this directive.

It is not allowed to obtain a MrsP semaphore
more than once by one task at a time (nested
access) and the RTEMS_UNSATISFIED status
code will be returned on SMP configurations
in this case.

180 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS C User Documentation, Release 4.11.3

12.4.5 SEMAPHORE_RELEASE - Release
a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_release(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

semaphore released
successfully

RTEMS_INVALID_
ID

invalid semaphore id

RTEMS_NOT_
OWNER_OF_
RESOURCE

calling task does not
own semaphore

RTEMS_
INCORRECT_STATE

invalid unlock order

DESCRIPTION:
This directive releases the semaphore spec-
ified by id. The semaphore count is incre-
mented by one. If the count is zero or neg-
ative, then the first task on this semaphore’s
wait queue is removed and unblocked. The
unblocked task may preempt the running
task if the running task’s preemption mode is
enabled and the unblocked task has a higher
priority than the running task.

NOTES:
The calling task may be preempted if it
causes a higher priority task to be made
ready for execution.

Releasing a global semaphore which does
not reside on the local node will generate
a request telling the remote node to release
the semaphore.

If the task to be unblocked resides on a dif-
ferent node from the semaphore, then the
semaphore allocation is forwarded to the
appropriate node, the waiting task is un-
blocked, and the proxy used to represent the
task is reclaimed.

The outermost release of a local, bi-
nary, priority inheritance or priority ceiling
semaphore may result in the calling task
having its priority lowered. This will oc-
cur if the calling task holds no other binary

semaphores and it has inherited a higher pri-
ority.

The MrsP semaphores must be released in
the reversed obtain order, otherwise the
RTEMS_INCORRECT_STATE status code will be
returned on SMP configurations in this case.

12.4. Directives 181

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.4

12.4.6 SEMAPHORE_FLUSH - Unblock all
tasks waiting on a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_flush(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

semaphore released
successfully

RTEMS_
INVALID_ID

invalid semaphore id

RTEMS_NOT_
DEFINED

operation not defined
for the protocol ofthe
semaphore

RTEMS_
ILLEGAL_ON_
REMOTE_OBJECT

not supported for
remote semaphores

DESCRIPTION:
This directive unblocks all tasks waiting
on the semaphore specified by id. Since
there are tasks blocked on the semaphore,
the semaphore’s count is not changed
by this directive and thus is zero be-
fore and after this directive is executed.
Tasks which are unblocked as the re-
sult of this directive will return from the
rtems_semaphore_obtain directive with a
status code of RTEMS_UNSATISFIED to indi-
cate that the semaphore was not obtained.

This directive may unblock any number of
tasks. Any of the unblocked tasks may pre-
empt the running task if the running task’s
preemption mode is enabled and an un-
blocked task has a higher priority than the
running task.

NOTES:
The calling task may be preempted if it
causes a higher priority task to be made
ready for execution.

If the task to be unblocked resides on a dif-
ferent node from the semaphore, then the
waiting task is unblocked, and the proxy
used to represent the task is reclaimed.

It is not allowed to flush a MrsP semaphore
and the RTEMS_NOT_DEFINED status code will

be returned on SMP configurations in this
case.

182 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS C User Documentation, Release 4.11.3

12.4.7 SEMAPHORE_SET_PRIORITY -
Set priority by scheduler for a
semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_set_
→˓priority(

2 rtems_id semaphore_id,
3 rtems_id scheduler_id,
4 rtems_task_priority new_priority,
5 rtems_task_priority *old_priority
6);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successful operation

RTEMS_
INVALID_ID

invalid semaphore or
scheduler id

RTEMS_
INVALID_
ADDRESS

old_priority is NULL

RTEMS_
INVALID_
PRIORITY

invalid new priority
value

RTEMS_NOT_
DEFINED

operation not defined
for the protocol ofthe
semaphore

RTEMS_
ILLEGAL_ON_
REMOTE_OBJECT

not supported for
remote semaphores

DESCRIPTION:
This directive sets the priority value with
respect to the specified scheduler of a
semaphore.

The special priority value
RTEMS_CURRENT_PRIORITY can be used
to get the current priority value without
changing it.

The interpretation of the priority value de-
pends on the protocol of the semaphore ob-
ject.

• The Multiprocessor Resource Sharing
Protocol needs a ceiling priority per
scheduler instance. This operation can
be used to specify these priority values.

• For the Priority Ceiling Protocol the
ceiling priority is used with this oper-
ation.

• For other protocols this operation is not
defined.

EXAMPLE:

1 #include <assert.h>
2 #include <stdlib.h>
3 #include <rtems.h>
4

5 #define SCHED_A rtems_build_name(' ', ' ',
→˓ ' ', 'A')

6 #define SCHED_B rtems_build_name(' ', ' ',
→˓ ' ', 'B')

7

8 static void Init(rtems_task_argument arg)
9 {

10 rtems_status_code sc;
11 rtems_id semaphore_id;
12 rtems_id scheduler_a_id;
13 rtems_id scheduler_b_id;
14 rtems_task_priority prio;
15

16 /* Get the scheduler identifiers */
17 sc = rtems_scheduler_ident(SCHED_A, &

→˓scheduler_a_id);
18 assert(sc == RTEMS_SUCCESSFUL);
19 sc = rtems_scheduler_ident(SCHED_B, &

→˓scheduler_b_id);
20 assert(sc == RTEMS_SUCCESSFUL);
21

22 /* Create a MrsP semaphore object */
23 sc = rtems_semaphore_create(
24 rtems_build_name('M', 'R', 'S', 'P

→˓'),
25 1,
26 RTEMS_MULTIPROCESSOR_RESOURCE_

→˓SHARING | RTEMS_BINARY_SEMAPHORE,
27 1,
28 &semaphore_id
29);
30 assert(sc == RTEMS_SUCCESSFUL);
31

32 /*
33 * The ceiling priority values ␣

→˓per scheduler are equal to the value ␣
→˓specified

34 * for object creation.
35 */
36 prio = RTEMS_CURRENT_PRIORITY;
37 sc = rtems_semaphore_set_

→˓priority(semaphore_id, scheduler_a_id,␣
→˓prio, &prio);

38 assert(sc == RTEMS_SUCCESSFUL);
39 assert(prio == 1);
40

41 /* Check the old value and set a new␣
→˓ceiling priority for scheduler B */

12.4. Directives 183

RTEMS C User Documentation, Release 4.11.3 Chapter 12 Section 12.4

42 prio = 2;
43 sc = rtems_semaphore_set_

→˓priority(semaphore_id, scheduler_b_id,␣
→˓prio, &prio);

44 assert(sc == RTEMS_SUCCESSFUL);
45 assert(prio == 1);
46

47 /* Check the ceiling priority values */
48 prio = RTEMS_CURRENT_PRIORITY;
49 sc = rtems_semaphore_set_

→˓priority(semaphore_id, scheduler_a_id,␣
→˓prio, &prio);

50 assert(sc == RTEMS_SUCCESSFUL);
51 assert(prio == 1);
52 prio = RTEMS_CURRENT_PRIORITY;
53 sc = rtems_semaphore_set_

→˓priority(semaphore_id, scheduler_b_id,␣
→˓prio, &prio);

54 assert(sc == RTEMS_SUCCESSFUL);
55 assert(prio == 2);
56 sc = rtems_semaphore_delete(semaphore_

→˓id);
57 assert(sc == RTEMS_SUCCESSFUL);
58 exit(0);
59 }
60

61 #define CONFIGURE_SMP_APPLICATION
62 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_

→˓DRIVER
63 #define CONFIGURE_APPLICATION_NEEDS_

→˓CONSOLE_DRIVER
64 #define CONFIGURE_MAXIMUM_TASKS 1
65 #define CONFIGURE_MAXIMUM_SEMAPHORES 1
66 #define CONFIGURE_MAXIMUM_MRSP_SEMAPHORES␣

→˓1
67 #define CONFIGURE_SMP_MAXIMUM_PROCESSORS 2
68 #define CONFIGURE_SCHEDULER_SIMPLE_SMP
69

70 #include <rtems/scheduler.h>
71

72 RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(a);
73 RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(b);
74

75 #define CONFIGURE_SCHEDULER_CONTROLS \
76 RTEMS_SCHEDULER_CONTROL_SIMPLE_

→˓SMP(a, SCHED_A), \
77 RTEMS_SCHEDULER_CONTROL_SIMPLE_

→˓SMP(b, SCHED_B)
78 #define CONFIGURE_SMP_SCHEDULER_

→˓ASSIGNMENTS \
79 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_

→˓SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), ␣
→˓\

80 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_MANDATORY)

81 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
82 #define CONFIGURE_INIT

83 #include <rtems/confdefs.h>

184 Chapter 12. Semaphore Manager

CHAPTER

THIRTEEN

BARRIER MANAGER

185

RTEMS C User Documentation, Release 4.11.3 Chapter 13 Section 13.1

13.1 Introduction

The barrier manager provides a unique syn-
chronization capability which can be used to
have a set of tasks block and be unblocked as
a set. The directives provided by the barrier
manager are:

• rtems_barrier_create (page 190) - Create
a barrier

• rtems_barrier_ident (page 191) - Get ID
of a barrier

• rtems_barrier_delete (page 192) - Delete
a barrier

• rtems_barrier_wait (page 193) - Wait at
a barrier

• rtems_barrier_release (page 194) - Re-
lease a barrier

186 Chapter 13. Barrier Manager

Chapter 13 Section 13.2 RTEMS C User Documentation, Release 4.11.3

13.2 Background

A barrier can be viewed as a gate at which
tasks wait until the gate is opened. This has
many analogies in the real world. Horses and
other farm animals may approach a closed gate
and gather in front of it, waiting for someone
to open the gate so they may proceed. Simi-
larly, cticket holders gather at the gates of are-
nas before concerts or sporting events waiting
for the arena personnel to open the gates so
they may enter.

Barriers are useful during application initial-
ization. Each application task can perform its
local initialization before waiting for the ap-
plication as a whole to be initialized. Once all
tasks have completed their independent initial-
izations, the “application ready” barrier can be
released.

13.2.1 Automatic Versus Manual Barriers

Just as with a real-world gate, barriers
may be configured to be manually opened
or automatically opened. All tasks call-
ing the rtems_barrier_wait directive will
block until a controlling task invokes the
rtems_barrier_release directive.

Automatic barriers are created with a limit to
the number of tasks which may simultaneously
block at the barrier. Once this limit is reached,
all of the tasks are released. For example, if
the automatic limit is ten tasks, then the first
nine tasks calling the rtems_barrier_wait di-
rective will block. When the tenth task calls
the rtems_barrier_wait directive, the nine
blocked tasks will be released and the tenth
task returns to the caller without blocking.

13.2.2 Building a Barrier Attribute Set

In general, an attribute set is built by a bitwise
OR of the desired attribute components. The
following table lists the set of valid barrier at-
tributes:

RTEMS_BARRIER_AUTOMATIC_RELEASE
automatically release the barrier when the
configured number of tasks are blocked

RTEMS_BARRIER_MANUAL_RELEASE
only release the barrier when the applica-
tion invokes the rtems_barrier_release di-
rective. (default)

Note: Barriers only support FIFO blocking or-
der because all waiting tasks are released as
a set. Thus the released tasks will all become
ready to execute at the same time and compete
for the processor based upon their priority.

Attribute values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each attribute appears exactly once in the com-
ponent list. An attribute listed as a default is
not required to appear in the attribute list, al-
though it is a good programming practice to
specify default attributes. If all defaults are de-
sired, the attribute RTEMS_DEFAULT_ATTRIBUTES
should be specified on this call.

This example demonstrates the attribute_set
parameter needed to create a barrier
with the automatic release policy. The
attribute_set parameter passed to the
rtems_barrier_create directive will be
RTEMS_BARRIER_AUTOMATIC_RELEASE. In
this case, the user must also specify the
maximum_waiters parameter.

13.2. Background 187

RTEMS C User Documentation, Release 4.11.3 Chapter 13 Section 13.3

13.3 Operations

13.3.1 Creating a Barrier

The rtems_barrier_create directive creates a
barrier with a user-specified name and the de-
sired attributes. RTEMS allocates a Barrier
Control Block (BCB) from the BCB free list.
This data structure is used by RTEMS to man-
age the newly created barrier. Also, a unique
barrier ID is generated and returned to the call-
ing task.

13.3.2 Obtaining Barrier IDs

When a barrier is created, RTEMS generates
a unique barrier ID and assigns it to the cre-
ated barrier until it is deleted. The barrier
ID may be obtained by either of two meth-
ods. First, as the result of an invocation of
the rtems_barrier_create directive, the bar-
rier ID is stored in a user provided location.
Second, the barrier ID may be obtained later
using the rtems_barrier_ident directive. The
barrier ID is used by other barrier manager di-
rectives to access this barrier.

13.3.3 Waiting at a Barrier

The rtems_barrier_wait directive is used to
wait at the specified barrier. Since a barrier
is, by definition, never immediately, the task
may wait forever for the barrier to be released
or it may specify a timeout. Specifying a time-
out limits the interval the task will wait before
returning with an error status code.

If the barrier is configured as automatic and
there are already one less then the maximum
number of waiters, then the call will unblock
all tasks waiting at the barrier and the caller
will return immediately.

When the task does wait to acquire the barrier,
then it is placed in the barrier’s task wait queue
in FIFO order. All tasks waiting on a barrier
are returned an error code when the barrier is
deleted.

13.3.4 Releasing a Barrier

The rtems_barrier_release directive is used
to release the specified barrier. When the
rtems_barrier_release is invoked, all tasks
waiting at the barrier are immediately made
ready to execute and begin to compete for the
processor to execute.

13.3.5 Deleting a Barrier

The rtems_barrier_delete directive removes
a barrier from the system and frees its con-
trol block. A barrier can be deleted by any
local task that knows the barrier’s ID. As a re-
sult of this directive, all tasks blocked waiting
for the barrier to be released, will be readied
and returned a status code which indicates that
the barrier was deleted. Any subsequent refer-
ences to the barrier’s name and ID are invalid.

188 Chapter 13. Barrier Manager

Chapter 13 Section 13.4 RTEMS C User Documentation, Release 4.11.3

13.4 Directives

This section details the barrier manager’s di-
rectives. A subsection is dedicated to each
of this manager’s directives and describes the
calling sequence, related constants, usage, and
status codes.

13.4. Directives 189

RTEMS C User Documentation, Release 4.11.3 Chapter 13 Section 13.4

13.4.1 BARRIER_CREATE - Create a bar-
rier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_create(
2 rtems_name name,
3 rtems_attribute attribute_set,
4 uint32_t maximum_waiters,
5 rtems_id *id
6);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL barrier created

successfully
RTEMS_INVALID_
NAME

invalid barrier name

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_TOO_MANY too many barriers
created

DESCRIPTION:
This directive creates a barrier which resides
on the local node. The created barrier has
the user-defined name specified in name and
the initial count specified in count. For con-
trol and maintenance of the barrier, RTEMS
allocates and initializes a BCB. The RTEMS-
assigned barrier id is returned in id. This
barrier id is used with other barrier related
directives to access the barrier.

RTEMS_BARRIER_MANUAL_
RELEASE

only
release

Specifying RTEMS_BARRIER_AUTOMATIC_RELEASE
in attribute_set causes tasks calling the
rtems_barrier_wait directive to block until
there are maximum_waiters -1 tasks waiting
at the barrier. When the maximum_waiters
task invokes the rtems_barrier_wait direc-
tive, the previous maximum_waiters -1 tasks
are automatically released and the caller
returns.

In contrast, when the
RTEMS_BARRIER_MANUAL_RELEASE attribute is
specified, there is no limit on the number
of tasks that will block at the barrier. Only
when the rtems_barrier_release directive
is invoked, are the tasks waiting at the
barrier unblocked.

NOTES:
This directive will not cause the calling task
to be preempted.

The following barrier attribute constants are
defined by RTEMS:

RTEMS_
BARRIER_
AUTOMATIC_
RELEASE

automatically release the
barrier when the configured
number of tasks are blocked

RTEMS_
BARRIER_
MANUAL_
RELEASE

only release the barrier
when the application
invokes the
rtems_barrier_release
directive. (default)

190 Chapter 13. Barrier Manager

Chapter 13 Section 13.4 RTEMS C User Documentation, Release 4.11.3

13.4.2 BARRIER_IDENT - Get ID of a bar-
rier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

barrier identified
successfully

RTEMS_INVALID_
NAME

barrier name not
found

RTEMS_INVALID_
NODE

invalid node id

DESCRIPTION:
This directive obtains the barrier id associ-
ated with the barrier name. If the barrier
name is not unique, then the barrier id will
match one of the barriers with that name.
However, this barrier id is not guaranteed to
correspond to the desired barrier. The bar-
rier id is used by other barrier related direc-
tives to access the barrier.

NOTES:
This directive will not cause the running task
to be preempted.

13.4. Directives 191

RTEMS C User Documentation, Release 4.11.3 Chapter 13 Section 13.4

13.4.3 BARRIER_DELETE - Delete a bar-
rier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

barrier deleted
successfully

RTEMS_
INVALID_ID

invalid barrier id

DESCRIPTION:
This directive deletes the barrier specified by
id. All tasks blocked waiting for the barrier
to be released will be readied and returned
a status code which indicates that the bar-
rier was deleted. The BCB for this barrier is
reclaimed by RTEMS.

NOTES:
The calling task will be preempted if it is en-
abled by the task’s execution mode and a
higher priority local task is waiting on the
deleted barrier. The calling task will NOT be
preempted if all of the tasks that are waiting
on the barrier are remote tasks.

The calling task does not have to be the task
that created the barrier. Any local task that
knows the barrier id can delete the barrier.

192 Chapter 13. Barrier Manager

Chapter 13 Section 13.4 RTEMS C User Documentation, Release 4.11.3

13.4.4 BARRIER_OBTAIN - Acquire a bar-
rier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_wait(
2 rtems_id id,
3 rtems_interval timeout
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

barrier released and
task unblocked

RTEMS_
UNSATISFIED

barrier not available

RTEMS_TIMEOUT timed out waiting for
barrier

RTEMS_OBJECT_
WAS_DELETED

barrier deleted while
waiting

RTEMS_INVALID_
ID

invalid barrier id

DESCRIPTION:

This directive acquires the barrier
specified by id. The RTEMS_WAIT
and RTEMS_NO_WAIT components of
the options parameter indicate
whether the calling task wants to
wait for the barrier to become
available or return immediately if
the barrier is not currently avail-
able. With either RTEMS_WAIT or
RTEMS_NO_WAIT, if the current bar-
rier count is positive, then it is
decremented by one and the bar-
rier is successfully acquired by re-
turning immediately with a suc-
cessful return code.

Conceptually, the calling task
should always be thought of as
blocking when it makes this call
and being unblocked when the
barrier is released. If the barrier
is configured for manual release,
this rule of thumb will always be
valid. If the barrier is configured
for automatic release, all callers
will block except for the one which
is the Nth task which trips the
automatic release condition.

The timeout parameter specifies
the maximum interval the calling
task is willing to be blocked wait-
ing for the barrier. If it is set to
RTEMS_NO_TIMEOUT, then the calling
task will wait forever. If the barrier
is available or the RTEMS_NO_WAIT
option component is set, then time-
out is ignored.

NOTES:

The following barrier acquisition
option constants are defined by
RTEMS:

RTEMS_
WAIT

task will wait for
barrier (default)

RTEMS_
NO_WAIT

task should not wait

A clock tick is required to support
the timeout functionality of this di-
rective.

13.4. Directives 193

RTEMS C User Documentation, Release 4.11.3 Chapter 13 Section 13.4

13.4.5 BARRIER_RELEASE - Release a
barrier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_release(
2 rtems_id id,
3 uint32_t *released
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

barrier released
successfully

RTEMS_
INVALID_ID

invalid barrier id

DESCRIPTION:
This directive releases the barrier specified
by id. All tasks waiting at the barrier will be
unblocked. If the running task’s preemption
mode is enabled and one of the unblocked
tasks has a higher priority than the running
task.

NOTES:
The calling task may be preempted if it
causes a higher priority task to be made
ready for execution.

194 Chapter 13. Barrier Manager

CHAPTER

FOURTEEN

MESSAGE MANAGER

195

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.1

14.1 Introduction

The message manager provides communica-
tion and synchronization capabilities using
RTEMS message queues. The directives pro-
vided by the message manager are:

• rtems_message_queue_create (page 202)
- Create a queue

• rtems_message_queue_ident (page 203) -
Get ID of a queue

• rtems_message_queue_delete (page 204) -
Delete a queue

• rtems_message_queue_send (page 205) -
Put message at rear of a queue

• rtems_message_queue_urgent (page 206)
- Put message at front of a queue

• rtems_message_queue_broadcast
(page 207) - Broadcast N messages
to a queue

• rtems_message_queue_receive (page 208)
- Receive message from a queue

• rtems_message_queue_get_number_pending
(page 209) - Get number of messages
pending on a queue

• rtems_message_queue_flush (page 210) -
Flush all messages on a queue

196 Chapter 14. Message Manager

Chapter 14 Section 14.2 RTEMS C User Documentation, Release 4.11.3

14.2 Background

14.2.1 Messages

A message is a variable length buffer where
information can be stored to support commu-
nication. The length of the message and the
information stored in that message are user-
defined and can be actual data, pointer(s), or
empty.

14.2.2 Message Queues

A message queue permits the passing of mes-
sages among tasks and ISRs. Message queues
can contain a variable number of messages.
Normally messages are sent to and received
from the queue in FIFO order using the
rtems_message_queue_send directive. How-
ever, the rtems_message_queue_urgent direc-
tive can be used to place messages at the head
of a queue in LIFO order.

Synchronization can be accomplished when a
task can wait for a message to arrive at a
queue. Also, a task may poll a queue for the
arrival of a message.

The maximum length message which can be
sent is set on a per message queue basis.
The message content must be copied in gen-
eral to/from an internal buffer of the message
queue or directly to a peer in certain cases.
This copy operation is performed with inter-
rupts disabled. So it is advisable to keep the
messages as short as possible.

14.2.3 Building a Message Queue At-
tribute Set

In general, an attribute set is built by a bitwise
OR of the desired attribute components. The
set of valid message queue attributes is pro-
vided in the following table:

RTEMS_FIFO tasks wait by FIFO
(default)

RTEMS_
PRIORITY

tasks wait by priority

RTEMS_LOCAL local message queue
(default)

RTEMS_GLOBAL global message queue

An attribute listed as a default is not required
to appear in the attribute list, although it is a
good programming practice to specify default
attributes. If all defaults are desired, the at-
tribute RTEMS_DEFAULT_ATTRIBUTES should be
specified on this call.

This example demonstrates the attribute_set
parameter needed to create a local message
queue with the task priority waiting queue dis-
cipline. The attribute_set parameter to the
rtems_message_queue_create directive could
be either RTEMS_PRIORITY or RTEMS_LOCAL |
RTEMS_PRIORITY. The attribute_set parame-
ter can be set to RTEMS_PRIORITY because
RTEMS_LOCAL is the default for all created mes-
sage queues. If a similar message queue
were to be known globally, then the at-
tribute_set parameter would be RTEMS_GLOBAL
| RTEMS_PRIORITY.

14.2.4 Building a MES-
SAGE_QUEUE_RECEIVE Option
Set

In general, an option is built by a bit-
wise OR of the desired option compo-
nents. The set of valid options for the
rtems_message_queue_receive directive are
listed in the following table:

RTEMS_WAIT task will wait for a message
(default)

RTEMS_NO_
WAIT

task should not wait

An option listed as a default is not required to
appear in the option OR list, although it is a
good programming practice to specify default
options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on
this call.

This example demonstrates the option pa-
rameter needed to poll for a message to

14.2. Background 197

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.2

arrive. The option parameter passed to
the rtems_message_queue_receive directive
should be RTEMS_NO_WAIT.

198 Chapter 14. Message Manager

Chapter 14 Section 14.3 RTEMS C User Documentation, Release 4.11.3

14.3 Operations

14.3.1 Creating a Message Queue

The rtems_message_queue_create directive
creates a message queue with the user-defined
name. The user specifies the maximum mes-
sage size and maximum number of messages
which can be placed in the message queue at
one time. The user may select FIFO or task pri-
ority as the method for placing waiting tasks in
the task wait queue. RTEMS allocates a Queue
Control Block (QCB) from the QCB free list to
maintain the newly created queue as well as
memory for the message buffer pool associated
with this message queue. RTEMS also gener-
ates a message queue ID which is returned to
the calling task.

For GLOBAL message queues, the maximum
message size is effectively limited to the
longest message which the MPCI is capable of
transmitting.

14.3.2 Obtaining Message Queue IDs

When a message queue is created, RTEMS
generates a unique message queue ID. The
message queue ID may be obtained by either of
two methods. First, as the result of an invoca-
tion of the rtems_message_queue_create
directive, the queue ID is stored in a
user provided location. Second, the
queue ID may be obtained later using the
rtems_message_queue_ident directive. The
queue ID is used by other message manager
directives to access this message queue.

14.3.3 Receiving a Message

The rtems_message_queue_receive directive
attempts to retrieve a message from the spec-
ified message queue. If at least one message
is in the queue, then the message is removed
from the queue, copied to the caller’s message
buffer, and returned immediately along with
the length of the message. When messages are
unavailable, one of the following situations ap-
plies:

• By default, the calling task will wait for-
ever for the message to arrive.

• Specifying the RTEMS_NO_WAIT option
forces an immediate return with an error
status code.

• Specifying a timeout limits the period the
task will wait before returning with an
error status.

If the task waits for a message, then it is placed
in the message queue’s task wait queue in ei-
ther FIFO or task priority order. All tasks wait-
ing on a message queue are returned an error
code when the message queue is deleted.

14.3.4 Sending a Message

Messages can be sent to a queue with
the rtems_message_queue_send and
rtems_message_queue_urgent directives.
These directives work identically when tasks
are waiting to receive a message. A task
is removed from the task waiting queue,
unblocked, and the message is copied to a
waiting task’s message buffer.

When no tasks are waiting at the queue,
rtems_message_queue_send places the mes-
sage at the rear of the message queue, while
rtems_message_queue_urgent places the mes-
sage at the front of the queue. The message is
copied to a message buffer from this message
queue’s buffer pool and then placed in the mes-
sage queue. Neither directive can successfully
send a message to a message queue which has
a full queue of pending messages.

14.3.5 Broadcasting a Message

The rtems_message_queue_broadcast direc-
tive sends the same message to every task
waiting on the specified message queue as an
atomic operation. The message is copied to
each waiting task’s message buffer and each
task is unblocked. The number of tasks which
were unblocked is returned to the caller.

14.3. Operations 199

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.3

14.3.6 Deleting a Message Queue

The rtems_message_queue_delete directive
removes a message queue from the system and
frees its control block as well as the mem-
ory associated with this message queue’s mes-
sage buffer pool. A message queue can be
deleted by any local task that knows the mes-
sage queue’s ID. As a result of this directive,
all tasks blocked waiting to receive a message
from the message queue will be readied and
returned a status code which indicates that the
message queue was deleted. Any subsequent
references to the message queue’s name and ID
are invalid. Any messages waiting at the mes-
sage queue are also deleted and deallocated.

200 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS C User Documentation, Release 4.11.3

14.4 Directives

This section details the message manager’s di-
rectives. A subsection is dedicated to each
of this manager’s directives and describes the
calling sequence, related constants, usage, and
status codes.

14.4. Directives 201

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.4

14.4.1 MESSAGE_QUEUE_CREATE - Cre-
ate a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓create(

2 rtems_name name,
3 uint32_t count,
4 size_t max_message_size,
5 rtems_attribute attribute_set,
6 rtems_id *id
7);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

queue created
successfully

RTEMS_INVALID_
NAME

invalid queue name

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NUMBER

invalid message count

RTEMS_INVALID_
SIZE

invalid message size

RTEMS_TOO_MANY too many queues
created

RTEMS_
UNSATISFIED

unable to allocate
message buffers

RTEMS_MP_NOT_
CONFIGURED

multiprocessing not
configured

RTEMS_TOO_MANY too many global
objects

DESCRIPTION:
This directive creates a message queue
which resides on the local node with the
user-defined name specified in name. For
control and maintenance of the queue,
RTEMS allocates and initializes a QCB.
Memory is allocated from the RTEMS
Workspace for the specified count of mes-
sages, each of max_message_size bytes in
length. The RTEMS-assigned queue id, re-
turned in id, is used to access the message
queue.

Specifying RTEMS_PRIORITY in attribute_set
causes tasks waiting for a message to be
serviced according to task priority. When
RTEMS_FIFO is specified, waiting tasks are
serviced in First In-First Out order.

NOTES:
This directive will not cause the calling task
to be preempted.

The following message queue attribute con-
stants are defined by RTEMS:

RTEMS_FIFO tasks wait by FIFO
(default)

RTEMS_
PRIORITY

tasks wait by priority

RTEMS_LOCAL local message queue
(default)

RTEMS_
GLOBAL

global message queue

Message queues should not be made global
unless remote tasks must interact with the
created message queue. This is to avoid the
system overhead incurred by the creation of
a global message queue. When a global mes-
sage queue is created, the message queue’s
name and id must be transmitted to every
node in the system for insertion in the local
copy of the global object table.

For GLOBAL message queues, the maximum
message size is effectively limited to the
longest message which the MPCI is capable
of transmitting.

The total number of global objects, in-
cluding message queues, is limited by the
maximum_global_objects field in the config-
uration table.

202 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS C User Documentation, Release 4.11.3

14.4.2 MESSAGE_QUEUE_IDENT - Get ID
of a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓ident(

2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

queue identified
successfully

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NAME

queue name not
found

RTEMS_INVALID_
NODE

invalid node id

DESCRIPTION:
This directive obtains the queue id asso-
ciated with the queue name specified in
name. If the queue name is not unique, then
the queue id will match one of the queues
with that name. However, this queue id is
not guaranteed to correspond to the desired
queue. The queue id is used with other mes-
sage related directives to access the message
queue.

NOTES:
This directive will not cause the running task
to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all
nodes are searched with the local node being
searched first. All other nodes are searched
with the lowest numbered node searched
first.

If node is a valid node number which does
not represent the local node, then only the
message queues exported by the designated
node are searched.

This directive does not generate activity on
remote nodes. It accesses only the local copy
of the global object table.

14.4. Directives 203

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.4

14.4.3 MESSAGE_QUEUE_DELETE -
Delete a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓delete(

2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL queue deleted

successfully
RTEMS_INVALID_ID invalid queue id
RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

cannot delete
remote queue

DESCRIPTION:
This directive deletes the message queue
specified by id. As a result of this directive,
all tasks blocked waiting to receive a mes-
sage from this queue will be readied and re-
turned a status code which indicates that the
message queue was deleted. If no tasks are
waiting, but the queue contains messages,
then RTEMS returns these message buffers
back to the system message buffer pool. The
QCB for this queue as well as the memory for
the message buffers is reclaimed by RTEMS.

NOTES:
The calling task will be preempted if its
preemption mode is enabled and one or
more local tasks with a higher priority than
the calling task are waiting on the deleted
queue. The calling task will NOT be pre-
empted if the tasks that are waiting are re-
mote tasks.

The calling task does not have to be the task
that created the queue, although the task
and queue must reside on the same node.

When the queue is deleted, any messages in
the queue are returned to the free message
buffer pool. Any information stored in those
messages is lost.

When a global message queue is deleted, the
message queue id must be transmitted to ev-
ery node in the system for deletion from the
local copy of the global object table.

Proxies, used to represent remote tasks,

are reclaimed when the message queue is
deleted.

204 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS C User Documentation, Release 4.11.3

14.4.4 MESSAGE_QUEUE_SEND - Put
message at rear of a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓send(

2 rtems_id id,
3 cons void *buffer,
4 size_t size
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

message sent
successfully

RTEMS_INVALID_
ID

invalid queue id

RTEMS_INVALID_
SIZE

invalid message size

RTEMS_INVALID_
ADDRESS

buffer is NULL

RTEMS_
UNSATISFIED

out of message
buffers

RTEMS_TOO_MANY queue’s limit has
been reached

DESCRIPTION:
This directive sends the message buffer of
size bytes in length to the queue specified
by id. If a task is waiting at the queue, then
the message is copied to the waiting task’s
buffer and the task is unblocked. If no tasks
are waiting at the queue, then the message is
copied to a message buffer which is obtained
from this message queue’s message buffer
pool. The message buffer is then placed at
the rear of the queue.

NOTES:
The calling task will be preempted if it has
preemption enabled and a higher priority
task is unblocked as the result of this direc-
tive.

Sending a message to a global message
queue which does not reside on the local
node will generate a request to the remote
node to post the message on the specified
message queue.

If the task to be unblocked resides on a dif-
ferent node from the message queue, then
the message is forwarded to the appropri-

ate node, the waiting task is unblocked, and
the proxy used to represent the task is re-
claimed.

14.4. Directives 205

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.4

14.4.5 MESSAGE_QUEUE_URGENT - Put
message at front of a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓urgent(

2 rtems_id id,
3 const void *buffer,
4 size_t size
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

message sent
successfully

RTEMS_INVALID_
ID

invalid queue id

RTEMS_INVALID_
SIZE

invalid message size

RTEMS_INVALID_
ADDRESS

buffer is NULL

RTEMS_
UNSATISFIED

out of message
buffers

RTEMS_TOO_MANY queue’s limit has
been reached

DESCRIPTION:
This directive sends the message buffer of
size bytes in length to the queue specified
by id. If a task is waiting on the queue, then
the message is copied to the task’s buffer and
the task is unblocked. If no tasks are waiting
on the queue, then the message is copied to
a message buffer which is obtained from this
message queue’s message buffer pool. The
message buffer is then placed at the front of
the queue.

NOTES:
The calling task will be preempted if it has
preemption enabled and a higher priority
task is unblocked as the result of this direc-
tive.

Sending a message to a global message
queue which does not reside on the local
node will generate a request telling the re-
mote node to post the message on the speci-
fied message queue.

If the task to be unblocked resides on a dif-
ferent node from the message queue, then
the message is forwarded to the appropri-

ate node, the waiting task is unblocked, and
the proxy used to represent the task is re-
claimed.

206 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS C User Documentation, Release 4.11.3

14.4.6 MESSAGE_QUEUE_BROADCAST -
Broadcast N messages to a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓broadcast(

2 rtems_id id,
3 const void *buffer,
4 size_t size,
5 uint32_t *count
6);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

message broadcasted
successfully

RTEMS_INVALID_
ID

invalid queue id

RTEMS_INVALID_
ADDRESS

buffer is NULL

RTEMS_INVALID_
ADDRESS

count is NULL

RTEMS_INVALID_
SIZE

invalid message size

DESCRIPTION:
This directive causes all tasks that are wait-
ing at the queue specified by id to be un-
blocked and sent the message contained in
buffer. Before a task is unblocked, the mes-
sage buffer of size byes in length is copied
to that task’s message buffer. The number
of tasks that were unblocked is returned in
count.

NOTES:
The calling task will be preempted if it has
preemption enabled and a higher priority
task is unblocked as the result of this direc-
tive.

The execution time of this directive is di-
rectly related to the number of tasks waiting
on the message queue, although it is more
efficient than the equivalent number of in-
vocations of rtems_message_queue_send.

Broadcasting a message to a global message
queue which does not reside on the local
node will generate a request telling the re-
mote node to broadcast the message to the
specified message queue.

When a task is unblocked which resides on

a different node from the message queue,
a copy of the message is forwarded to the
appropriate node, the waiting task is un-
blocked, and the proxy used to represent the
task is reclaimed.

14.4. Directives 207

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.4

14.4.7 MESSAGE_QUEUE_RECEIVE - Re-
ceive message from a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓receive(

2 rtems_id id,
3 void *buffer,
4 size_t *size,
5 rtems_option option_set,
6 rtems_interval timeout
7);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL message received

successfully
RTEMS_INVALID_ID invalid queue id
RTEMS_INVALID_
ADDRESS

buffer is NULL

RTEMS_INVALID_
ADDRESS

size is NULL

RTEMS_
UNSATISFIED

queue is empty

RTEMS_TIMEOUT timed out waiting
for message

RTEMS_OBJECT_
WAS_DELETED

queue deleted while
waiting

DESCRIPTION:
This directive receives a message from
the message queue specified in id. The
RTEMS_WAIT and RTEMS_NO_WAIT options of
the options parameter allow the calling task
to specify whether to wait for a message to
become available or return immediately. For
either option, if there is at least one message
in the queue, then it is copied to buffer, size
is set to return the length of the message in
bytes, and this directive returns immediately
with a successful return code. The buffer has
to be big enough to receive a message of the
maximum length with respect to this mes-
sage queue.

If the calling task chooses to return immedi-
ately and the queue is empty, then a status
code indicating this condition is returned. If
the calling task chooses to wait at the mes-
sage queue and the queue is empty, then the
calling task is placed on the message wait
queue and blocked. If the queue was created

with the RTEMS_PRIORITY option specified,
then the calling task is inserted into the wait
queue according to its priority. But, if the
queue was created with the RTEMS_FIFO op-
tion specified, then the calling task is placed
at the rear of the wait queue.

A task choosing to wait at the queue can op-
tionally specify a timeout value in the time-
out parameter. The timeout parameter spec-
ifies the maximum interval to wait before the
calling task desires to be unblocked. If it
is set to RTEMS_NO_TIMEOUT, then the calling
task will wait forever.

NOTES:
The following message receive option con-
stants are defined by RTEMS:

RTEMS_
WAIT

task will wait for a message
(default)

RTEMS_NO_
WAIT

task should not wait

Receiving a message from a global message
queue which does not reside on the local
node will generate a request to the remote
node to obtain a message from the specified
message queue. If no message is available
and RTEMS_WAIT was specified, then the task
must be blocked until a message is posted. A
proxy is allocated on the remote node to rep-
resent the task until the message is posted.

A clock tick is required to support the time-
out functionality of this directive.

208 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS C User Documentation, Release 4.11.3

14.4.8 MESSAGE_QUEUE_GET_NUMBER_PENDING
- Get number of messages pending
on a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_get_
→˓number_pending(

2 rtems_id id,
3 uint32_t *count
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

number of messages
pending returned
successfully

RTEMS_
INVALID_
ADDRESS

count is NULL

RTEMS_
INVALID_ID

invalid queue id

DESCRIPTION:
This directive returns the number of mes-
sages pending on this message queue in
count. If no messages are present on the
queue, count is set to zero.

NOTES:
Getting the number of pending messages on
a global message queue which does not re-
side on the local node will generate a re-
quest to the remote node to actually obtain
the pending message count for the specified
message queue.

14.4. Directives 209

RTEMS C User Documentation, Release 4.11.3 Chapter 14 Section 14.4

14.4.9 MESSAGE_QUEUE_FLUSH - Flush
all messages on a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_
→˓flush(

2 rtems_id id,
3 uint32_t *count
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

message queue flushed
successfully

RTEMS_
INVALID_
ADDRESS

count is NULL

RTEMS_
INVALID_ID

invalid queue id

DESCRIPTION:
This directive removes all pending messages
from the specified queue id. The number of
messages removed is returned in count. If no
messages are present on the queue, count is
set to zero.

NOTES:
Flushing all messages on a global message
queue which does not reside on the local
node will generate a request to the remote
node to actually flush the specified message
queue.

210 Chapter 14. Message Manager

CHAPTER

FIFTEEN

EVENT MANAGER

211

RTEMS C User Documentation, Release 4.11.3 Chapter 15 Section 15.1

15.1 Introduction

The event manager provides a high perfor-
mance method of intertask communication
and synchronization. The directives provided
by the event manager are:

• rtems_event_send (page 216) - Send
event set to a task

• rtems_event_receive (page 217) - Receive
event condition

212 Chapter 15. Event Manager

Chapter 15 Section 15.2 RTEMS C User Documentation, Release 4.11.3

15.2 Background

15.2.1 Event Sets

An event flag is used by a task (or ISR) to in-
form another task of the occurrence of a sig-
nificant situation. Thirty-two event flags are
associated with each task. A collection of one
or more event flags is referred to as an event
set. The data type rtems_event_set is used to
manage event sets.

The application developer should remember
the following key characteristics of event op-
erations when utilizing the event manager:

• Events provide a simple synchronization
facility.

• Events are aimed at tasks.

• Tasks can wait on more than one event
simultaneously.

• Events are independent of one another.

• Events do not hold or transport data.

• Events are not queued. In other words,
if an event is sent more than once to a
task before being received, the second
and subsequent send operations to that
same task have no effect.

An event set is posted when it is directed
(or sent) to a task. A pending event is
an event that has been posted but not re-
ceived. An event condition is used to spec-
ify the event set which the task desires to re-
ceive and the algorithm which will be used
to determine when the request is satisfied.
An event condition is satisfied based upon
one of two algorithms which are selected by
the user. The RTEMS_EVENT_ANY algorithm
states that an event condition is satisfied when
at least a single requested event is posted.
The RTEMS_EVENT_ALL algorithm states that an
event condition is satisfied when every re-
quested event is posted.

15.2.2 Building an Event Set or Condition

An event set or condition is built by a bit-
wise OR of the desired events. The set

of valid events is RTEMS_EVENT_0 through
RTEMS_EVENT_31. If an event is not explicitly
specified in the set or condition, then it is not
present. Events are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each event appears exactly once in the event
set list.

For example, when sending the event set
consisting of RTEMS_EVENT_6, RTEMS_EVENT_15,
and RTEMS_EVENT_31, the event parameter
to the rtems_event_send directive should
be RTEMS_EVENT_6 | RTEMS_EVENT_15 |
RTEMS_EVENT_31.

15.2.3 Building an EVENT_RECEIVE Op-
tion Set

In general, an option is built by a bitwise OR
of the desired option components. The set of
valid options for the rtems_event_receive di-
rective are listed in the following table:

RTEMS_WAIT task will wait for event
(default)

RTEMS_NO_
WAIT

task should not wait

RTEMS_EVENT_
ALL

return after all events
(default)

RTEMS_EVENT_
ANY

return after any events

Option values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each option appears exactly once in the com-
ponent list. An option listed as a default is not
required to appear in the option list, although
it is a good programming practice to specify
default options. If all defaults are desired,
the option RTEMS_DEFAULT_OPTIONS should be
specified on this call.

This example demonstrates the option param-
eter needed to poll for all events in a par-
ticular event condition to arrive. The option
parameter passed to the rtems_event_receive
directive should be either RTEMS_EVENT_ALL |
RTEMS_NO_WAIT or RTEMS_NO_WAIT. The option
parameter can be set to RTEMS_NO_WAIT be-
cause RTEMS_EVENT_ALL is the default condition
for rtems_event_receive.

15.2. Background 213

RTEMS C User Documentation, Release 4.11.3 Chapter 15 Section 15.3

15.3 Operations

15.3.1 Sending an Event Set

The rtems_event_send directive allows a task
(or an ISR) to direct an event set to a target
task. Based upon the state of the target task,
one of the following situations applies:

• Target Task is Blocked Waiting for Events

– If the waiting task’s input event con-
dition is satisfied, then the task is
made ready for execution.

– If the waiting task’s input event con-
dition is not satisfied, then the event
set is posted but left pending and
the task remains blocked.

• Target Task is Not Waiting for Events

– The event set is posted and left
pending.

15.3.2 Receiving an Event Set

The rtems_event_receive directive is used by
tasks to accept a specific input event condition.
The task also specifies whether the request is
satisfied when all requested events are avail-
able or any single requested event is available.
If the requested event condition is satisfied by
pending events, then a successful return code
and the satisfying event set are returned im-
mediately. If the condition is not satisfied, then
one of the following situations applies:

• By default, the calling task will wait for-
ever for the event condition to be satis-
fied.

• Specifying the RTEMS_NO_WAIT option
forces an immediate return with an error
status code.

• Specifying a timeout limits the period the
task will wait before returning with an
error status code.

15.3.3 Determining the Pending Event Set

A task can determine the pending event set
by calling the rtems_event_receive directive
with a value of RTEMS_PENDING_EVENTS for the
input event condition. The pending events are
returned to the calling task but the event set is
left unaltered.

15.3.4 Receiving all Pending Events

A task can receive all of the currently pending
events by calling the rtems_event_receive di-
rective with a value of RTEMS_ALL_EVENTS for
the input event condition and RTEMS_NO_WAIT
| RTEMS_EVENT_ANY for the option set. The
pending events are returned to the calling task
and the event set is cleared. If no events
are pending then the RTEMS_UNSATISFIED sta-
tus code will be returned.

214 Chapter 15. Event Manager

Chapter 15 Section 15.4 RTEMS C User Documentation, Release 4.11.3

15.4 Directives

This section details the event manager’s direc-
tives. A subsection is dedicated to each of this
manager’s directives and describes the calling
sequence, related constants, usage, and status
codes.

15.4. Directives 215

RTEMS C User Documentation, Release 4.11.3 Chapter 15 Section 15.4

15.4.1 EVENT_SEND - Send event set to a
task

CALLING SEQUENCE:

1 rtems_status_code rtems_event_send (
2 rtems_id id,
3 rtems_event_set event_in
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

event set sent
successfully

RTEMS_INVALID_
ID

invalid task id

DESCRIPTION:
This directive sends an event set, event_in,
to the task specified by id. If a blocked task’s
input event condition is satisfied by this di-
rective, then it will be made ready. If its in-
put event condition is not satisfied, then the
events satisfied are updated and the events
not satisfied are left pending. If the task
specified by id is not blocked waiting for
events, then the events sent are left pending.

NOTES:
Specifying RTEMS_SELF for id results in the
event set being sent to the calling task.

Identical events sent to a task are not
queued. In other words, the second, and
subsequent, posting of an event to a task be-
fore it can perform an rtems_event_receive
has no effect.

The calling task will be preempted if it has
preemption enabled and a higher priority
task is unblocked as the result of this direc-
tive.

Sending an event set to a global task which
does not reside on the local node will gener-
ate a request telling the remote node to send
the event set to the appropriate task.

216 Chapter 15. Event Manager

Chapter 15 Section 15.4 RTEMS C User Documentation, Release 4.11.3

15.4.2 EVENT_RECEIVE - Receive event
condition

CALLING SEQUENCE:

1 rtems_status_code rtems_event_receive (
2 rtems_event_set event_in,
3 rtems_option option_set,
4 rtems_interval ticks,
5 rtems_event_set *event_out
6);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

event received
successfully

RTEMS_
UNSATISFIED

input event not satisfied
(RTEMS_NO_WAIT)

RTEMS_
INVALID_
ADDRESS

event_out is NULL

RTEMS_
TIMEOUT

timed out waiting for
event

DESCRIPTION:

This directive attempts to receive
the event condition specified in
event_in. If event_in is set to
RTEMS_PENDING_EVENTS, then
the current pending events
are returned in event_out and
left pending. The RTEMS_WAIT
and RTEMS_NO_WAIT options in
the option_set parameter are
used to specify whether or not
the task is willing to wait for
the event condition to be sat-
isfied. RTEMS_EVENT_ANY and
RTEMS_EVENT_ALL are used in the
option_set parameter are used to
specify whether a single event or
the complete event set is necessary
to satisfy the event condition. The
event_out parameter is returned
to the calling task with the value
that corresponds to the events in
event_in that were satisfied.

If pending events satisfy the event
condition, then event_out is set to
the satisfied events and the pend-
ing events in the event condition
are cleared. If the event condition

is not satisfied and RTEMS_NO_WAIT
is specified, then event_out is set to
the currently satisfied events. If the
calling task chooses to wait, then
it will block waiting for the event
condition.

If the calling task must wait for
the event condition to be satis-
fied, then the timeout parameter
is used to specify the maximum
interval to wait. If it is set to
RTEMS_NO_TIMEOUT, then the calling
task will wait forever.

NOTES:
This directive only affects the events speci-
fied in event_in. Any pending events that do
not correspond to any of the events specified
in event_in will be left pending.

The following event receive option constants
are defined by RTEMS:

RTEMS_WAIT task will wait for event
(default)

RTEMS_NO_
WAIT

task should not wait

RTEMS_
EVENT_ALL

return after all events
(default)

RTEMS_
EVENT_ANY

return after any events

A clock tick is required to support the func-
tionality of this directive.

15.4. Directives 217

RTEMS C User Documentation, Release 4.11.3 Chapter 15 Section 15.4

218 Chapter 15. Event Manager

CHAPTER

SIXTEEN

SIGNAL MANAGER

219

RTEMS C User Documentation, Release 4.11.3 Chapter 16 Section 16.1

16.1 Introduction

The signal manager provides the capabili-
ties required for asynchronous communica-
tion. The directives provided by the signal
manager are:

• rtems_signal_catch (page 225) - Establish
an ASR

• rtems_signal_send (page 226) - Send sig-
nal set to a task

220 Chapter 16. Signal Manager

Chapter 16 Section 16.2 RTEMS C User Documentation, Release 4.11.3

16.2 Background

16.2.1 Signal Manager Definitions

The signal manager allows a task to optionally
define an asynchronous signal routine (ASR).
An ASR is to a task what an ISR is to an ap-
plication’s set of tasks. When the processor is
interrupted, the execution of an application is
also interrupted and an ISR is given control.
Similarly, when a signal is sent to a task, that
task’s execution path will be “interrupted” by
the ASR. Sending a signal to a task has no ef-
fect on the receiving task’s current execution
state.

A signal flag is used by a task (or ISR) to in-
form another task of the occurrence of a sig-
nificant situation. Thirty-two signal flags are
associated with each task. A collection of one
or more signals is referred to as a signal set.
The data type rtems_signal_set is used to ma-
nipulate signal sets.

A signal set is posted when it is directed (or
sent) to a task. A pending signal is a signal
that has been sent to a task with a valid ASR,
but has not been processed by that task’s ASR.

16.2.2 A Comparison of ASRs and ISRs

The format of an ASR is similar to that of an
ISR with the following exceptions:

• ISRs are scheduled by the processor
hardware. ASRs are scheduled by
RTEMS.

• ISRs do not execute in the context of a
task and may invoke only a subset of di-
rectives. ASRs execute in the context of
a task and may execute any directive.

• When an ISR is invoked, it is passed the
vector number as its argument. When an
ASR is invoked, it is passed the signal set
as its argument.

• An ASR has a task mode which can be
different from that of the task. An ISR
does not execute as a task and, as a re-
sult, does not have a task mode.

16.2.3 Building a Signal Set

A signal set is built by a bitwise OR of the
desired signals. The set of valid signals is
RTEMS_SIGNAL_0 through RTEMS_SIGNAL_31. If
a signal is not explicitly specified in the signal
set, then it is not present. Signal values are
specifically designed to be mutually exclusive,
therefore bitwise OR and addition operations
are equivalent as long as each signal appears
exactly once in the component list.

This example demonstrates the signal param-
eter used when sending the signal set con-
sisting of RTEMS_SIGNAL_6, RTEMS_SIGNAL_15,
and RTEMS_SIGNAL_31. The signal parameter
provided to the rtems_signal_send directive
should be RTEMS_SIGNAL_6 | RTEMS_SIGNAL_15
| RTEMS_SIGNAL_31.

16.2.4 Building an ASR Mode

In general, an ASR’s mode is built by a bitwise
OR of the desired mode components. The set
of valid mode components is the same as those
allowed with the task_create and task_mode
directives. A complete list of mode options is
provided in the following table:

16.2. Background 221

RTEMS C User Documentation, Release 4.11.3 Chapter 16 Section 16.2

RTEMS_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
enables preemption

RTEMS_NO_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
disables preemption

RTEMS_NO_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK and
disables timeslicing

RTEMS_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK and
enables timeslicing

RTEMS_ASR is masked by
RTEMS_ASR_MASK and enables
ASR processing

RTEMS_NO_
ASR

is masked by
RTEMS_ASR_MASK and
disables ASR processing

RTEMS_
INTERRUPT_
LEVEL(0)

is masked by
RTEMS_INTERRUPT_MASK and
enables all interrupts

RTEMS_
INTERRUPT_
LEVEL(n)

is masked by
RTEMS_INTERRUPT_MASK and
sets interrupts level n

Mode values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each mode appears exactly once in the compo-
nent list. A mode component listed as a default
is not required to appear in the mode list, al-
though it is a good programming practice to
specify default components. If all defaults are
desired, the mode DEFAULT_MODES should be
specified on this call.

This example demonstrates the mode parame-
ter used with the rtems_signal_catch to es-
tablish an ASR which executes at interrupt
level three and is non-preemptible. The mode
should be set to RTEMS_INTERRUPT_LEVEL(3) |
RTEMS_NO_PREEMPT to indicate the desired pro-
cessor mode and interrupt level.

222 Chapter 16. Signal Manager

Chapter 16 Section 16.3 RTEMS C User Documentation, Release 4.11.3

16.3 Operations

16.3.1 Establishing an ASR

The rtems_signal_catch directive establishes
an ASR for the calling task. The address of the
ASR and its execution mode are specified to
this directive. The ASR’s mode is distinct from
the task’s mode. For example, the task may
allow preemption, while that task’s ASR may
have preemption disabled. Until a task calls
rtems_signal_catch the first time, its ASR is
invalid, and no signal sets can be sent to the
task.

A task may invalidate its ASR and dis-
card all pending signals by calling
rtems_signal_catch with a value of NULL
for the ASR’s address. When a task’s ASR is
invalid, new signal sets sent to this task are
discarded.

A task may disable ASR processing
(RTEMS_NO_ASR) via the task_mode direc-
tive. When a task’s ASR is disabled, the signals
sent to it are left pending to be processed later
when the ASR is enabled.

Any directive that can be called from a task
can also be called from an ASR. A task is
only allowed one active ASR. Thus, each call
to rtems_signal_catch replaces the previous
one.

Normally, signal processing is disabled for the
ASR’s execution mode, but if signal processing
is enabled for the ASR, the ASR must be reen-
trant.

16.3.2 Sending a Signal Set

The rtems_signal_send directive allows both
tasks and ISRs to send signals to a target task.
The target task and a set of signals are speci-
fied to the rtems_signal_send directive. The
sending of a signal to a task has no effect on
the execution state of that task. If the task is
not the currently running task, then the signals
are left pending and processed by the task’s
ASR the next time the task is dispatched to
run. The ASR is executed immediately before
the task is dispatched. If the currently running

task sends a signal to itself or is sent a signal
from an ISR, its ASR is immediately dispatched
to run provided signal processing is enabled.

If an ASR with signals enabled is preempted
by another task or an ISR and a new signal
set is sent, then a new copy of the ASR will
be invoked, nesting the preempted ASR. Upon
completion of processing the new signal set,
control will return to the preempted ASR. In
this situation, the ASR must be reentrant.

Like events, identical signals sent to a task are
not queued. In other words, sending the same
signal multiple times to a task (without any in-
termediate signal processing occurring for the
task), has the same result as sending that sig-
nal to that task once.

16.3.3 Processing an ASR

Asynchronous signals were designed to pro-
vide the capability to generate software inter-
rupts. The processing of software interrupts
parallels that of hardware interrupts. As a re-
sult, the differences between the formats of
ASRs and ISRs is limited to the meaning of the
single argument passed to an ASR. The ASR
should have the following calling sequence
and adhere to C calling conventions:

1 rtems_asr user_routine(
2 rtems_signal_set signals
3);

When the ASR returns to RTEMS the mode and
execution path of the interrupted task (or ASR)
is restored to the context prior to entering the
ASR.

16.3. Operations 223

RTEMS C User Documentation, Release 4.11.3 Chapter 16 Section 16.4

16.4 Directives

This section details the signal manager’s direc-
tives. A subsection is dedicated to each of this
manager’s directives and describes the calling
sequence, related constants, usage, and status
codes.

224 Chapter 16. Signal Manager

Chapter 16 Section 16.4 RTEMS C User Documentation, Release 4.11.3

16.4.1 SIGNAL_CATCH - Establish an ASR

CALLING SEQUENCE:

1 rtems_status_code rtems_signal_catch(
2 rtems_asr_entry asr_handler,
3 rtems_mode mode
4);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL always successful

DESCRIPTION:
This directive establishes an asynchronous
signal routine (ASR) for the calling task.
The asr_handler parameter specifies the en-
try point of the ASR. If asr_handler is NULL,
the ASR for the calling task is invalidated
and all pending signals are cleared. Any sig-
nals sent to a task with an invalid ASR are
discarded. The mode parameter specifies the
execution mode for the ASR. This execution
mode supersedes the task’s execution mode
while the ASR is executing.

NOTES:
This directive will not cause the calling task
to be preempted.

The following task mode constants are de-
fined by RTEMS:

RTEMS_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
enables preemption

RTEMS_NO_
PREEMPT

is masked by
RTEMS_PREEMPT_MASK and
disables preemption

RTEMS_NO_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK
and disables timeslicing

RTEMS_
TIMESLICE

is masked by
RTEMS_TIMESLICE_MASK
and enables timeslicing

RTEMS_ASR is masked by
RTEMS_ASR_MASK and
enables ASR processing

RTEMS_NO_
ASR

is masked by
RTEMS_ASR_MASK and
disables ASR processing

RTEMS_
INTERRUPT_
LEVEL(0)

is masked by
RTEMS_INTERRUPT_MASK
and enables all interrupts

RTEMS_
INTERRUPT_
LEVEL(n)

is masked by
RTEMS_INTERRUPT_MASK
and sets interrupts level n

16.4. Directives 225

RTEMS C User Documentation, Release 4.11.3 Chapter 16 Section 16.4

16.4.2 SIGNAL_SEND - Send signal set to
a task

CALLING SEQUENCE:

1 rtems_status_code rtems_signal_send(
2 rtems_id id,
3 rtems_signal_set signal_set
4);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL signal sent

successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INVALID_
NUMBER

empty signal set

RTEMS_NOT_DEFINED ASR invalid

DESCRIPTION:
This directive sends a signal set to the task
specified in id. The signal_set parameter
contains the signal set to be sent to the task.

If a caller sends a signal set to a task with an
invalid ASR, then an error code is returned
to the caller. If a caller sends a signal set to
a task whose ASR is valid but disabled, then
the signal set will be caught and left pending
for the ASR to process when it is enabled. If
a caller sends a signal set to a task with an
ASR that is both valid and enabled, then the
signal set is caught and the ASR will execute
the next time the task is dispatched to run.

NOTES:
Sending a signal set to a task has no effect
on that task’s state. If a signal set is sent
to a blocked task, then the task will remain
blocked and the signals will be processed
when the task becomes the running task.

Sending a signal set to a global task which
does not reside on the local node will gener-
ate a request telling the remote node to send
the signal set to the specified task.

226 Chapter 16. Signal Manager

CHAPTER

SEVENTEEN

PARTITION MANAGER

227

RTEMS C User Documentation, Release 4.11.3 Chapter 17 Section 17.1

17.1 Introduction

The partition manager provides facilities to dy-
namically allocate memory in fixed-size units.
The directives provided by the partition man-
ager are:

• rtems_partition_create (page 232) - Cre-
ate a partition

• rtems_partition_ident (page 233) - Get ID
of a partition

• rtems_partition_delete (page 234) -
Delete a partition

• rtems_partition_get_buffer (page 235) -
Get buffer from a partition

• rtems_partition_return_buffer (page 236)
- Return buffer to a partition

228 Chapter 17. Partition Manager

Chapter 17 Section 17.2 RTEMS C User Documentation, Release 4.11.3

17.2 Background

17.2.1 Partition Manager Definitions

A partition is a physically contiguous memory
area divided into fixed-size buffers that can be
dynamically allocated and deallocated.

Partitions are managed and maintained as a
list of buffers. Buffers are obtained from the
front of the partition’s free buffer chain and re-
turned to the rear of the same chain. When a
buffer is on the free buffer chain, RTEMS uses
two pointers of memory from each buffer as
the free buffer chain. When a buffer is allo-
cated, the entire buffer is available for applica-
tion use. Therefore, modifying memory that is
outside of an allocated buffer could destroy the
free buffer chain or the contents of an adjacent
allocated buffer.

17.2.2 Building a Partition Attribute Set

In general, an attribute set is built by a bitwise
OR of the desired attribute components. The
set of valid partition attributes is provided in
the following table:

RTEMS_LOCAL local partition (default)
RTEMS_GLOBAL global partition

Attribute values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each attribute appears exactly once in the com-
ponent list. An attribute listed as a default is
not required to appear in the attribute list, al-
though it is a good programming practice to
specify default attributes. If all defaults are de-
sired, the attribute RTEMS_DEFAULT_ATTRIBUTES
should be specified on this call. The at-
tribute_set parameter should be RTEMS_GLOBAL
to indicate that the partition is to be known
globally.

17.2. Background 229

RTEMS C User Documentation, Release 4.11.3 Chapter 17 Section 17.3

17.3 Operations

17.3.1 Creating a Partition

The rtems_partition_create directive cre-
ates a partition with a user-specified name.
The partition’s name, starting address, length
and buffer size are all specified to the
rtems_partition_create directive. RTEMS al-
locates a Partition Control Block (PTCB) from
the PTCB free list. This data structure is used
by RTEMS to manage the newly created par-
tition. The number of buffers in the partition
is calculated based upon the specified partition
length and buffer size. If successful,the unique
partition ID is returned to the calling task.

17.3.2 Obtaining Partition IDs

When a partition is created, RTEMS generates
a unique partition ID and assigned it to the
created partition until it is deleted. The par-
tition ID may be obtained by either of two
methods. First, as the result of an invocation
of the rtems_partition_create directive, the
partition ID is stored in a user provided loca-
tion. Second, the partition ID may be obtained
later using the rtems_partition_ident direc-
tive. The partition ID is used by other partition
manager directives to access this partition.

17.3.3 Acquiring a Buffer

A buffer can be obtained by calling the
rtems_partition_get_buffer directive. If a
buffer is available, then it is returned immedi-
ately with a successful return code. Otherwise,
an unsuccessful return code is returned imme-
diately to the caller. Tasks cannot block to wait
for a buffer to become available.

17.3.4 Releasing a Buffer

Buffers are returned to a parti-
tion’s free buffer chain with the
rtems_partition_return_buffer direc-
tive. This directive returns an error status
code if the returned buffer was not previously
allocated from this partition.

17.3.5 Deleting a Partition

The rtems_partition_delete directive allows
a partition to be removed and returned to
RTEMS. When a partition is deleted, the PTCB
for that partition is returned to the PTCB free
list. A partition with buffers still allocated can-
not be deleted. Any task attempting to do so
will be returned an error status code.

230 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS C User Documentation, Release 4.11.3

17.4 Directives

This section details the partition manager’s di-
rectives. A subsection is dedicated to each
of this manager’s directives and describes the
calling sequence, related constants, usage, and
status codes.

17.4. Directives 231

RTEMS C User Documentation, Release 4.11.3 Chapter 17 Section 17.4

17.4.1 PARTITION_CREATE - Create a
partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_create(
2 rtems_name name,
3 void *starting_address,
4 uint32_t length,
5 uint32_t buffer_size,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

partition created
successfully

RTEMS_INVALID_
NAME

invalid partition
name

RTEMS_TOO_MANY too many partitions
created

RTEMS_INVALID_
ADDRESS

address not on four
byte boundary

RTEMS_INVALID_
ADDRESS

starting_address is
NULL

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
SIZE

length or buffer size
is 0

RTEMS_INVALID_
SIZE

length is less than the
buffer size

RTEMS_INVALID_
SIZE

buffer size not a
multiple of 4

RTEMS_MP_NOT_
CONFIGURED

multiprocessing not
configured

RTEMS_TOO_MANY too many global
objects

DESCRIPTION:
This directive creates a partition of fixed size
buffers from a physically contiguous mem-
ory space which starts at starting_address
and is length bytes in size. Each allocated
buffer is to be of buffer_size in bytes. The
assigned partition id is returned in id. This
partition id is used to access the partition
with other partition related directives. For
control and maintenance of the partition,
RTEMS allocates a PTCB from the local PTCB
free pool and initializes it.

NOTES:
This directive will not cause the calling task
to be preempted.

The starting_address must be properly
aligned for the target architecture.

The buffer_size parameter must be a mul-
tiple of the CPU alignment factor. Addition-
ally, buffer_size must be large enough to
hold two pointers on the target architecture.
This is required for RTEMS to manage the
buffers when they are free.

Memory from the partition is not used by
RTEMS to store the Partition Control Block.

The following partition attribute constants
are defined by RTEMS:

RTEMS_LOCAL local partition (default)
RTEMS_GLOBAL global partition

The PTCB for a global partition is allocated
on the local node. The memory space used
for the partition must reside in shared mem-
ory. Partitions should not be made global un-
less remote tasks must interact with the par-
tition. This is to avoid the overhead incurred
by the creation of a global partition. When
a global partition is created, the partition’s
name and id must be transmitted to every
node in the system for insertion in the local
copy of the global object table.

The total number of global objects, in-
cluding partitions, is limited by the maxi-
mum_global_objects field in the Configura-
tion Table.

232 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS C User Documentation, Release 4.11.3

17.4.2 PARTITION_IDENT - Get ID of a
partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

partition identified
successfully

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NAME

partition name not
found

RTEMS_INVALID_
NODE

invalid node id

DESCRIPTION:
This directive obtains the partition id associ-
ated with the partition name. If the partition
name is not unique, then the partition id will
match one of the partitions with that name.
However, this partition id is not guaranteed
to correspond to the desired partition. The
partition id is used with other partition re-
lated directives to access the partition.

NOTES:
This directive will not cause the running task
to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all
nodes are searched with the local node being
searched first. All other nodes are searched
with the lowest numbered node searched
first.

If node is a valid node number which does
not represent the local node, then only the
partitions exported by the designated node
are searched.

This directive does not generate activity on
remote nodes. It accesses only the local copy
of the global object table.

17.4. Directives 233

RTEMS C User Documentation, Release 4.11.3 Chapter 17 Section 17.4

17.4.3 PARTITION_DELETE - Delete a
partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL partition deleted

successfully
RTEMS_INVALID_ID invalid partition

id
RTEMS_RESOURCE_IN_
USE

buffers still in use

RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

cannot delete
remote partition

DESCRIPTION:
This directive deletes the partition specified
by id. The partition cannot be deleted if any
of its buffers are still allocated. The PTCB for
the deleted partition is reclaimed by RTEMS.

NOTES:
This directive will not cause the calling task
to be preempted.

The calling task does not have to be the task
that created the partition. Any local task that
knows the partition id can delete the parti-
tion.

When a global partition is deleted, the parti-
tion id must be transmitted to every node in
the system for deletion from the local copy
of the global object table.

The partition must reside on the local node,
even if the partition was created with the
RTEMS_GLOBAL option.

234 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS C User Documentation, Release 4.11.3

17.4.4 PARTITION_GET_BUFFER - Get
buffer from a partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_get_
→˓buffer(

2 rtems_id id,
3 void **buffer
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

buffer obtained
successfully

RTEMS_INVALID_
ADDRESS

buffer is NULL

RTEMS_INVALID_
ID

invalid partition id

RTEMS_
UNSATISFIED

all buffers are
allocated

DESCRIPTION:
This directive allows a buffer to be obtained
from the partition specified in id. The ad-
dress of the allocated buffer is returned in
buffer.

NOTES:
This directive will not cause the running task
to be preempted.

All buffers begin on a four byte boundary.

A task cannot wait on a buffer to become
available.

Getting a buffer from a global partition
which does not reside on the local node will
generate a request telling the remote node to
allocate a buffer from the specified partition.

17.4. Directives 235

RTEMS C User Documentation, Release 4.11.3 Chapter 17 Section 17.4

17.4.5 PARTITION_RETURN_BUFFER -
Return buffer to a partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_return_
→˓buffer(

2 rtems_id id,
3 void *buffer
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

buffer returned
successfully

RTEMS_INVALID_
ADDRESS

buffer is NULL

RTEMS_INVALID_
ID

invalid partition id

RTEMS_INVALID_
ADDRESS

buffer address not in
partition

DESCRIPTION:
This directive returns the buffer specified by
buffer to the partition specified by id.

NOTES:
This directive will not cause the running task
to be preempted.

Returning a buffer to a global partition
which does not reside on the local node will
generate a request telling the remote node to
return the buffer to the specified partition.

Returning a buffer multiple times is an error.
It will corrupt the internal state of the parti-
tion.

236 Chapter 17. Partition Manager

CHAPTER

EIGHTEEN

REGION MANAGER

237

RTEMS C User Documentation, Release 4.11.3 Chapter 18 Section 18.1

18.1 Introduction

The region manager provides facilities to dy-
namically allocate memory in variable sized
units. The directives provided by the region
manager are:

• rtems_region_create (page 243) - Create
a region

• rtems_region_ident (page 244) - Get ID of
a region

• rtems_region_delete (page 245) - Delete a
region

• rtems_region_extend (page 246) - Add
memory to a region

• rtems_region_get_segment (page 247) -
Get segment from a region

• rtems_region_return_segment (page 248)
- Return segment to a region

• rtems_region_get_segment_size
(page 249) - Obtain size of a segment

• rtems_region_resize_segment (page 250)
- Change size of a segment

238 Chapter 18. Region Manager

Chapter 18 Section 18.2 RTEMS C User Documentation, Release 4.11.3

18.2 Background

18.2.1 Region Manager Definitions

A region makes up a physically contiguous
memory space with user-defined boundaries
from which variable-sized segments are dy-
namically allocated and deallocated. A seg-
ment is a variable size section of memory
which is allocated in multiples of a user-
defined page size. This page size is required
to be a multiple of four greater than or equal
to four. For example, if a request for a 350-
byte segment is made in a region with 256-byte
pages, then a 512-byte segment is allocated.

Regions are organized as doubly linked chains
of variable sized memory blocks. Memory re-
quests are allocated using a first-fit algorithm.
If available, the requester receives the num-
ber of bytes requested (rounded up to the next
page size). RTEMS requires some overhead
from the region’s memory for each segment
that is allocated. Therefore, an application
should only modify the memory of a segment
that has been obtained from the region. The
application should NOT modify the memory
outside of any obtained segments and within
the region’s boundaries while the region is cur-
rently active in the system.

Upon return to the region, the free block is coa-
lesced with its neighbors (if free) on both sides
to produce the largest possible unused block.

18.2.2 Building an Attribute Set

In general, an attribute set is built by a bitwise
OR of the desired attribute components. The
set of valid region attributes is provided in the
following table:

RTEMS_FIFO tasks wait by FIFO
(default)

RTEMS_
PRIORITY

tasks wait by priority

Attribute values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each attribute appears exactly once in the com-
ponent list. An attribute listed as a default is

not required to appear in the attribute list, al-
though it is a good programming practice to
specify default attributes. If all defaults are de-
sired, the attribute RTEMS_DEFAULT_ATTRIBUTES
should be specified on this call.

This example demonstrates the attribute_set
parameter needed to create a region with
the task priority waiting queue disci-
pline. The attribute_set parameter to the
rtems_region_create directive should be
RTEMS_PRIORITY.

18.2.3 Building an Option Set

In general, an option is built by a bit-
wise OR of the desired option compo-
nents. The set of valid options for the
rtems_region_get_segment directive are listed
in the following table:

RTEMS_WAIT task will wait for segment
(default)

RTEMS_NO_
WAIT

task should not wait

Option values are specifically designed to be
mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as
each option appears exactly once in the com-
ponent list. An option listed as a default is not
required to appear in the option list, although
it is a good programming practice to specify
default options. If all defaults are desired,
the option RTEMS_DEFAULT_OPTIONS should be
specified on this call.

This example demonstrates the option
parameter needed to poll for a seg-
ment. The option parameter passed to
the rtems_region_get_segment directive
should be RTEMS_NO_WAIT.

18.2. Background 239

RTEMS C User Documentation, Release 4.11.3 Chapter 18 Section 18.3

18.3 Operations

18.3.1 Creating a Region

The rtems_region_create directive creates a
region with the user-defined name. The user
may select FIFO or task priority as the method
for placing waiting tasks in the task wait
queue. RTEMS allocates a Region Control
Block (RNCB) from the RNCB free list to main-
tain the newly created region. RTEMS also
generates a unique region ID which is returned
to the calling task.

It is not possible to calculate the exact num-
ber of bytes available to the user since RTEMS
requires overhead for each segment allocated.
For example, a region with one segment that is
the size of the entire region has more available
bytes than a region with two segments that
collectively are the size of the entire region.
This is because the region with one segment
requires only the overhead for one segment,
while the other region requires the overhead
for two segments.

Due to automatic coalescing, the number of
segments in the region dynamically changes.
Therefore, the total overhead required by
RTEMS dynamically changes.

18.3.2 Obtaining Region IDs

When a region is created, RTEMS generates
a unique region ID and assigns it to the cre-
ated region until it is deleted. The region
ID may be obtained by either of two meth-
ods. First, as the result of an invocation of the
rtems_region_create directive, the region ID
is stored in a user provided location. Second,
the region ID may be obtained later using the
rtems_region_ident directive. The region ID
is used by other region manager directives to
access this region.

18.3.3 Adding Memory to a Region

The rtems_region_extend directive may be
used to add memory to an existing region. The

caller specifies the size in bytes and starting
address of the memory being added.

Note: Please see the release notes or RTEMS
source code for information regarding restric-
tions on the location of the memory being
added in relation to memory already in the re-
gion.

18.3.4 Acquiring a Segment

The rtems_region_get_segment directive at-
tempts to acquire a segment from a specified
region. If the region has enough available free
memory, then a segment is returned success-
fully to the caller. When the segment cannot
be allocated, one of the following situations
applies:

• By default, the calling task will wait for-
ever to acquire the segment.

• Specifying the RTEMS_NO_WAIT option
forces an immediate return with an error
status code.

• Specifying a timeout limits the interval
the task will wait before returning with
an error status code.

If the task waits for the segment, then it is
placed in the region’s task wait queue in either
FIFO or task priority order. All tasks waiting on
a region are returned an error when the mes-
sage queue is deleted.

18.3.5 Releasing a Segment

When a segment is returned to a region by the
rtems_region_return_segment directive, it is
merged with its unallocated neighbors to form
the largest possible segment. The first task on
the wait queue is examined to determine if its
segment request can now be satisfied. If so, it
is given a segment and unblocked. This pro-
cess is repeated until the first task’s segment
request cannot be satisfied.

240 Chapter 18. Region Manager

Chapter 18 Section 18.3 RTEMS C User Documentation, Release 4.11.3

18.3.6 Obtaining the Size of a Segment

The rtems_region_get_segment_size direc-
tive returns the size in bytes of the specified
segment. The size returned includes any “ex-
tra” memory included in the segment because
of rounding up to a page size boundary.

18.3.7 Changing the Size of a Segment

The rtems_region_resize_segment directive
is used to change the size in bytes of the spec-
ified segment. The size may be increased or
decreased. When increasing the size of a seg-
ment, it is possible that the request cannot be
satisfied. This directive provides functionality
similar to the realloc() function in the Stan-
dard C Library.

18.3.8 Deleting a Region

A region can be removed from the sys-
tem and returned to RTEMS with the
rtems_region_delete directive. When a re-
gion is deleted, its control block is returned to
the RNCB free list. A region with segments still
allocated is not allowed to be deleted. Any task
attempting to do so will be returned an error.
As a result of this directive, all tasks blocked
waiting to obtain a segment from the region
will be readied and returned a status code
which indicates that the region was deleted.

18.3. Operations 241

RTEMS C User Documentation, Release 4.11.3 Chapter 18 Section 18.4

18.4 Directives

This section details the region manager’s direc-
tives. A subsection is dedicated to each of this
manager’s directives and describes the calling
sequence, related constants, usage, and status
codes.

242 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS C User Documentation, Release 4.11.3

18.4.1 REGION_CREATE - Create a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_create(
2 rtems_name name,
3 void *starting_address,
4 intptr_t length,
5 uint32_t page_size,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

region created
successfully

RTEMS_
INVALID_NAME

invalid region name

RTEMS_
INVALID_
ADDRESS

id is NULL

RTEMS_
INVALID_
ADDRESS

starting_address is
NULL

RTEMS_
INVALID_
ADDRESS

address not on four
byte boundary

RTEMS_TOO_
MANY

too many regions
created

RTEMS_
INVALID_SIZE

invalid page size

DESCRIPTION:
This directive creates a region from a physi-
cally contiguous memory space which starts
at starting_address and is length bytes long.
Segments allocated from the region will be
a multiple of page_size bytes in length. The
assigned region id is returned in id. This re-
gion id is used as an argument to other re-
gion related directives to access the region.

For control and maintenance of the region,
RTEMS allocates and initializes an RNCB
from the RNCB free pool. Thus memory
from the region is not used to store the
RNCB. However, some overhead within the
region is required by RTEMS each time a seg-
ment is constructed in the region.

Specifying RTEMS_PRIORITY in attribute_set
causes tasks waiting for a segment to be
serviced according to task priority. Specify-

ing RTEMS_FIFO in attribute_set or selecting
RTEMS_DEFAULT_ATTRIBUTES will cause wait-
ing tasks to be serviced in First In-First Out
order.

The starting_address parameter must be
aligned on a four byte boundary. The
page_size parameter must be a multiple of
four greater than or equal to eight.

NOTES:
This directive will not cause the calling task
to be preempted.

The following region attribute constants are
defined by RTEMS:

RTEMS_FIFO tasks wait by FIFO
(default)

RTEMS_
PRIORITY

tasks wait by priority

18.4. Directives 243

RTEMS C User Documentation, Release 4.11.3 Chapter 18 Section 18.4

18.4.2 REGION_IDENT - Get ID of a re-
gion

CALLING SEQUENCE:

1 rtems_status_code rtems_region_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

region identified
successfully

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NAME

region name not
found

DESCRIPTION:

This directive obtains the region id
associated with the region name to
be acquired. If the region name
is not unique, then the region id
will match one of the regions with
that name. However, this region id
is not guaranteed to correspond to
the desired region. The region id is
used to access this region in other
region manager directives.

NOTES:
This directive will not cause the running task
to be preempted.

244 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS C User Documentation, Release 4.11.3

18.4.3 REGION_DELETE - Delete a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL region deleted

successfully
RTEMS_INVALID_ID invalid region id
RTEMS_RESOURCE_
IN_USE

segments still in use

DESCRIPTION:
This directive deletes the region specified by
id. The region cannot be deleted if any of its
segments are still allocated. The RNCB for
the deleted region is reclaimed by RTEMS.

NOTES:
This directive will not cause the calling task
to be preempted.

The calling task does not have to be the task
that created the region. Any local task that
knows the region id can delete the region.

18.4. Directives 245

RTEMS C User Documentation, Release 4.11.3 Chapter 18 Section 18.4

18.4.4 REGION_EXTEND - Add memory
to a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_extend(
2 rtems_id id,
3 void *starting_address,
4 intptr_t length
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

region extended
successfully

RTEMS_INVALID_
ADDRESS

starting_address is
NULL

RTEMS_INVALID_
ID

invalid region id

RTEMS_INVALID_
ADDRESS

invalid address of
area to add

DESCRIPTION:
This directive adds the memory which starts
at starting_address for length bytes to the re-
gion specified by id.

NOTES:
This directive will not cause the calling task
to be preempted.

The calling task does not have to be the task
that created the region. Any local task that
knows the region id can extend the region.

246 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS C User Documentation, Release 4.11.3

18.4.5 REGION_GET_SEGMENT - Get
segment from a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_
→˓segment(

2 rtems_id id,
3 intptr_t size,
4 rtems_option option_set,
5 rtems_interval timeout,
6 void **segment
7);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

segment obtained successfully

RTEMS_
INVALID_
ADDRESS

segment is NULL

RTEMS_
INVALID_
ID

invalid region id

RTEMS_
INVALID_
SIZE

request is for zero bytes or
exceeds the size of maximum
segment which is possible for
this region

RTEMS_
UNSATISFIED

segment of requested size not
available

RTEMS_
TIMEOUT

timed out waiting for segment

RTEMS_
OBJECT_
WAS_
DELETED

region deleted while waiting

DESCRIPTION:
This directive obtains a variable size seg-
ment from the region specified by id. The
address of the allocated segment is re-
turned in segment. The RTEMS_WAIT and
RTEMS_NO_WAIT components of the options
parameter are used to specify whether the
calling tasks wish to wait for a segment
to become available or return immediately
if no segment is available. For either op-
tion, if a sufficiently sized segment is avail-
able, then the segment is successfully ac-
quired by returning immediately with the
RTEMS_SUCCESSFUL status code.

If the calling task chooses to return imme-

diately and a segment large enough is not
available, then an error code indicating this
fact is returned. If the calling task chooses
to wait for the segment and a segment large
enough is not available, then the calling task
is placed on the region’s segment wait queue
and blocked. If the region was created with
the RTEMS_PRIORITY option, then the calling
task is inserted into the wait queue accord-
ing to its priority. However, if the region was
created with the RTEMS_FIFO option, then the
calling task is placed at the rear of the wait
queue.

The timeout parameter specifies the maxi-
mum interval that a task is willing to wait
to obtain a segment. If timeout is set to
RTEMS_NO_TIMEOUT, then the calling task will
wait forever.

NOTES:
The actual length of the allocated segment
may be larger than the requested size be-
cause a segment size is always a multiple of
the region’s page size.

The following segment acquisition option
constants are defined by RTEMS:

RTEMS_WAIT task will wait for segment
(default)

RTEMS_NO_
WAIT

task should not wait

A clock tick is required to support the time-
out functionality of this directive.

18.4. Directives 247

RTEMS C User Documentation, Release 4.11.3 Chapter 18 Section 18.4

18.4.6 REGION_RETURN_SEGMENT -
Return segment to a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_return_
→˓segment(

2 rtems_id id,
3 void *segment
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

segment returned
successfully

RTEMS_INVALID_
ADDRESS

segment is NULL

RTEMS_INVALID_
ID

invalid region id

RTEMS_INVALID_
ADDRESS

segment address not
in region

DESCRIPTION:
This directive returns the segment specified
by segment to the region specified by id. The
returned segment is merged with its neigh-
bors to form the largest possible segment.
The first task on the wait queue is examined
to determine if its segment request can now
be satisfied. If so, it is given a segment and
unblocked. This process is repeated until the
first task’s segment request cannot be satis-
fied.

NOTES:
This directive will cause the calling task to
be preempted if one or more local tasks are
waiting for a segment and the following con-
ditions exist:

• a waiting task has a higher priority than
the calling task

• the size of the segment required by the
waiting task is less than or equal to the
size of the segment returned.

248 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS C User Documentation, Release 4.11.3

18.4.7 REGION_GET_SEGMENT_SIZE -
Obtain size of a segment

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_
→˓segment_size(

2 rtems_id id,
3 void *segment,
4 ssize_t *size
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

segment obtained
successfully

RTEMS_INVALID_
ADDRESS

segment is NULL

RTEMS_INVALID_
ADDRESS

size is NULL

RTEMS_INVALID_
ID

invalid region id

RTEMS_INVALID_
ADDRESS

segment address not
in region

DESCRIPTION:
This directive obtains the size in bytes of the
specified segment.

NOTES:
The actual length of the allocated segment
may be larger than the requested size be-
cause a segment size is always a multiple of
the region’s page size.

18.4. Directives 249

RTEMS C User Documentation, Release 4.11.3 Chapter 18 Section 18.4

18.4.8 REGION_RESIZE_SEGMENT -
Change size of a segment

CALLING SEQUENCE:

1 rtems_status_code rtems_region_resize_
→˓segment(

2 rtems_id id,
3 void *segment,
4 ssize_t size,
5 ssize_t *old_size
6);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

segment obtained
successfully

RTEMS_INVALID_
ADDRESS

segment is NULL

RTEMS_INVALID_
ADDRESS

old_size is NULL

RTEMS_INVALID_
ID

invalid region id

RTEMS_INVALID_
ADDRESS

segment address not
in region

RTEMS_
UNSATISFIED

unable to make
segment larger

DESCRIPTION:
This directive is used to increase or decrease
the size of a segment. When increasing the
size of a segment, it is possible that there is
not memory available contiguous to the seg-
ment. In this case, the request is unsatisfied.

NOTES:
If an attempt to increase the size of a seg-
ment fails, then the application may want to
allocate a new segment of the desired size,
copy the contents of the original segment to
the new, larger segment and then return the
original segment.

250 Chapter 18. Region Manager

CHAPTER

NINETEEN

DUAL-PORTED MEMORY MANAGER

251

RTEMS C User Documentation, Release 4.11.3 Chapter 19 Section 19.1

19.1 Introduction

The dual-ported memory manager provides a
mechanism for converting addresses between
internal and external representations for mul-
tiple dual-ported memory areas (DPMA). The
directives provided by the dual-ported memory
manager are:

• rtems_port_create (page 256) - Create a
port

• rtems_port_ident (page 257) - Get ID of a
port

• rtems_port_delete (page 258) - Delete a
port

• rtems_port_external_to_internal
(page 259) - Convert external to in-
ternal address

• rtems_port_internal_to_external
(page 260) - Convert internal to ex-
ternal address

252 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.2 RTEMS C User Documentation, Release 4.11.3

19.2 Background

A dual-ported memory area (DPMA) is an con-
tiguous block of RAM owned by a particular
processor but which can be accessed by other
processors in the system. The owner accesses
the memory using internal addresses, while
other processors must use external addresses.
RTEMS defines a port as a particular mapping
of internal and external addresses.

There are two system configurations in which
dual-ported memory is commonly found. The
first is tightly-coupled multiprocessor com-
puter systems where the dual-ported memory
is shared between all nodes and is used for
inter-node communication. The second con-
figuration is computer systems with intelligent
peripheral controllers. These controllers typ-
ically utilize the DPMA for high-performance
data transfers.

19.2. Background 253

RTEMS C User Documentation, Release 4.11.3 Chapter 19 Section 19.3

19.3 Operations

19.3.1 Creating a Port

The rtems_port_create directive creates a
port into a DPMA with the user-defined name.
The user specifies the association between in-
ternal and external representations for the port
being created. RTEMS allocates a Dual-Ported
Memory Control Block (DPCB) from the DPCB
free list to maintain the newly created DPMA.
RTEMS also generates a unique dual-ported
memory port ID which is returned to the call-
ing task. RTEMS does not initialize the dual-
ported memory area or access any memory
within it.

19.3.2 Obtaining Port IDs

When a port is created, RTEMS generates
a unique port ID and assigns it to the cre-
ated port until it is deleted. The port ID
may be obtained by either of two meth-
ods. First, as the result of an invocation of
the‘‘rtems_port_create‘‘ directive, the task ID
is stored in a user provided location. Sec-
ond, the port ID may be obtained later using
the rtems_port_ident directive. The port ID
is used by other dual-ported memory manager
directives to access this port.

19.3.3 Converting an Address

The rtems_port_external_to_internal direc-
tive is used to convert an address from exter-
nal to internal representation for the specified
port. The rtems_port_internal_to_external
directive is used to convert an address from in-
ternal to external representation for the speci-
fied port. If an attempt is made to convert an
address which lies outside the specified DPMA,
then the address to be converted will be re-
turned.

19.3.4 Deleting a DPMA Port

A port can be removed from the system and re-
turned to RTEMS with the rtems_port_delete

directive. When a port is deleted, its control
block is returned to the DPCB free list.

254 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.4 RTEMS C User Documentation, Release 4.11.3

19.4 Directives

This section details the dual-ported memory
manager’s directives. A subsection is dedicated
to each of this manager’s directives and de-
scribes the calling sequence, related constants,
usage, and status codes.

19.4. Directives 255

RTEMS C User Documentation, Release 4.11.3 Chapter 19 Section 19.4

19.4.1 PORT_CREATE - Create a port

CALLING SEQUENCE:

1 rtems_status_code rtems_port_create(
2 rtems_name name,
3 void *internal_start,
4 void *external_start,
5 uint32_t length,
6 rtems_id *id
7);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

port created
successfully

RTEMS_
INVALID_NAME

invalid port name

RTEMS_
INVALID_
ADDRESS

address not on four
byte boundary

RTEMS_
INVALID_
ADDRESS

id is NULL

RTEMS_TOO_
MANY

too many DP memory
areas created

DESCRIPTION:
This directive creates a port which resides
on the local node for the specified DPMA.
The assigned port id is returned in id. This
port id is used as an argument to other dual-
ported memory manager directives to con-
vert addresses within this DPMA.

For control and maintenance of the port,
RTEMS allocates and initializes an DPCB
from the DPCB free pool. Thus memory from
the dual-ported memory area is not used to
store the DPCB.

NOTES:
The internal_address and external_address
parameters must be on a four byte bound-
ary.

This directive will not cause the calling task
to be preempted.

256 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.4 RTEMS C User Documentation, Release 4.11.3

19.4.2 PORT_IDENT - Get ID of a port

CALLING SEQUENCE:

1 rtems_status_code rtems_port_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL port identified

successfully
RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
NAME

port name not
found

DESCRIPTION:
This directive obtains the port id associated
with the specified name to be acquired. If
the port name is not unique, then the port
id will match one of the DPMAs with that
name. However, this port id is not guaran-
teed to correspond to the desired DPMA. The
port id is used to access this DPMA in other
dual-ported memory area related directives.

NOTES:
This directive will not cause the running task
to be preempted.

19.4. Directives 257

RTEMS C User Documentation, Release 4.11.3 Chapter 19 Section 19.4

19.4.3 PORT_DELETE - Delete a port

CALLING SEQUENCE:

1 rtems_status_code rtems_port_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

port deleted
successfully

RTEMS_INVALID_
ID

invalid port id

DESCRIPTION:
This directive deletes the dual-ported mem-
ory area specified by id. The DPCB for
the deleted dual-ported memory area is re-
claimed by RTEMS.

NOTES:
This directive will not cause the calling task
to be preempted.

The calling task does not have to be the task
that created the port. Any local task that
knows the port id can delete the port.

258 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.4 RTEMS C User Documentation, Release 4.11.3

19.4.4 PORT_EXTERNAL_TO_INTERNAL
- Convert external to internal
address

CALLING SEQUENCE:

1 rtems_status_code rtems_port_external_to_
→˓internal(

2 rtems_id id,
3 void *external,
4 void **internal
5);

DIRECTIVE STATUS CODES:
RTEMS_INVALID_
ADDRESS

internal is NULL

RTEMS_SUCCESSFUL successful
conversion

DESCRIPTION:
This directive converts a dual-ported mem-
ory address from external to internal repre-
sentation for the specified port. If the given
external address is invalid for the specified
port, then the internal address is set to the
given external address.

NOTES:
This directive is callable from an ISR.

This directive will not cause the calling task
to be preempted.

19.4. Directives 259

RTEMS C User Documentation, Release 4.11.3 Chapter 19 Section 19.4

19.4.5 PORT_INTERNAL_TO_EXTERNAL
- Convert internal to external
address

CALLING SEQUENCE:

1 rtems_status_code rtems_port_internal_to_
→˓external(

2 rtems_id id,
3 void *internal,
4 void **external
5);

DIRECTIVE STATUS CODES:
RTEMS_INVALID_
ADDRESS

external is NULL

RTEMS_SUCCESSFUL successful
conversion

DESCRIPTION:
This directive converts a dual-ported mem-
ory address from internal to external repre-
sentation so that it can be passed to owner
of the DPMA represented by the specified
port. If the given internal address is an in-
valid dual-ported address, then the external
address is set to the given internal address.

NOTES:
This directive is callable from an ISR.

This directive will not cause the calling task
to be preempted.

260 Chapter 19. Dual-Ported Memory Manager

CHAPTER

TWENTY

I/O MANAGER

261

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.1

20.1 Introduction

The input/output interface manager provides
a well-defined mechanism for accessing device
drivers and a structured methodology for orga-
nizing device drivers. The directives provided
by the I/O manager are:

• rtems_io_initialize (page 269) - Initialize
a device driver

• rtems_io_register_driver (page 267) -
Register a device driver

• rtems_io_unregister_driver (page 268) -
Unregister a device driver

• rtems_io_register_name (page 270) -
Register a device name

• rtems_io_lookup_name (page 271) - Look
up a device name

• rtems_io_open (page 272) - Open a de-
vice

• rtems_io_close (page 273) - Close a de-
vice

• rtems_io_read (page 274) - Read from a
device

• rtems_io_write (page 275) - Write to a
device

• rtems_io_control (page 276) - Special de-
vice services

262 Chapter 20. I/O Manager

Chapter 20 Section 20.2 RTEMS C User Documentation, Release 4.11.3

20.2 Background

20.2.1 Device Driver Table

Each application utilizing the RTEMS I/O man-
ager must specify the address of a Device
Driver Table in its Configuration Table. This
table contains each device driver’s entry points
that is to be initialised by RTEMS during ini-
tialization. Each device driver may contain the
following entry points:

• Initialization

• Open

• Close

• Read

• Write

• Control

If the device driver does not support a partic-
ular entry point, then that entry in the Config-
uration Table should be NULL. RTEMS will re-
turn RTEMS_SUCCESSFUL as the executive’s and
zero (0) as the device driver’s return code for
these device driver entry points.

Applications can register and unregister
drivers with the RTEMS I/O manager avoiding
the need to have all drivers statically defined
and linked into this table.

The confdefs.h entry
CONFIGURE_MAXIMUM_DRIVERS configures
the number of driver slots available to the
application.

20.2.2 Major and Minor Device Numbers

Each call to the I/O manager must provide
a device’s major and minor numbers as argu-
ments. The major number is the index of the
requested driver’s entry points in the Device
Driver Table, and is used to select a specific de-
vice driver. The exact usage of the minor num-
ber is driver specific, but is commonly used to
distinguish between a number of devices con-
trolled by the same driver.

The data types rtems_device_major_number
and rtems_device_minor_number are used to

manipulate device major and minor numbers,
respectively.

20.2.3 Device Names

The I/O Manager provides facilities to asso-
ciate a name with a particular device. Direc-
tives are provided to register the name of a de-
vice and to look up the major/minor number
pair associated with a device name.

20.2.4 Device Driver Environment

Application developers, as well as device driver
developers, must be aware of the following re-
garding the RTEMS I/O Manager:

• A device driver routine executes in the
context of the invoking task. Thus if the
driver blocks, the invoking task blocks.

• The device driver is free to change the
modes of the invoking task, although the
driver should restore them to their origi-
nal values.

• Device drivers may be invoked from
ISRs.

• Only local device drivers are accessible
through the I/O manager.

• A device driver routine may invoke all
other RTEMS directives, including I/O
directives, on both local and global ob-
jects.

Although the RTEMS I/O manager provides a
framework for device drivers, it makes no as-
sumptions regarding the construction or oper-
ation of a device driver.

20.2.5 Runtime Driver Registration

Board support package and application devel-
opers can select wether a device driver is stat-
ically entered into the default device table or
registered at runtime.

Dynamic registration helps applications
where:

20.2. Background 263

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.2

• The BSP and kernel libraries are com-
mon to a range of applications for a spe-
cific target platform. An application may
be built upon a common library with all
drivers. The application selects and reg-
isters the drivers. Uniform driver name
lookup protects the application.

• The type and range of drivers may vary
as the application probes a bus during
initialization.

• Support for hot swap bus system such as
Compact PCI.

• Support for runtime loadable driver
modules.

20.2.6 Device Driver Interface

When an application invokes an I/O manager
directive, RTEMS determines which device
driver entry point must be invoked. The infor-
mation passed by the application to RTEMS is
then passed to the correct device driver entry
point. RTEMS will invoke each device driver
entry point assuming it is compatible with the
following prototype:

1 rtems_device_driver io_entry(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument_block
5);

The format and contents of the parameter
block are device driver and entry point depen-
dent.

It is recommended that a device driver avoid
generating error codes which conflict with
those used by application components. A com-
mon technique used to generate driver specific
error codes is to make the most significant part
of the status indicate a driver specific code.

20.2.7 Device Driver Initialization

RTEMS automatically initializes all device
drivers when multitasking is initiated via
the rtems_initialize_executive directive.

RTEMS initializes the device drivers by invok-
ing each device driver initialization entry point
with the following parameters:

major
the major device number for this device
driver.

minor
zero.

argument_block
will point to the Configuration Table.

The returned status will be ignored by RTEMS.
If the driver cannot successfully initialize
the device, then it should invoke the fa-
tal_error_occurred directive.

264 Chapter 20. I/O Manager

Chapter 20 Section 20.3 RTEMS C User Documentation, Release 4.11.3

20.3 Operations

20.3.1 Register and Lookup Name

The rtems_io_register directive associates a
name with the specified device (i.e. ma-
jor/minor number pair). Device names are
typically registered as part of the device driver
initialization sequence. The rtems_io_lookup
directive is used to determine the major/minor
number pair associated with the specified de-
vice name. The use of these directives frees the
application from being dependent on the arbi-
trary assignment of major numbers in a par-
ticular application. No device naming conven-
tions are dictated by RTEMS.

20.3.2 Accessing an Device Driver

The I/O manager provides directives which
enable the application program to utilize
device drivers in a standard manner. There is
a direct correlation between the RTEMS I/O
manager directives rtems_io_initialize,
rtems_io_open, rtems_io_close,
rtems_io_read, rtems_io_write, and
rtems_io_control and the underlying de-
vice driver entry points.

20.3. Operations 265

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.4

20.4 Directives

This section details the I/O manager’s direc-
tives. A subsection is dedicated to each of this
manager’s directives and describes the calling
sequence, related constants, usage, and status
codes.

266 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS C User Documentation, Release 4.11.3

20.4.1 IO_REGISTER_DRIVER - Register a
device driver

CALLING SEQUENCE:

1 rtems_status_code rtems_io_register_
→˓driver(

2 rtems_device_major_number major,
3 rtems_driver_address_table *driver_

→˓table,
4 rtems_device_major_number *registered_

→˓major
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully registered

RTEMS_
INVALID_
ADDRESS

invalid registered
major pointer

RTEMS_
INVALID_
ADDRESS

invalid driver table

RTEMS_
INVALID_
NUMBER

invalid major device
number

RTEMS_TOO_
MANY

no available major
device table slot

RTEMS_
RESOURCE_IN_
USE

major device number
entry in use

DESCRIPTION:
This directive attempts to add a new de-
vice driver to the Device Driver Table. The
user can specify a specific major device num-
ber via the directive’s major parameter, or
let the registration routine find the next
available major device number by specif-
ing a major number of 0. The selected
major device number is returned via the
registered_major directive parameter. The
directive automatically allocation major de-
vice numbers from the highest value down.

This directive automatically invokes the
IO_INITIALIZE directive if the driver address
table has an initialization and open entry.

The directive returns RTEMS_TOO_MANY
if Device Driver Table is full, and
RTEMS_RESOURCE_IN_USE if a specific major
device number is requested and it is already

in use.

NOTES:
The Device Driver Table size is specified in
the Configuration Table condiguration. This
needs to be set to maximum size the appli-
cation requires.

20.4. Directives 267

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.4

20.4.2 IO_UNREGISTER_DRIVER - Un-
register a device driver

CALLING SEQUENCE:

1 rtems_status_code rtems_io_unregister_
→˓driver(

2 rtems_device_major_number major
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
registered

RTEMS_INVALID_
NUMBER

invalid major device
number

DESCRIPTION:
This directive removes a device driver from
the Device Driver Table.

NOTES:
Currently no specific checks are made and
the driver is not closed.

268 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS C User Documentation, Release 4.11.3

20.4.3 IO_INITIALIZE - Initialize a device
driver

CALLING SEQUENCE:

1 rtems_status_code rtems_io_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
initialized

RTEMS_INVALID_
NUMBER

invalid major device
number

DESCRIPTION:
This directive calls the device driver initial-
ization routine specified in the Device Driver
Table for this major number. This directive is
automatically invoked for each device driver
when multitasking is initiated via the initial-
ize_executive directive.

A device driver initialization module is re-
sponsible for initializing all hardware and
data structures associated with a device. If
necessary, it can allocate memory to be used
during other operations.

NOTES:
This directive may or may not cause the call-
ing task to be preempted. This is dependent
on the device driver being initialized.

20.4. Directives 269

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.4

20.4.4 IO_REGISTER_NAME - Register a
device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_register_name(
2 const char *name,
3 rtems_device_major_number major,
4 rtems_device_minor_number minor
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully initialized

RTEMS_TOO_
MANY

too many devices
registered

DESCRIPTION:
This directive associates name with the spec-
ified major/minor number pair.

NOTES:
This directive will not cause the calling task
to be preempted.

270 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS C User Documentation, Release 4.11.3

20.4.5 IO_LOOKUP_NAME - Lookup a de-
vice

CALLING SEQUENCE:

1 rtems_status_code rtems_io_lookup_name(
2 const char *name,
3 rtems_driver_name_t *device_info
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
initialized

RTEMS_
UNSATISFIED

name not registered

DESCRIPTION:
This directive returns the major/minor num-
ber pair associated with the given device
name in device_info.

NOTES:
This directive will not cause the calling task
to be preempted.

20.4. Directives 271

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.4

20.4.6 IO_OPEN - Open a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_open(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
initialized

RTEMS_INVALID_
NUMBER

invalid major device
number

DESCRIPTION:
This directive calls the device driver open
routine specified in the Device Driver Table
for this major number. The open entry point
is commonly used by device drivers to pro-
vide exclusive access to a device.

NOTES:
This directive may or may not cause the call-
ing task to be preempted. This is dependent
on the device driver being invoked.

272 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS C User Documentation, Release 4.11.3

20.4.7 IO_CLOSE - Close a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
initialized

RTEMS_INVALID_
NUMBER

invalid major device
number

DESCRIPTION:
This directive calls the device driver close
routine specified in the Device Driver Table
for this major number. The close entry point
is commonly used by device drivers to relin-
quish exclusive access to a device.

NOTES:
This directive may or may not cause the call-
ing task to be preempted. This is dependent
on the device driver being invoked.

20.4. Directives 273

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.4

20.4.8 IO_READ - Read from a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_read(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
initialized

RTEMS_INVALID_
NUMBER

invalid major device
number

DESCRIPTION:
This directive calls the device driver read
routine specified in the Device Driver Table
for this major number. Read operations typ-
ically require a buffer address as part of the
argument parameter block. The contents of
this buffer will be replaced with data from
the device.

NOTES:
This directive may or may not cause the call-
ing task to be preempted. This is dependent
on the device driver being invoked.

274 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS C User Documentation, Release 4.11.3

20.4.9 IO_WRITE - Write to a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_write(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
initialized

RTEMS_INVALID_
NUMBER

invalid major device
number

DESCRIPTION:
This directive calls the device driver write
routine specified in the Device Driver Table
for this major number. Write operations typ-
ically require a buffer address as part of the
argument parameter block. The contents of
this buffer will be sent to the device.

NOTES:
This directive may or may not cause the call-
ing task to be preempted. This is dependent
on the device driver being invoked.

20.4. Directives 275

RTEMS C User Documentation, Release 4.11.3 Chapter 20 Section 20.4

20.4.10 IO_CONTROL - Special device
services

CALLING SEQUENCE:

1 rtems_status_code rtems_io_control(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successfully
initialized

RTEMS_INVALID_
NUMBER

invalid major device
number

DESCRIPTION:
This directive calls the device driver I/O con-
trol routine specified in the Device Driver Ta-
ble for this major number. The exact func-
tionality of the driver entry called by this di-
rective is driver dependent. It should not
be assumed that the control entries of two
device drivers are compatible. For example,
an RS-232 driver I/O control operation may
change the baud rate of a serial line, while
an I/O control operation for a floppy disk
driver may cause a seek operation.

NOTES:
This directive may or may not cause the call-
ing task to be preempted. This is dependent
on the device driver being invoked.

276 Chapter 20. I/O Manager

CHAPTER

TWENTYONE

FATAL ERROR MANAGER

277

RTEMS C User Documentation, Release 4.11.3 Chapter 21 Section 21.1

21.1 Introduction

The fatal error manager processes all fatal or
irrecoverable errors and other sources of sys-
tem termination (for example after exit()).
The directives provided by the fatal error man-
ager are:

• rtems_fatal_error_occurred (page 282) -
Invoke the fatal error handler

• rtems_fatal (page 283) - Invoke the fatal
error handler with error source

• rtems_exception_frame_print (page 284)
- Print the CPU exception frame

• rtems_fatal_source_text (page 285) - Re-
turn the falet source text

• rtems_internal_error_text (page 286) -
Return the error code text

278 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.2 RTEMS C User Documentation, Release 4.11.3

21.2 Background

The fatal error manager is called upon detec-
tion of an irrecoverable error condition by ei-
ther RTEMS or the application software. Fatal
errors can be detected from three sources:

• the executive (RTEMS)

• user system code

• user application code

RTEMS automatically invokes the fatal error
manager upon detection of an error it consid-
ers to be fatal. Similarly, the user should in-
voke the fatal error manager upon detection of
a fatal error.

Each static or dynamic user extension set may
include a fatal error handler. The fatal error
handler in the static extension set can be used
to provide access to debuggers and monitors
which may be present on the target hardware.
If any user-supplied fatal error handlers are
installed, the fatal error manager will invoke
them. If no user handlers are configured or if
all the user handler return control to the fatal
error manager, then the RTEMS default fatal
error handler is invoked. If the default fatal
error handler is invoked, then the system state
is marked as failed.

Although the precise behavior of the default fa-
tal error handler is processor specific, in gen-
eral, it will disable all maskable interrupts,
place the error code in a known processor de-
pendent place (generally either on the stack
or in a register), and halt the processor. The
precise actions of the RTEMS fatal error are
discussed in the Default Fatal Error Processing
chapter of the Applications Supplement docu-
ment for a specific target processor.

21.2. Background 279

RTEMS C User Documentation, Release 4.11.3 Chapter 21 Section 21.3

21.3 Operations

21.3.1 Announcing a Fatal Error

The rtems_fatal_error_occurred directive is
invoked when a fatal error is detected. Be-
fore invoking any user-supplied fatal error
handlers or the RTEMS fatal error han-
dler, the rtems_fatal_error_occurred direc-
tive stores useful information in the variable
_Internal_errors_What_happened. This struc-
ture contains three pieces of information:

• the source of the error (API or executive
core),

• whether the error was generated inter-
nally by the executive, and a

• a numeric code to indicate the error type.

The error type indicator is dependent on
the source of the error and whether or
not the error was internally generated by
the executive. If the error was generated
from an API, then the error code will be
of that API’s error or status codes. The
status codes for the RTEMS API are in
cpukit/rtems/include/rtems/rtems/status.h.
Those for the POSIX API can be found in
<errno.h>.

The rtems_fatal_error_occurred directive is
responsible for invoking an optional user-
supplied fatal error handler and/or the RTEMS
fatal error handler. All fatal error handlers are
passed an error code to describe the error de-
tected.

Occasionally, an application requires more so-
phisticated fatal error processing such as pass-
ing control to a debugger. For these cases, a
user-supplied fatal error handler can be spec-
ified in the RTEMS configuration table. The
User Extension Table field fatal contains the
address of the fatal error handler to be exe-
cuted when the rtems_fatal_error_occurred
directive is called. If the field is set to NULL
or if the configured fatal error handler returns
to the executive, then the default handler pro-
vided by RTEMS is executed. This default han-
dler will halt execution on the processor where
the error occurred.

280 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.4 RTEMS C User Documentation, Release 4.11.3

21.4 Directives

This section details the fatal error manager’s
directives. A subsection is dedicated to each
of this manager’s directives and describes the
calling sequence, related constants, usage, and
status codes.

21.4. Directives 281

RTEMS C User Documentation, Release 4.11.3 Chapter 21 Section 21.4

21.4.1 FATAL_ERROR_OCCURRED - In-
voke the fatal error handler

CALLING SEQUENCE:

1 void rtems_fatal_error_occurred(
2 uint32_t the_error
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive processes fatal errors. If the
FATAL error extension is defined in the con-
figuration table, then the user-defined error
extension is called. If configured and the
provided FATAL error extension returns, then
the RTEMS default error handler is invoked.
This directive can be invoked by RTEMS or
by the user’s application code including ini-
tialization tasks, other tasks, and ISRs.

NOTES:
This directive supports local operations only.

Unless the user-defined error extension takes
special actions such as restarting the calling
task, this directive WILL NOT RETURN to
the caller.

The user-defined extension for this directive
may wish to initiate a global shutdown.

282 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.4 RTEMS C User Documentation, Release 4.11.3

21.4.2 FATAL - Invoke the fatal error han-
dler with error source

CALLING SEQUENCE:

1 void rtems_fatal(
2 rtems_fatal_source source,
3 rtems_fatal_code error
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive invokes the internal error han-
dler with is internal set to false. See also
rtems_fatal_error_occurred.

21.4. Directives 283

RTEMS C User Documentation, Release 4.11.3 Chapter 21 Section 21.4

21.4.3 EXCEPTION_FRAME_PRINT -
Prints the exception frame

CALLING SEQUENCE:

1 void rtems_exception_frame_print(
2 const rtems_exception_frame *frame
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Prints the exception frame via printk().

284 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.4 RTEMS C User Documentation, Release 4.11.3

21.4.4 FATAL_SOURCE_TEXT - Returns a
text for a fatal source

CALLING SEQUENCE:

1 const char *rtems_fatal_source_text(
2 rtems_fatal_source source
3);

DIRECTIVE STATUS CODES:
The fatal source text or ”?” in case the passed
fatal source is invalid.

DESCRIPTION:
Returns a text for a fatal source. The text for
fatal source is the enumerator constant.

21.4. Directives 285

RTEMS C User Documentation, Release 4.11.3 Chapter 21 Section 21.4

21.4.5 INTERNAL_ERROR_TEXT - Re-
turns a text for an internal error
code

CALLING SEQUENCE:

1 const char *rtems_internal_error_text(
2 rtems_fatal_code error
3);

DIRECTIVE STATUS CODES:
The error code text or ”?” in case the passed
error code is invalid.

DESCRIPTION:
Returns a text for an internal error code. The
text for each internal error code is the enu-
merator constant.

286 Chapter 21. Fatal Error Manager

CHAPTER

TWENTYTWO

BOARD SUPPORT PACKAGES

287

RTEMS C User Documentation, Release 4.11.3 Chapter 22 Section 22.1

22.1 Introduction

A board support package (BSP) is a collec-
tion of user-provided facilities which interface
RTEMS and an application with a specific hard-
ware platform. These facilities may include
hardware initialization, device drivers, user
extensions, and a Multiprocessor Communica-
tions Interface (MPCI). However, a minimal
BSP need only support processor reset and ini-
tialization and, if needed, a clock tick.

288 Chapter 22. Board Support Packages

Chapter 22 Section 22.2 RTEMS C User Documentation, Release 4.11.3

22.2 Reset and Initialization

An RTEMS based application is initiated or re-
initiated when the processor is reset. This ini-
tialization code is responsible for preparing the
target platform for the RTEMS application. Al-
though the exact actions performed by the ini-
tialization code are highly processor and target
dependent, the logical functionality of these
actions are similar across a variety of proces-
sors and target platforms.

Normally, the BSP and some of the application
initialization is intertwined in the RTEMS ini-
tialization sequence controlled by the shared
function boot_card().

The reset application initialization code is ex-
ecuted first when the processor is reset. All
of the hardware must be initialized to a qui-
escent state by this software before initializing
RTEMS. When in quiescent state, devices do
not generate any interrupts or require any ser-
vicing by the application. Some of the hard-
ware components may be initialized in this
code as well as any application initialization
that does not involve calls to RTEMS direc-
tives.

The processor’s Interrupt Vector Table which
will be used by the application may need to be
set to the required value by the reset applica-
tion initialization code. Because interrupts are
enabled automatically by RTEMS as part of the
context switch to the first task, the Interrupt
Vector Table MUST be set before this direc-
tive is invoked to ensure correct interrupt vec-
toring. The processor’s Interrupt Vector Table
must be accessible by RTEMS as it will be mod-
ified by the when installing user Interrupt Ser-
vice Routines (ISRs) On some CPUs, RTEMS
installs it’s own Interrupt Vector Table as part
of initialization and thus these requirements
are met automatically. The reset code which
is executed before the call to any RTEMS ini-
tialization routines has the following require-
ments:

• Must not make any blocking RTEMS di-
rective calls.

• If the processor supports multiple priv-
ilege levels, must leave the processor in

the most privileged, or supervisory, state.

• Must allocate a stack of sufficient size to
execute the initialization and shutdown
of the system. This stack area will NOT
be used by any task once the system is
initialized. This stack is often reserved
via the linker script or in the assembly
language start up file.

• Must initialize the stack pointer for the
initialization process to that allocated.

• Must initialize the processor’s Interrupt
Vector Table.

• Must disable all maskable interrupts.

• If the processor supports a separate in-
terrupt stack, must allocate the interrupt
stack and initialize the interrupt stack
pointer.

At the end of the initialization sequence,
RTEMS does not return to the BSP initializa-
tion code, but instead context switches to the
highest priority task to begin application exe-
cution. This task is typically a User Initializa-
tion Task which is responsible for performing
both local and global application initialization
which is dependent on RTEMS facilities. It is
also responsible for initializing any higher level
RTEMS services the application uses such as
networking and blocking device drivers.

22.2.1 Interrupt Stack Requirements

The worst-case stack usage by interrupt service
routines must be taken into account when de-
signing an application. If the processor sup-
ports interrupt nesting, the stack usage must
include the deepest nest level. The worst-case
stack usage must account for the following re-
quirements:

• Processor’s interrupt stack frame

• Processor’s subroutine call stack frame

• RTEMS system calls

• Registers saved on stack

• Application subroutine calls

22.2. Reset and Initialization 289

RTEMS C User Documentation, Release 4.11.3 Chapter 22 Section 22.2

The size of the interrupt stack must be greater
than or equal to the confugured minimum
stack size.

22.2.2 Processors with a Separate Inter-
rupt Stack

Some processors support a separate stack for
interrupts. When an interrupt is vectored and
the interrupt is not nested, the processor will
automatically switch from the current stack to
the interrupt stack. The size of this stack is
based solely on the worst-case stack usage by
interrupt service routines.

The dedicated interrupt stack for the entire ap-
plication on some architectures is supplied and
initialized by the reset and initialization code
of the user’s Board Support Package. Whether
allocated and initialized by the BSP or RTEMS,
since all ISRs use this stack, the stack size must
take into account the worst case stack usage by
any combination of nested ISRs.

22.2.3 Processors Without a Separate In-
terrupt Stack

Some processors do not support a separate
stack for interrupts. In this case, without spe-
cial assistance every task’s stack must include
enough space to handle the task’s worst-case
stack usage as well as the worst-case inter-
rupt stack usage. This is necessary because the
worst-case interrupt nesting could occur while
any task is executing.

On many processors without dedicated hard-
ware managed interrupt stacks, RTEMS man-
ages a dedicated interrupt stack in software. If
this capability is supported on a CPU, then it is
logically equivalent to the processor support-
ing a separate interrupt stack in hardware.

290 Chapter 22. Board Support Packages

Chapter 22 Section 22.3 RTEMS C User Documentation, Release 4.11.3

22.3 Device Drivers

Device drivers consist of control software for
special peripheral devices and provide a log-
ical interface for the application developer.
The RTEMS I/O manager provides directives
which allow applications to access these de-
vice drivers in a consistent fashion. A Board
Support Package may include device drivers
to access the hardware on the target plat-
form. These devices typically include serial
and parallel ports, counter/timer peripherals,
real-time clocks, disk interfaces, and network
controllers.

For more information on device drivers, refer
to the I/O Manager chapter.

22.3.1 Clock Tick Device Driver

Most RTEMS applications will include a clock
tick device driver which invokes a clock tick
directive at regular intervals. The clock tick is
necessary if the application is to utilize times-
licing, the clock manager, the timer manager,
the rate monotonic manager, or the timeout
option on blocking directives.

The clock tick is usually provided as an in-
terrupt from a counter/timer or a real-time
clock device. When a counter/timer is used
to provide the clock tick, the device is typically
programmed to operate in continuous mode.
This mode selection causes the device to au-
tomatically reload the initial count and con-
tinue the countdown without programmer in-
tervention. This reduces the overhead required
to manipulate the counter/timer in the clock
tick ISR and increases the accuracy of tick oc-
currences. The initial count can be based on
the microseconds_per_tick field in the RTEMS
Configuration Table. An alternate approach
is to set the initial count for a fixed time pe-
riod (such as one millisecond) and have the
ISR invoke a clock tick directive on the config-
ured microseconds_per_tick boundaries. Ob-
viously, this can induce some error if the con-
figured microseconds_per_tick is not evenly
divisible by the chosen clock interrupt quan-
tum.

It is important to note that the interval be-
tween clock ticks directly impacts the granu-
larity of RTEMS timing operations. In addition,
the frequency of clock ticks is an important fac-
tor in the overall level of system overhead. A
high clock tick frequency results in less proces-
sor time being available for task execution due
to the increased number of clock tick ISRs.

22.3. Device Drivers 291

RTEMS C User Documentation, Release 4.11.3 Chapter 22 Section 22.4

22.4 User Extensions

RTEMS allows the application developer to
augment selected features by invoking user-
supplied extension routines when the follow-
ing system events occur:

• Task creation

• Task initiation

• Task reinitiation

• Task deletion

• Task context switch

• Post task context switch

• Task begin

• Task exits

• Fatal error detection

User extensions can be used to implement a
wide variety of functions including execution
profiling, non-standard coprocessor support,
debug support, and error detection and re-
covery. For example, the context of a non-
standard numeric coprocessor may be main-
tained via the user extensions. In this ex-
ample, the task creation and deletion exten-
sions are responsible for allocating and deal-
locating the context area, the task initiation
and reinitiation extensions would be respon-
sible for priming the context area, and the task
context switch extension would save and re-
store the context of the device.

For more information on user extensions, re-
fer to Chapter 23 - User Extensions Manager
(page 295).

292 Chapter 22. Board Support Packages

Chapter 22 Section 22.5 RTEMS C User Documentation, Release 4.11.3

22.5 Multiprocessor Communica-
tions Interface (MPCI)

RTEMS requires that an MPCI layer be pro-
vided when a multiple node application is de-
veloped. This MPCI layer must provide an effi-
cient and reliable communications mechanism
between the multiple nodes. Tasks on different
nodes communicate and synchronize with one
another via the MPCI. Each MPCI layer must
be tailored to support the architecture of the
target platform.

For more information on the MPCI, refer to the
Multiprocessing Manager chapter.

22.5.1 Tightly-Coupled Systems

A tightly-coupled system is a multiprocessor
configuration in which the processors commu-
nicate solely via shared global memory. The
MPCI can simply place the RTEMS packets in
the shared memory space. The two primary
considerations when designing an MPCI for
a tightly-coupled system are data consistency
and informing another node of a packet.

The data consistency problem may be solved
using atomic “test and set” operations to pro-
vide a “lock” in the shared memory. It is impor-
tant to minimize the length of time any partic-
ular processor locks a shared data structure.

The problem of informing another node of a
packet can be addressed using one of two tech-
niques. The first technique is to use an inter-
processor interrupt capability to cause an in-
terrupt on the receiving node. This technique
requires that special support hardware be pro-
vided by either the processor itself or the tar-
get platform. The second technique is to have
a node poll for arrival of packets. The draw-
back to this technique is the overhead associ-
ated with polling.

22.5.2 Loosely-Coupled Systems

A loosely-coupled system is a multiprocessor
configuration in which the processors commu-
nicate via some type of communications link
which is not shared global memory. The MPCI

sends the RTEMS packets across the commu-
nications link to the destination node. The
characteristics of the communications link vary
widely and have a significant impact on the
MPCI layer. For example, the bandwidth of the
communications link has an obvious impact on
the maximum MPCI throughput.

The characteristics of a shared network, such
as Ethernet, lend themselves to supporting
an MPCI layer. These networks provide both
the point-to-point and broadcast capabilities
which are expected by RTEMS.

22.5.3 Systems with Mixed Coupling

A mixed-coupling system is a multiprocessor
configuration in which the processors commu-
nicate via both shared memory and communi-
cations links. A unique characteristic of mixed-
coupling systems is that a node may not have
access to all communication methods. There
may be multiple shared memory areas and
communication links. Therefore, one of the
primary functions of the MPCI layer is to ef-
ficiently route RTEMS packets between nodes.
This routing may be based on numerous algo-
rithms. In addition, the router may provide al-
ternate communications paths in the event of
an overload or a partial failure.

22.5.4 Heterogeneous Systems

Designing an MPCI layer for a heterogeneous
system requires special considerations by the
developer. RTEMS is designed to eliminate
many of the problems associated with shar-
ing data in a heterogeneous environment. The
MPCI layer need only address the representa-
tion of thirty-two (32) bit unsigned quantities.

For more information on supporting a hetero-
geneous system, refer the Supporting Hetero-
geneous Environments in the Multiprocessing
Manager chapter.

22.5. Multiprocessor Communications Interface (MPCI) 293

RTEMS C User Documentation, Release 4.11.3 Chapter 22 Section 22.5

294 Chapter 22. Board Support Packages

CHAPTER

TWENTYTHREE

USER EXTENSIONS MANAGER

295

RTEMS C User Documentation, Release 4.11.3 Chapter 23 Section 23.1

23.1 Introduction

The RTEMS User Extensions Manager allows
the application developer to augment the ex-
ecutive by allowing them to supply extension
routines which are invoked at critical system
events. The directives provided by the user ex-
tensions manager are:

• rtems_extension_create (page 304) - Cre-
ate an extension set

• rtems_extension_ident (page 305) - Get
ID of an extension set

• rtems_extension_delete (page 306) -
Delete an extension set

296 Chapter 23. User Extensions Manager

Chapter 23 Section 23.2 RTEMS C User Documentation, Release 4.11.3

23.2 Background

User extension routines are invoked when the
following system events occur:

• Task creation

• Task initiation

• Task reinitiation

• Task deletion

• Task context switch

• Post task context switch

• Task begin

• Task exits

• Fatal error detection

These extensions are invoked as a function
with arguments that are appropriate to the sys-
tem event.

23.2.1 Extension Sets

An extension set is defined as a set of routines
which are invoked at each of the critical system
events at which user extension routines are in-
voked. Together a set of these routines typ-
ically perform a specific functionality such as
performance monitoring or debugger support.
RTEMS is informed of the entry points which
constitute an extension set via the following
structure:.. index:: rtems_extensions_table

1 typedef struct {
2 rtems_task_create_extension thread_

→˓create;
3 rtems_task_start_extension thread_

→˓start;
4 rtems_task_restart_extension thread_

→˓restart;
5 rtems_task_delete_extension thread_

→˓delete;
6 rtems_task_switch_extension thread_

→˓switch;
7 rtems_task_begin_extension thread_

→˓begin;
8 rtems_task_exitted_extension thread_

→˓exitted;
9 rtems_fatal_extension fatal;

10 } rtems_extensions_table;

RTEMS allows the user to have multiple exten-
sion sets active at the same time. First, a sin-
gle static extension set may be defined as the
application’s User Extension Table which is in-
cluded as part of the Configuration Table. This
extension set is active for the entire life of the
system and may not be deleted. This extension
set is especially important because it is the only
way the application can provided a FATAL er-
ror extension which is invoked if RTEMS fails
during the initialize_executive directive. The
static extension set is optional and may be con-
figured as NULL if no static extension set is re-
quired.

Second, the user can install dynamic exten-
sions using the rtems_extension_create di-
rective. These extensions are RTEMS objects
in that they have a name, an ID, and can be
dynamically created and deleted. In contrast
to the static extension set, these extensions can
only be created and installed after the initial-
ize_executive directive successfully completes
execution. Dynamic extensions are useful for
encapsulating the functionality of an extension
set. For example, the application could use
extensions to manage a special coprocessor,
do performance monitoring, and to do stack
bounds checking. Each of these extension sets
could be written and installed independently
of the others.

All user extensions are optional and RTEMS
places no naming restrictions on the user. The
user extension entry points are copied into an
internal RTEMS structure. This means the user
does not need to keep the table after creating
it, and changing the handler entry points dy-
namically in a table once created has no effect.
Creating a table local to a function can save
space in space limited applications.

Extension switches do not effect the context
switch overhead if no switch handler is in-
stalled.

23.2.2 TCB Extension Area

RTEMS provides for a pointer to a user-defined
data area for each extension set to be linked to
each task’s control block. This set of pointers
is an extension of the TCB and can be used

23.2. Background 297

RTEMS C User Documentation, Release 4.11.3 Chapter 23 Section 23.2

to store additional data required by the user’s
extension functions.

The TCB extension is an array of pointers in
the TCB. The index into the table can be ob-
tained from the extension id returned when
the extension is created:

1 index = rtems_object_id_get_index(extension_
→˓id);

The number of pointers in the area is the
same as the number of user extension sets
configured. This allows an application to
augment the TCB with user-defined informa-
tion. For example, an application could imple-
ment task profiling by storing timing statistics
in the TCB’s extended memory area. When
a task context switch is being executed, the
TASK_SWITCH extension could read a real-time
clock to calculate how long the task being
swapped out has run as well as timestamp the
starting time for the task being swapped in.

If used, the extended memory area for the
TCB should be allocated and the TCB exten-
sion pointer should be set at the time the task
is created or started by either the TASK_CREATE
or TASK_START extension. The application is re-
sponsible for managing this extended memory
area for the TCBs. The memory may be reini-
tialized by the TASK_RESTART extension and
should be deallocated by the TASK_DELETE ex-
tension when the task is deleted. Since the
TCB extension buffers would most likely be
of a fixed size, the RTEMS partition manager
could be used to manage the application’s ex-
tended memory area. The application could
create a partition of fixed size TCB extension
buffers and use the partition manager’s alloca-
tion and deallocation directives to obtain and
release the extension buffers.

23.2.3 Extensions

The sections that follow will contain a descrip-
tion of each extension. Each section will con-
tain a prototype of a function with the appro-
priate calling sequence for the corresponding
extension. The names given for the C function
and its arguments are all defined by the user.
The names used in the examples were arbitrar-

ily chosen and impose no naming conventions
on the user.

23.2.3.1 TASK_CREATE Extension

The TASK_CREATE extension directly corre-
sponds to the rtems_task_create directive. If
this extension is defined in any static or dy-
namic extension set and a task is being created,
then the extension routine will automatically
be invoked by RTEMS. The extension should
have a prototype similar to the following:

1 bool user_task_create(
2 rtems_tcb *current_task,
3 rtems_tcb *new_task
4);

where current_task can be used to access
the TCB for the currently executing task, and
new_task can be used to access the TCB for
the new task being created. This extension is
invoked from the rtems_task_create directive
after new_task has been completely initialized,
but before it is placed on a ready TCB chain.

The user extension is expected to return the
boolean value true if it successfully executed
and false otherwise. A task create user ex-
tension will frequently attempt to allocate re-
sources. If this allocation fails, then the exten-
sion should return false and the entire task
create operation will fail.

23.2.3.2 TASK_START Extension

The TASK_START extension directly corresponds
to the task_start directive. If this extension
is defined in any static or dynamic extension
set and a task is being started, then the ex-
tension routine will automatically be invoked
by RTEMS. The extension should have a proto-
type similar to the following:

1 void user_task_start(
2 rtems_tcb *current_task,
3 rtems_tcb *started_task
4);

where current_task can be used to access the
TCB for the currently executing task, and
started_task can be used to access the TCB for

298 Chapter 23. User Extensions Manager

Chapter 23 Section 23.2 RTEMS C User Documentation, Release 4.11.3

the dormant task being started. This extension
is invoked from the task_start directive after
started_task has been made ready to start exe-
cution, but before it is placed on a ready TCB
chain.

23.2.3.3 TASK_RESTART Extension

The TASK_RESTART extension directly corre-
sponds to the task_restart directive. If this ex-
tension is defined in any static or dynamic ex-
tension set and a task is being restarted, then
the extension should have a prototype similar
to the following:

1 void user_task_restart(
2 rtems_tcb *current_task,
3 rtems_tcb *restarted_task
4);

where current_task can be used to access the
TCB for the currently executing task, and
restarted_task can be used to access the TCB
for the task being restarted. This extension
is invoked from the task_restart directive after
restarted_task has been made ready to start ex-
ecution, but before it is placed on a ready TCB
chain.

23.2.3.4 TASK_DELETE Extension

The TASK_DELETE extension is associated with
the task_delete directive. If this extension is
defined in any static or dynamic extension set
and a task is being deleted, then the exten-
sion routine will automatically be invoked by
RTEMS. The extension should have a proto-
type similar to the following:

1 void user_task_delete(
2 rtems_tcb *current_task,
3 rtems_tcb *deleted_task
4);

where current_task can be used to access the
TCB for the currently executing task, and
deleted_task can be used to access the TCB
for the task being deleted. This extension is
invoked from the task_delete directive after
the TCB has been removed from a ready TCB
chain, but before all its resources including

the TCB have been returned to their respec-
tive free pools. This extension should not call
any RTEMS directives if a task is deleting itself
(current_task is equal to deleted_task).

23.2.3.5 TASK_SWITCH Extension

The TASK_SWITCH extension corresponds to a
task context switch. If this extension is defined
in any static or dynamic extension set and a
task context switch is in progress, then the ex-
tension routine will automatically be invoked
by RTEMS. The extension should have a proto-
type similar to the following:

1 void user_task_switch(
2 rtems_tcb *current_task,
3 rtems_tcb *heir_task
4);

where current_task can be used to access the
TCB for the task that is being swapped out,
and heir_task can be used to access the TCB for
the task being swapped in. This extension is
invoked from RTEMS’ dispatcher routine after
the current_task context has been saved, but
before the heir_task context has been restored.
This extension should not call any RTEMS di-
rectives.

23.2.3.6 TASK_BEGIN Extension

The TASK_BEGIN extension is invoked when a
task begins execution. It is invoked immedi-
ately before the body of the starting procedure
and executes in the context in the task. This
user extension have a prototype similar to the
following:

1 void user_task_begin(
2 rtems_tcb *current_task
3);

where current_task can be used to access
the TCB for the currently executing task
which has begun. The distinction between
the TASK_BEGIN and TASK_START extension
is that the TASK_BEGIN extension is executed
in the context of the actual task while the
TASK_START extension is executed in the con-
text of the task performing the task_start direc-

23.2. Background 299

RTEMS C User Documentation, Release 4.11.3 Chapter 23 Section 23.2

tive. For most extensions, this is not a critical
distinction.

23.2.3.7 TASK_EXITTED Extension

The TASK_EXITTED extension is invoked when a
task exits the body of the starting procedure by
either an implicit or explicit return statement.
This user extension have a prototype similar to
the following:

1 void user_task_exitted(
2 rtems_tcb *current_task
3);

where current_task can be used to access the
TCB for the currently executing task which has
just exitted.

Although exiting of task is often considered
to be a fatal error, this extension allows re-
covery by either restarting or deleting the ex-
iting task. If the user does not wish to re-
cover, then a fatal error may be reported. If
the user does not provide a TASK_EXITTED ex-
tension or the provided handler returns con-
trol to RTEMS, then the RTEMS default han-
dler will be used. This default handler in-
vokes the directive fatal_error_occurred with
the RTEMS_TASK_EXITTED directive status.

23.2.3.8 FATAL Error Extension

The FATAL error extension is associated with
the fatal_error_occurred directive. If this ex-
tension is defined in any static or dynamic ex-
tension set and the fatal_error_occurred direc-
tive has been invoked, then this extension will
be called. This extension should have a proto-
type similar to the following:

1 void user_fatal_error(
2 Internal_errors_Source the_source,
3 bool is_internal,
4 uint32_t the_error
5);

where the_error is the error code passed to the
fatal_error_occurred directive. This extension
is invoked from the fatal_error_occurred direc-
tive.

If defined, the user’s FATAL error extension is
invoked before RTEMS’ default fatal error rou-
tine is invoked and the processor is stopped.
For example, this extension could be used to
pass control to a debugger when a fatal er-
ror occurs. This extension should not call any
RTEMS directives.

23.2.4 Order of Invocation

When one of the critical system events occur,
the user extensions are invoked in either “for-
ward” or “reverse” order. Forward order indi-
cates that the static extension set is invoked
followed by the dynamic extension sets in the
order in which they were created. Reverse or-
der means that the dynamic extension sets are
invoked in the opposite of the order in which
they were created followed by the static ex-
tension set. By invoking the extension sets in
this order, extensions can be built upon one an-
other. At the following system events, the ex-
tensions are invoked in forward order:

1. Task creation

2. Task initiation

3. Task reinitiation

4. Task deletion

5. Task context switch

6. Post task context switch

7. Task begins to execute

At the following system events, the extensions
are invoked in reverse order:

1. Task deletion

2. Fatal error detection

At these system events, the extensions are in-
voked in reverse order to insure that if an ex-
tension set is built upon another, the more
complicated extension is invoked before the
extension set it is built upon. For example,
by invoking the static extension set last it is
known that the “system” fatal error extension
will be the last fatal error extension executed.
Another example is use of the task delete ex-
tension by the Standard C Library. Exten-
sion sets which are installed after the Standard

300 Chapter 23. User Extensions Manager

Chapter 23 Section 23.2 RTEMS C User Documentation, Release 4.11.3

C Library will operate correctly even if they
utilize the C Library because the C Library’s
TASK_DELETE extension is invoked after that of
the other extensions.

23.2. Background 301

RTEMS C User Documentation, Release 4.11.3 Chapter 23 Section 23.3

23.3 Operations

23.3.1 Creating an Extension Set

The rtems_extension_create directive creates
and installs an extension set by allocating a
Extension Set Control Block (ESCB), assigning
the extension set a user-specified name, and
assigning it an extension set ID. Newly created
extension sets are immediately installed and
are invoked upon the next system even sup-
porting an extension.

23.3.2 Obtaining Extension Set IDs

When an extension set is created, RTEMS gen-
erates a unique extension set ID and assigns it
to the created extension set until it is deleted.
The extension ID may be obtained by either
of two methods. First, as the result of an
invocation of the rtems_extension_create di-
rective, the extension set ID is stored in a
user provided location. Second, the exten-
sion set ID may be obtained later using the
rtems_extension_ident directive. The exten-
sion set ID is used by other directives to ma-
nipulate this extension set.

23.3.3 Deleting an Extension Set

The rtems_extension_delete directive is used
to delete an extension set. The extension set’s
control block is returned to the ESCB free list
when it is deleted. An extension set can be
deleted by a task other than the task which
created the extension set. Any subsequent ref-
erences to the extension’s name and ID are in-
valid.

302 Chapter 23. User Extensions Manager

Chapter 23 Section 23.4 RTEMS C User Documentation, Release 4.11.3

23.4 Directives

This section details the user extension man-
ager’s directives. A subsection is dedicated to
each of this manager’s directives and describes
the calling sequence, related constants, usage,
and status codes.

23.4. Directives 303

RTEMS C User Documentation, Release 4.11.3 Chapter 23 Section 23.4

23.4.1 EXTENSION_CREATE - Create a
extension set

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_create(
2 rtems_name name,
3 rtems_extensions_table *table,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

extension set created
successfully

RTEMS_
INVALID_NAME

invalid extension set
name

RTEMS_TOO_
MANY

too many extension sets
created

DESCRIPTION:
This directive creates a extension set. The as-
signed extension set id is returned in id. This
id is used to access the extension set with
other user extension manager directives. For
control and maintenance of the extension
set, RTEMS allocates an ESCB from the lo-
cal ESCB free pool and initializes it.

NOTES:

This directive will not cause the
calling task to be preempted.

304 Chapter 23. User Extensions Manager

Chapter 23 Section 23.4 RTEMS C User Documentation, Release 4.11.3

23.4.2 EXTENSION_IDENT - Get ID of a
extension set

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

extension set identified
successfully

RTEMS_
INVALID_NAME

extension set name not
found

DESCRIPTION:
This directive obtains the extension set id as-
sociated with the extension set name to be
acquired. If the extension set name is not
unique, then the extension set id will match
one of the extension sets with that name.
However, this extension set id is not guaran-
teed to correspond to the desired extension
set. The extension set id is used to access
this extension set in other extension set re-
lated directives.

NOTES:
This directive will not cause the running task
to be preempted.

23.4. Directives 305

RTEMS C User Documentation, Release 4.11.3 Chapter 23 Section 23.4

23.4.3 EXTENSION_DELETE - Delete a
extension set

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

extension set deleted
successfully

RTEMS_
INVALID_ID

invalid extension set id

DESCRIPTION:
This directive deletes the extension set spec-
ified by id. If the extension set is running,
it is automatically canceled. The ESCB for
the deleted extension set is reclaimed by
RTEMS.

NOTES:
This directive will not cause the running task
to be preempted.

A extension set can be deleted by a task
other than the task which created the exten-
sion set.

NOTES:
This directive will not cause the running task
to be preempted.

306 Chapter 23. User Extensions Manager

CHAPTER

TWENTYFOUR

CONFIGURING A SYSTEM

307

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.1

24.1 Introduction

RTEMS must be configured for an applica-
tion. This configuration encompasses a vari-
ety of information including the length of each
clock tick, the maximum number of each in-
formation RTEMS object that can be created,
the application initialization tasks, the task
scheduling algorithm to be used, and the de-
vice drivers in the application.

Although this information is contained in data
structures that are used by RTEMS at system
initialization time, the data structures them-
selves should only rarely to be generated by
hand. RTEMS provides a set of macros system
which provides a simple standard mechanism
to automate the generation of these structures.

The RTEMS header file <rtems/confdefs.h> is
at the core of the automatic generation of sys-
tem configuration. It is based on the idea of
setting macros which define configuration pa-
rameters of interest to the application and de-
faulting or calculating all others. This variety
of macros can automatically produce all of the
configuration data required for an RTEMS ap-
plication.

As a general rule, application developers only
specify values for the configuration parameters
of interest to them. They define what resources
or features they require. In most cases, when
a parameter is not specified, it defaults to zero
(0) instances, a standards compliant value, or
disabled as appropriate. For example, by de-
fault there will be 256 task priority levels but
this can be lowered by the application. This
number of priority levels is required to be com-
pliant with the RTEID/ORKID standards upon
which the Classic API is based. There are sim-
ilar cases where the default is selected to be
compliant with with the POSIX standard.

For each configuration parameter in the con-
figuration tables, the macro corresponding to
that field is discussed. The RTEMS Maintain-
ers expect that all systems can be easily con-
figured using the <rtems/confdefs.h> mecha-
nism and that using this mechanism will avoid
internal RTEMS configuration changes impact-
ing applications.

308 Chapter 24. Configuring a System

Chapter 24 Section 24.2 RTEMS C User Documentation, Release 4.11.3

24.2 Default Value Selection Phi-
losophy

The user should be aware that the defaults are
intentionally set as low as possible. By de-
fault, no application resources are configured.
The <rtems/confdefs.h> file ensures that at
least one application task or thread is config-
ured and that at least one of the initialization
task/thread tables is configured.

24.2. Default Value Selection Philosophy 309

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.3

24.3 Sizing the RTEMS Workspace

The RTEMS Workspace is a user-specified
block of memory reserved for use by RTEMS.
The application should NOT modify this mem-
ory. This area consists primarily of the RTEMS
data structures whose exact size depends upon
the values specified in the Configuration Table.
In addition, task stacks and floating point con-
text areas are dynamically allocated from the
RTEMS Workspace.

The <rtems/confdefs.h> mechanism calcu-
lates the size of the RTEMS Workspace auto-
matically. It assumes that all tasks are floating
point and that all will be allocated the mini-
mum stack space. This calculation includes the
amount of memory that will be allocated for
internal use by RTEMS. The automatic calcu-
lation may underestimate the workspace size
truly needed by the application, in which case
one can use the CONFIGURE_MEMORY_OVERHEAD
macro to add a value to the estimate. See
Chapter 24 Section 15.1 - Specify Memory Over-
head (page 334) for more details.

The memory area for the RTEMS Workspace
is determined by the BSP. In case the RTEMS
Workspace is too large for the available mem-
ory, then a fatal run-time error occurs and the
system terminates.

The file <rtems/confdefs.h> will calculate
the value of the work_space_size param-
eter of the Configuration Table. There
are many parameters the application devel-
oper can specify to help <rtems/confdefs.h>
in its calculations. Correctly specifying
the application requirements via parameters
such as CONFIGURE_EXTRA_TASK_STACKS and
CONFIGURE_MAXIMUM_TASKS is critical for pro-
duction software.

For each class of objects, the allocation can op-
erate in one of two ways. The default way has
an ceiling on the maximum number of object
instances which can concurrently exist in the
system. Memory for all instances of that ob-
ject class is reserved at system initialization.
The second way allocates memory for an ini-
tial number of objects and increases the cur-
rent allocation by a fixed increment when re-
quired. Both ways allocate space from inside

the RTEMS Workspace.

See Chapter 24 Section 7 - Unlimited Objects
(page 315) for more details about the second
way, which allows for dynamic allocation of
objects and therefore does not provide deter-
minism. This mode is useful mostly for when
the number of objects cannot be determined
ahead of time or when porting software for
which you do not know the object require-
ments.

The space needed for stacks and for
RTEMS objects will vary from one version
of RTEMS and from one target proces-
sor to another. Therefore it is safest to
use <rtems/confdefs.h> and specify your
application’s requirements in terms of
the numbers of objects and multiples of
RTEMS_MINIMUM_STACK_SIZE, as far as is possi-
ble. The automatic estimates of space required
will in general change when:

• a configuration parameter is changed,

• task or interrupt stack sizes change,

• the floating point attribute of a task
changes,

• task floating point attribute is altered,

• RTEMS is upgraded, or

• the target processor is changed.

Failure to provide enough space in the RTEMS
Workspace may result in fatal run-time errors
terminating the system.

310 Chapter 24. Configuring a System

Chapter 24 Section 24.4 RTEMS C User Documentation, Release 4.11.3

24.4 Potential Issues with RTEMS
Workspace Size Estimation

The <rtems/confdefs.h> file estimates the
amount of memory required for the RTEMS
Workspace. This estimate is only as accurate as
the information given to <rtems/confdefs.h>
and may be either too high or too low for a
variety of reasons. Some of the reasons that
<rtems/confdefs.h> may reserve too much
memory for RTEMS are:

• All tasks/threads are assumed to be float-
ing point.

Conversely, there are many more reasons that
the resource estimate could be too low:

• Task/thread stacks greater than mini-
mum size must be accounted for explic-
itly by developer.

• Memory for messages is not included.

• Device driver requirements are not in-
cluded.

• Network stack requirements are not in-
cluded.

• Requirements for add-on libraries are not
included.

In general, <rtems/confdefs.h> is very accu-
rate when given enough information. How-
ever, it is quite easy to use a library and forget
to account for its resources.

24.4. Potential Issues with RTEMS Workspace Size Estimation 311

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.5

24.5 Format to be followed for
making changes in this file

MACRO NAME:
Should be alphanumeric. Can have ‘_’ (un-
derscore).

DATA TYPE:
Please refer to all existing formats.

RANGE:
The range depends on the Data Type of the
macro.

• If the data type is of type task priority,
then its value should be an integer in
the range of 1 to 255.

• If the data type is an integer, then it can
have numbers, characters (in case the
value is defined using another macro)
and arithmetic operations (+, -, *, /).

• If the data type is a function pointer the
first character should be an alphabet or
an underscore. The rest of the string
can be alphanumeric.

• If the data type is RTEMS Attributes or
RTEMS Mode then the string should be
alphanumeric.

• If the data type is RTEMS NAME then
the value should be an integer>=0 or
RTEMS_BUILD_NAME('U','I','1',' '
)

DEFAULT VALUE:
The default value should be in the following
formats- Please note that the ‘.’ (full stop) is
necessary.

• In case the value is not defined then:
This is not defined by default.

• If we know the default value then: The
default value is XXX.

• If the default value is BSP Specific then:
This option is BSP specific.

DESCRIPTION:
The description of the macro. (No specific
format)

NOTES:
Any further notes. (No specific format)

312 Chapter 24. Configuring a System

Chapter 24 Section 24.6 RTEMS C User Documentation, Release 4.11.3

24.6 Configuration Example

In the following example, the configuration in-
formation for a system with a single message
queue, four (4) tasks, and a timeslice of fifty
(50) milliseconds is as follows:

1 #include <bsp.h>
2 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_

→˓DRIVER
3 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_

→˓DRIVER
4 #define CONFIGURE_MICROSECONDS_PER_TICK ␣

→˓1000 /* 1 millisecond */
5 #define CONFIGURE_TICKS_PER_TIMESLICE ␣

→˓50 /* 50 milliseconds */
6 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
7 #define CONFIGURE_MAXIMUM_TASKS 4
8 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 1
9 #define CONFIGURE_MESSAGE_BUFFER_MEMORY \

10 CONFIGURE_MESSAGE_BUFFERS_FOR_
→˓QUEUE(20, sizeof(struct USER_MESSAGE))

11 #define CONFIGURE_INIT
12 #include <rtems/confdefs.h>

In this example, only a few configuration pa-
rameters are specified. The impact of these are
as follows:

• The example specified
CONFIGURE_RTEMS_INIT_TASK_TABLE
but did not specify any additional pa-
rameters. This results in a configuration
of an application which will begin execu-
tion of a single initialization task named
Init which is non-preemptible and at
priority one (1).

• By specifying
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER,
this application is configured to have
a clock tick device driver. Without a
clock tick device driver, RTEMS has
no way to know that time is passing
and will be unable to support delays
and wall time. Further configuration
details about time are provided. Per
CONFIGURE_MICROSECONDS_PER_TICK and
CONFIGURE_TICKS_PER_TIMESLICE, the
user specified they wanted a clock tick
to occur each millisecond, and that the
length of a timeslice would be fifty (50)
milliseconds.

• By specifying

CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER,
the application will include a console
device driver. Although the console
device driver may support a combination
of multiple serial ports and display
and keyboard combinations, it is only
required to provide a single device
named /dev/console. This device
will be used for Standard Input, Out-
put and Error I/O Streams. Thus when
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
is specified, implicitly three (3) file de-
scriptors are reserved for the Standard
I/O Streams and those file descriptors
are associated with /dev/console during
initialization. All console devices are
expected to support the POSIX*termios*
interface.

• The example above specifies via
CONFIGURE_MAXIMUM_TASKS that the
application requires a maximum of
four (4) simultaneously existing Clas-
sic API tasks. Similarly, by specifying
CONFIGURE_MAXIMUM_MESSAGE_QUEUES,
there may be a maximum of only one
(1) concurrently existent Classic API
message queues.

• The most surprising configuration pa-
rameter in this example is the use of
CONFIGURE_MESSAGE_BUFFER_MEMORY.
Message buffer memory is allocated
from the RTEMS Workspace and must
be accounted for. In this example, the
single message queue will have up to
twenty (20) messages of type struct
USER_MESSAGE.

• The CONFIGURE_INIT constant
must be defined in order to make
<rtems/confdefs.h> instantiate the con-
figuration data structures. This can only
be defined in one source file per applica-
tion that includes <rtems/confdefs.h>
or the symbol table will be instanti-
ated multiple times and linking errors
produced.

This example illustrates that parameters have
default values. Among other things, the appli-
cation implicitly used the following defaults:

• All unspecified types of communications

24.6. Configuration Example 313

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.6

and synchronization objects in the Clas-
sic and POSIX Threads API have maxi-
mums of zero (0).

• The filesystem will be the default filesys-
tem which is the In-Memory File System
(IMFS).

• The application will have the default
number of priority levels.

• The minimum task stack size will be that
recommended by RTEMS for the target
architecture.

314 Chapter 24. Configuring a System

Chapter 24 Section 24.7 RTEMS C User Documentation, Release 4.11.3

24.7 Unlimited Objects

In real-time embedded systems the RAM is
normally a limited, critical resource and dy-
namic allocation is avoided as much as pos-
sible to ensure predictable, deterministic ex-
ecution times. For such cases, see Chapter
24 Section 3 - Sizing the RTEMS Workspace
(page 310) for an overview of how to tune the
size of the workspace. Frequently when users
are porting software to RTEMS the precise
resource requirements of the software is un-
known. In these situations users do not need
to control the size of the workspace very tightly
because they just want to get the new software
to run; later they can tune the workspace size
as needed.

The following API-independent object classes
can be configured in unlimited mode:

• POSIX Keys

• POSIX Key Value Pairs

The following object classes in the Classic API
can be configured in unlimited mode:

• Tasks

• Timers

• Semaphores

• Message Queues

• Periods

• Barriers

• Partitions

• Regions

• Ports

Additionally, the following object classes from
the POSIX API can be configured in unlimited
mode:

• Threads

• Mutexes

• Condition Variables

• Timers

• Message Queues

• Message Queue Descriptors

• Semaphores

• Barriers

• Read/Write Locks

• Spinlocks

The following object classes can not be config-
ured in unlimited mode:

• Drivers

• File Descriptors

• User Extensions

• POSIX Queued Signals

Due to the memory requirements of unlimited
objects it is strongly recommended to use them
only in combination with the unified work ar-
eas. See Chapter 24 Section 12.1 - Separate or
Unified Work Areas (page 328) for more infor-
mation on unified work areas.

The following example demonstrates how the
two simple configuration defines for unlimited
objects and unified works areas can replace
many seperate configuration defines for sup-
ported object classes:

1 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_
→˓DRIVER

2 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_
→˓DRIVER

3 #define CONFIGURE_UNIFIED_WORK_AREAS
4 #define CONFIGURE_UNLIMITED_OBJECTS
5 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
6 #define CONFIGURE_INIT
7 #include <rtems/confdefs.h>

Users are cautioned that using unlimited ob-
jects is not recommended for production soft-
ware unless the dynamic growth is absolutely
required. It is generally considered a safer
embedded systems programming practice to
know the system limits rather than experience
an out of memory error at an arbitrary and
largely unpredictable time in the field.

24.7.1 Per Object Class Unlimited Object
Instances

When the number of objects is not known
ahead of time, RTEMS provides an auto-
extending mode that can be enabled individ-

24.7. Unlimited Objects 315

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.7

ually for each object type by using the macro
rtems_resource_unlimited. This takes a value
as a parameter, and is used to set the object
maximum number field in an API Configura-
tion table. The value is an allocation unit size.
When RTEMS is required to grow the object
table it is grown by this size. The kernel will
return the object memory back to the RTEMS
Workspace when an object is destroyed. The
kernel will only return an allocated block of
objects to the RTEMS Workspace if at least half
the allocation size of free objects remain al-
located. RTEMS always keeps one allocation
block of objects allocated. Here is an example
of using rtems_resource_unlimited:

1 #define CONFIGURE_MAXIMUM_TASKS rtems_
→˓resource_unlimited(5)

Object maximum specifications can be evalu-
ated with the rtems_resource_is_unlimited
and‘‘rtems_resource_maximum_per_allocation‘‘
macros.

24.7.2 Unlimited Object Instances

To ease the burden of developers who are port-
ing new software RTEMS also provides the ca-
pability to make all object classes listed above
operate in unlimited mode in a simple manner.
The application developer is only responsible
for enabling unlimited objects and specifying
the allocation size.

24.7.3 Enable Unlimited Object Instances

CONSTANT:
CONFIGURE_UNLIMITED_OBJECTS

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_UNLIMITED_OBJECTS enables
rtems_resource_unlimited mode for Clas-
sic API and POSIX API objects that do not

already have a specific maximum limit
defined.

NOTES:
When using unlimited objects, it
is common practice to also specify
CONFIGURE_UNIFIED_WORK_AREAS so the
system operates with a single pool of
memory for both RTEMS and application
memory allocations.

24.7.4 Specify Unlimited Objects Alloca-
tion Size

CONSTANT:
CONFIGURE_UNLIMITED_ALLOCATION_SIZE

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
If not defined and
CONFIGURE_UNLIMITED_OBJECTS is defined,
the default value is eight (8).

DESCRIPTION:
CONFIGURE_UNLIMITED_ALLOCATION_SIZE
provides an allocation size to use for
rtems_resource_unlimited when using
CONFIGURE_UNLIMITED_OBJECTS.

NOTES:
By allowing users to declare all resources
as being unlimited the user can avoid
identifying and limiting the resources
used. CONFIGURE_UNLIMITED_OBJECTS
does not support varying the allocation
sizes for different objects; users who
want that much control can define the
rtems_resource_unlimited macros them-
selves.

1 #define CONFIGURE_UNLIMITED_OBJECTS
2 #define CONFIGURE_UNLIMITED_ALLOCATION_SIZE␣

→˓5

316 Chapter 24. Configuring a System

Chapter 24 Section 24.8 RTEMS C User Documentation, Release 4.11.3

24.8 Classic API Configuration

This section defines the Classic API related
system configuration parameters supported by
<rtems/confdefs.h>.

24.8.1 Specify Maximum Classic API
Tasks

CONSTANT:
CONFIGURE_MAXIMUM_TASKS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_TASKS is the maximum
number of Classic API Tasks that can be con-
currently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

The calculations for the required mem-
ory in the RTEMS Workspace for tasks
assume that each task has a minimum
stack size and has floating point sup-
port enabled. The configuration pa-
rameter CONFIGURE_EXTRA_TASK_STACKS
is used to specify task stack require-
ments ABOVE the minimum size required.
See Chapter 24 Section 12.7 - Reserve
Task/Thread Stack Memory Above Minimum
(page 330) for more information about
CONFIGURE_EXTRA_TASK_STACKS.

The maximum number of
POSIX threads is specified by
CONFIGURE_MAXIMUM_POSIX_THREADS.

A future enhancement to
<rtems/confdefs.h> could be to elimi-
nate the assumption that all tasks have
floating point enabled. This would require
the addition of a new configuration param-
eter to specify the number of tasks which
enable floating point support.

24.8.2 Specify Maximum Classic API
Timers

CONSTANT:
CONFIGURE_ENABLE_CLASSIC_API_NOTEPADS

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default, and Classic
API Notepads are not supported.

DESCRIPTION:
CONFIGURE_ENABLE_CLASSIC_API_NOTEPADS
should be defined if the user wants to have
support for Classic API Notepads in their
application.

NOTES:
Disabling Classic API Notepads saves the al-
location of sixteen (16) thirty-two bit in-
tegers. This saves sixty-four bytes per
task/thread plus the allocation overhead.
Notepads are rarely used in applications and
this can save significant memory in a low
RAM system. Classic API Notepads are dep-
recated, and this option has been removed
from post 4.11 versions of RTEMS.

24.8.3 Specify Maximum Classic API
Timers

CONSTANT:
CONFIGURE_MAXIMUM_TIMERS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_TIMERS is the maximum
number of Classic API Timers that can be
concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8. Classic API Configuration 317

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.8

24.8.4 Specify Maximum Classic API
Semaphores

CONSTANT:
CONFIGURE_MAXIMUM_SEMAPHORES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_SEMAPHORES is the maxi-
mum number of Classic API Semaphores that
can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8.5 Specify Maximum Classic API
Semaphores usable with MrsP

CONSTANT:
CONFIGURE_MAXIMUM_MRSP_SEMAPHORES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_MRSP_SEMAPHORES is
the maximum number of Classic API
Semaphores using the Multiprocessor Re-
source Sharing Protocol (MrsP) that can be
concurrently active.

NOTES:
This configuration option is only used on
SMP configurations. On uni-processor con-
figurations the Priority Ceiling Protocol is
used for MrsP semaphores and thus no ex-
tra memory is necessary.

24.8.6 Specify Maximum Classic API Mes-
sage Queues

CONSTANT:
CONFIGURE_MAXIMUM_MESSAGE_QUEUES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_MESSAGE_QUEUES is the
maximum number of Classic API Message
Queues that can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8.7 Specify Maximum Classic API Bar-
riers

CONSTANT:
CONFIGURE_MAXIMUM_BARRIERS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_BARRIERS is the maxi-
mum number of Classic API Barriers that can
be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8.8 Specify Maximum Classic API Peri-
ods

CONSTANT:
CONFIGURE_MAXIMUM_PERIODS

318 Chapter 24. Configuring a System

Chapter 24 Section 24.8 RTEMS C User Documentation, Release 4.11.3

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_PERIODS is the maxi-
mum number of Classic API Periods that can
be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8.9 Specify Maximum Classic API Par-
titions

CONSTANT:
CONFIGURE_MAXIMUM_PARTITIONS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_PARTITIONS is the max-
imum number of Classic API Partitions that
can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8.10 Specify Maximum Classic API Re-
gions

CONSTANT:
CONFIGURE_MAXIMUM_REGIONS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_REGIONS is the maxi-
mum number of Classic API Regions that can
be concurrently active.

NOTES:
None.

24.8.11 Specify Maximum Classic API
Ports

CONSTANT:
CONFIGURE_MAXIMUM_PORTS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_PORTS is the maximum
number of Classic API Ports that can be con-
currently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8.12 Specify Maximum Classic API
User Extensions

CONSTANT:
CONFIGURE_MAXIMUM_USER_EXTENSIONS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_USER_EXTENSIONS is the
maximum number of Classic API User Exten-
sions that can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.8. Classic API Configuration 319

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.9

24.9 Classic API Initialization
Tasks Table Configuration

The <rtems/confdefs.h> configuration sys-
tem can automatically generate an Initializa-
tion Tasks Table named Initialization_tasks
with a single entry. The following parameters
control the generation of that table.

24.9.1 Instantiate Classic API Initializa-
tion Task Table

CONSTANT:
CONFIGURE_RTEMS_INIT_TASKS_TABLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_RTEMS_INIT_TASKS_TABLE is de-
fined if the user wishes to use a Classic
RTEMS API Initialization Task Table. The
table built by <rtems/confdefs.h> specifies
the parameters for a single task. This is suffi-
cient for applications which initialization the
system from a single task.

By default, this field is not defined as the
user MUST select their own API for initial-
ization tasks.

NOTES:
The application may choose to use the ini-
tialization tasks or threads table from an-
other API.

A compile time error will be generated if
the user does not configure any initialization
tasks or threads.

24.9.2 Specifying Classic API Initialization
Task Entry Point

CONSTANT:
CONFIGURE_INIT_TASK_ENTRY_POINT

DATA TYPE:
Task entry function pointer
(rtems_task_entry).

RANGE:
Valid task entry function pointer.

DEFAULT VALUE:
The default value is Init.

DESCRIPTION:
CONFIGURE_INIT_TASK_ENTRY_POINT is the
entry point (a.k.a. function name) of the sin-
gle initialization task defined by the Classic
API Initialization Tasks Table.

NOTES:
The user must implement the function Init
or the function name provided in this config-
uration parameter.

24.9.3 Specifying Classic API Initialization
Task Name

CONSTANT:
CONFIGURE_INIT_TASK_NAME

DATA TYPE:
RTEMS Name (rtems_name).

RANGE:
Any value.

DEFAULT VALUE:
The default value is rtems_build_name(
'U','I','1',' ').

DESCRIPTION:
CONFIGURE_INIT_TASK_NAME is the name of
the single initialization task defined by the
Classic API Initialization Tasks Table.

NOTES:
None.

24.9.4 Specifying Classic API Initialization
Task Stack Size

CONSTANT:
CONFIGURE_INIT_TASK_STACK_SIZE

DATA TYPE:
Unsigned integer (size_t).

320 Chapter 24. Configuring a System

Chapter 24 Section 24.9 RTEMS C User Documentation, Release 4.11.3

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is
RTEMS_MINIMUM_STACK_SIZE.

DESCRIPTION:
CONFIGURE_INIT_TASK_STACK_SIZE is the
stack size of the single initialization task
defined by the Classic API Initialization
Tasks Table.

NOTES:
If the stack size specified is greater than the
configured minimum, it must be accounted
for in CONFIGURE_EXTRA_TASK_STACKS.
See Chapter 24 Section 12.7 - Reserve
Task/Thread Stack Memory Above Minimum
(page 330) for more information about
CONFIGURE_EXTRA_TASK_STACKS.

24.9.5 Specifying Classic API Initialization
Task Priority

CONSTANT:
CONFIGURE_INIT_TASK_PRIORITY

DATA TYPE:
RTEMS Task Priority
(rtems_task_priority).

RANGE:
One (1) to CONFIG-
URE_MAXIMUM_PRIORITY.

DEFAULT VALUE:
The default value is 1, which is the highest
priority in the Classic API.

DESCRIPTION:
CONFIGURE_INIT_TASK_PRIORITY is the initial
priority of the single initialization task de-
fined by the Classic API Initialization Tasks
Table.

NOTES:
None.

24.9.6 Specifying Classic API Initialization
Task Attributes

CONSTANT:
CONFIGURE_INIT_TASK_ATTRIBUTES

DATA TYPE:
RTEMS Attributes (rtems_attribute).

RANGE:
Valid task attribute sets.

DEFAULT VALUE:
The default value is
RTEMS_DEFAULT_ATTRIBUTES.

DESCRIPTION:
CONFIGURE_INIT_TASK_ATTRIBUTES is the
task attributes of the single initialization
task defined by the Classic API Initialization
Tasks Table.

NOTES:
None.

24.9.7 Specifying Classic API Initialization
Task Modes

CONSTANT:
CONFIGURE_INIT_TASK_INITIAL_MODES

DATA TYPE:
RTEMS Mode (rtems_mode).

RANGE:
Valid task mode sets.

DEFAULT VALUE:
The default value is RTEMS_NO_PREEMPT.

DESCRIPTION:
CONFIGURE_INIT_TASK_INITIAL_MODES is the
initial execution mode of the single initial-
ization task defined by the Classic API Ini-
tialization Tasks Table.

NOTES:
None.

24.9.8 Specifying Classic API Initialization
Task Arguments

CONSTANT:
CONFIGURE_INIT_TASK_ARGUMENTS

DATA TYPE:
RTEMS Task Argument
(rtems_task_argument).

RANGE:
Complete range of the type.

24.9. Classic API Initialization Tasks Table Configuration 321

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.9

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_INIT_TASK_ARGUMENTS is the task
argument of the single initialization task de-
fined by the Classic API Initialization Tasks
Table.

NOTES:
None.

24.9.9 Not Using Generated Initialization
Tasks Table

CONSTANT:
CONFIGURE_HAS_OWN_INIT_TASK_TABLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_HAS_OWN_INIT_TASK_TABLE
is defined if the user wishes to de-
fine their own Classic API Initialization
Tasks Table. This table should be named
Initialization_tasks.

NOTES:
This is a seldom used configuration parame-
ter. The most likely use case is when an ap-
plication desires to have more than one ini-
tialization task.

322 Chapter 24. Configuring a System

Chapter 24 Section 24.10 RTEMS C User Documentation, Release 4.11.3

24.10 POSIX API Configuration

The parameters in this section are used to
configure resources for the RTEMS POSIX
API. They are only relevant if the POSIX
API is enabled at configure time using the
--enable-posix option.

24.10.1 Specify Maximum POSIX API
Threads

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_THREADS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_THREADS is the
maximum number of POSIX API Threads
that can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

This calculations for the required mem-
ory in the RTEMS Workspace for threads
assume that each thread has a mini-
mum stack size and has floating point
support enabled. The configuration pa-
rameter CONFIGURE_EXTRA_TASK_STACKS is
used to specify thread stack require-
ments ABOVE the minimum size required.
See Chapter 24 Section 12.7 - Reserve
Task/Thread Stack Memory Above Minimum
(page 330) for more information about
CONFIGURE_EXTRA_TASK_STACKS.

The maximum number of Classic API Tasks
is specified by CONFIGURE_MAXIMUM_TASKS.

All POSIX threads have floating point en-
abled.

24.10.2 Specify Maximum POSIX API Mu-
texes

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_MUTEXES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_MUTEXES is the
maximum number of POSIX API Mutexes
that can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10.3 Specify Maximum POSIX API
Condition Variables

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES
is the maximum number of POSIX API Con-
dition Variables that can be concurrently
active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10.4 Specify Maximum POSIX API
Keys

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_KEYS

24.10. POSIX API Configuration 323

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.10

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_KEYS is the maxi-
mum number of POSIX API Keys that can be
concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10.5 Specify Maximum POSIX API
Timers

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_TIMERS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_TIMERS is the
maximum number of POSIX API Timers that
can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10.6 Specify Maximum POSIX API
Queued Signals

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS
is the maximum number of POSIX API
Queued Signals that can be concurrently
active.

NOTES:
None.

24.10.7 Specify Maximum POSIX API
Message Queues

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES
is the maximum number of POSIX API
Message Queues that can be concurrently
active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10.8 Specify Maximum POSIX API
Message Queue Descriptors

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
greater than or equal to
CONFIGURE_MAXIMUM_POSIX_MESSAGES_QUEUES

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS
is the maximum number of POSIX API
Message Queue Descriptors that can be
concurrently active.

324 Chapter 24. Configuring a System

Chapter 24 Section 24.10 RTEMS C User Documentation, Release 4.11.3

NOTES:
This object class can be configured in unlim-
ited allocation mode.

CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS
should be greater than or equal to
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES.

24.10.9 Specify Maximum POSIX API
Semaphores

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_SEMAPHORES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_SEMAPHORES
is the maximum number of POSIX API
Semaphores that can be concurrently active.

NOTES:
None.

24.10.10 Specify Maximum POSIX API
Barriers

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_BARRIERS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_BARRIERS is the
maximum number of POSIX API Barriers
that can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10.11 Specify Maximum POSIX API
Spinlocks

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_SPINLOCKS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_SPINLOCKS is the
maximum number of POSIX API Spinlocks
that can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10.12 Specify Maximum POSIX API
Read/Write Locks

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_RWLOCKS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_POSIX_RWLOCKS is the
maximum number of POSIX API Read/Write
Locks that can be concurrently active.

NOTES:
This object class can be configured in unlim-
ited allocation mode.

24.10. POSIX API Configuration 325

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.11

24.11 POSIX Initialization Threads
Table Configuration

The <rtems/confdefs.h> configuration
system can automatically generate a
POSIX Initialization Threads Table named
POSIX_Initialization_threads with a single
entry. The following parameters control the
generation of that table.

24.11.1 Instantiate POSIX API Initializa-
tion Thread Table

CONSTANT:

CONFIGURE_POSIX_INIT_THREAD_TABLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This field is not defined by default, as the
user MUST select their own API for initial-
ization tasks.

DESCRIPTION:
CONFIGURE_POSIX_INIT_THREAD_TABLE is de-
fined if the user wishes to use a POSIX API
Initialization Threads Table. The table built
by <rtems/confdefs.h> specifies the param-
eters for a single thread. This is sufficient for
applications which initialization the system
from a single task.

By default, this field is not defined as the
user MUST select their own API for initial-
ization tasks.

NOTES:
The application may choose to use the ini-
tialization tasks or threads table from an-
other API.

A compile time error will be generated if
the user does not configure any initialization
tasks or threads.

24.11.2 Specifying POSIX API Initializa-
tion Thread Entry Point

CONSTANT:
CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT

DATA TYPE:
POSIX thread function pointer (void
*(*entry_point)(void *)).

RANGE:
Undefined or a valid POSIX thread function
pointer.

DEFAULT VALUE:
The default value is POSIX_Init.

DESCRIPTION:
CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT
is the entry point (a.k.a. function name) of
the single initialization thread defined by
the POSIX API Initialization Threads Table.

NOTES:
The user must implement the function
POSIX_Init or the function name provided
in this configuration parameter.

24.11.3 Specifying POSIX API Initializa-
tion Thread Stack Size

CONSTANT:
CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 2 *
RTEMS_MINIMUM_STACK_SIZE.

DESCRIPTION:
CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE
is the stack size of the single initializa-
tion thread defined by the POSIX API
Initialization Threads Table.

NOTES:
If the stack size specified is greater than the
configured minimum, it must be accounted
for in CONFIGURE_EXTRA_TASK_STACKS.
See Chapter 24 Section 12.7 - Reserve

326 Chapter 24. Configuring a System

Chapter 24 Section 24.11 RTEMS C User Documentation, Release 4.11.3

Task/Thread Stack Memory Above Minimum
(page 330) for more information about
CONFIGURE_EXTRA_TASK_STACKS.

24.11.4 Not Using Generated POSIX Ini-
tialization Threads Table

CONSTANT:
CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE
is defined if the user wishes to define their
own POSIX API Initialization Threads
Table. This table should be named
POSIX_Initialization_threads.

NOTES:
This is a seldom used configuration parame-
ter. The most likely use case is when an ap-
plication desires to have more than one ini-
tialization task.

24.11. POSIX Initialization Threads Table Configuration 327

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.12

24.12 Basic System Information

This section defines the general system
configuration parameters supported by
<rtems/confdefs.h>.

24.12.1 Separate or Unified Work Areas

CONSTANT:
CONFIGURE_UNIFIED_WORK_AREAS

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default, which speci-
fies that the C Program Heap and the RTEMS
Workspace will be separate.

DESCRIPTION:
When defined, the C Program Heap and the
RTEMS Workspace will be one pool of mem-
ory.

When not defined, there will be separate
memory pools for the RTEMS Workspace
and C Program Heap.

NOTES:
Having separate pools does have some ad-
vantages in the event a task blows a stack
or writes outside its memory area. How-
ever, in low memory systems the overhead of
the two pools plus the potential for unused
memory in either pool is very undesirable.

In high memory environments, this is desir-
able when you want to use the RTEMS “un-
limited” objects option. You will be able to
create objects until you run out of all avail-
able memory rather then just until you run
out of RTEMS Workspace.

24.12.2 Length of Each Clock Tick

CONSTANT:
CONFIGURE_MICROSECONDS_PER_TICK

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
This is not defined by default. When not de-
fined, the clock tick quantum is configured
to be 10,000 microseconds which is ten (10)
milliseconds.

DESCRIPTION:
This constant is used to specify the length of
time between clock ticks.

When the clock tick quantum value is too
low, the system will spend so much time pro-
cessing clock ticks that it does not have pro-
cessing time available to perform application
work. In this case, the system will become
unresponsive.

The lowest practical time quantum varies
widely based upon the speed of the target
hardware and the architectural overhead as-
sociated with interrupts. In general terms,
you do not want to configure it lower than is
needed for the application.

The clock tick quantum should be selected
such that it all blocking and delay times
in the application are evenly divisible by
it. Otherwise, rounding errors will be intro-
duced which may negatively impact the ap-
plication.

NOTES:
This configuration parameter has no impact
if the Clock Tick Device driver is not config-
ured.

There may be BSP specific limits on the res-
olution or maximum value of a clock tick
quantum.

24.12.3 Specifying Timeslicing Quantum

CONSTANT:
CONFIGURE_TICKS_PER_TIMESLICE

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 50.

328 Chapter 24. Configuring a System

Chapter 24 Section 24.12 RTEMS C User Documentation, Release 4.11.3

DESCRIPTION:
This configuration parameter specifies the
length of the timeslice quantum in ticks for
each task.

NOTES:
This configuration parameter has no impact
if the Clock Tick Device driver is not config-
ured.

24.12.4 Specifying the Number of Thread
Priority Levels

CONSTANT:
CONFIGURE_MAXIMUM_PRIORITY

DATA TYPE:
Unsigned integer (uint8_t).

RANGE:
Valid values for this configuration parameter
must be one (1) less than than a power of
two (2) between 4 and 256 inclusively. In
other words, valid values are 3, 7, 31, 63,
127, and 255.

DEFAULT VALUE:
The default value is 255, because RTEMS
must support 256 priority levels to be com-
pliant with various standards. These priori-
ties range from zero (0) to 255.

DESCRIPTION:
This configuration parameter specified the
maximum numeric priority of any task in the
system and one less that the number of pri-
ority levels in the system.

Reducing the number of priorities in the sys-
tem reduces the amount of memory allo-
cated from the RTEMS Workspace.

NOTES:
The numerically greatest priority is the log-
ically lowest priority in the system and will
thus be used by the IDLE task.

Priority zero (0) is reserved for internal use
by RTEMS and is not available to applica-
tions.

With some schedulers, reducing the number
of priorities can reduce the amount of mem-
ory used by the scheduler. For example, the
Deterministic Priority Scheduler (DPS) used

by default uses three pointers of storage per
priority level. Reducing the number of prior-
ities from 256 levels to sixteen (16) can re-
duce memory usage by about three (3) kilo-
bytes.

24.12.5 Specifying the Minimum Task
Size

CONSTANT:
CONFIGURE_MINIMUM_TASK_STACK_SIZE

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
This is not defined by default, which sets
the executive to the recommended minimum
stack size for this processor.

DESCRIPTION:
The configuration parameter is set to the
number of bytes the application wants the
minimum stack size to be for every task or
thread in the system.

Adjusting this parameter should be done
with caution. Examining the actual usage
using the Stack Checker Usage Reporting fa-
cility is recommended.

NOTES:
This parameter can be used to lower the
minimum from that recommended. This can
be used in low memory systems to reduce
memory consumption for stacks. However,
this must be done with caution as it could
increase the possibility of a blown task stack.

This parameter can be used to increase the
minimum from that recommended. This can
be used in higher memory systems to reduce
the risk of stack overflow without perform-
ing analysis on actual consumption.

24.12.6 Configuring the Size of the Inter-
rupt Stack

CONSTANT:
CONFIGURE_INTERRUPT_STACK_SIZE

24.12. Basic System Information 329

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.12

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is CONFIG-
URE_MINIMUM_TASK_STACK_SIZE, which
is the minimum interrupt stack size.

DESCRIPTION:
CONFIGURE_INTERRUPT_STACK_SIZE is set to
the size of the interrupt stack. The inter-
rupt stack size is often set by the BSP but
since this memory may be allocated from the
RTEMS Workspace, it must be accounted for.

NOTES:
In some BSPs, changing this constant does
NOT change the size of the interrupt stack,
only the amount of memory reserved for it.

Patches which result in this constant only be-
ing used in memory calculations when the
interrupt stack is intended to be allocated
from the RTEMS Workspace would be wel-
comed by the RTEMS Project.

24.12.7 Reserve Task/Thread Stack Mem-
ory Above Minimum

CONSTANT:
CONFIGURE_EXTRA_TASK_STACKS

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Undefined or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
This configuration parameter is set to the
number of bytes the applications wishes to
add to the task stack requirements calcu-
lated by <rtems/confdefs.h>.

NOTES:
This parameter is very important. If the
application creates tasks with stacks larger
then the minimum, then that memory is
NOT accounted for by <rtems/confdefs.h>.

24.12.8 Automatically Zeroing the
RTEMS Workspace and C Pro-
gram Heap

CONSTANT:
CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default, unless over-
ridden by the BSP. The default is NOT to
zero out the RTEMS Workspace or C Pro-
gram Heap.

DESCRIPTION:
This macro indicates whether RTEMS should
zero the RTEMS Workspace and C Program
Heap as part of its initialization. If defined,
the memory regions are zeroed. Otherwise,
they are not.

NOTES:
Zeroing memory can add significantly to sys-
tem boot time. It is not necessary for RTEMS
but is often assumed by support libraries.

24.12.9 Enable The Task Stack Usage
Checker

CONSTANT:
CONFIGURE_STACK_CHECKER_ENABLED

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default, and thus stack
checking is disabled.

DESCRIPTION:
This configuration parameter is defined
when the application wishes to enable run-
time stack bounds checking.

NOTES:
In 4.9 and older, this configuration parame-
ter was named STACK_CHECKER_ON.

330 Chapter 24. Configuring a System

Chapter 24 Section 24.12 RTEMS C User Documentation, Release 4.11.3

This increases the time required to create
tasks as well as adding overhead to each con-
text switch.

24.12.10 Specify Application Specific User
Extensions

CONSTANT:
CONFIGURE_INITIAL_EXTENSIONS

DATA TYPE:
List of user extension initializers
(rtems_extensions_table).

RANGE:
Undefined or a list of one or more user ex-
tensions.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
If CONFIGURE_INITIAL_EXTENSIONS is defined
by the application, then this application spe-
cific set of initial extensions will be placed in
the initial extension table.

NOTES:
None.

24.12. Basic System Information 331

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.13

24.13 Configuring Custom Task
Stack Allocation

RTEMS allows the application or BSP to de-
fine its own allocation and deallocation meth-
ods for task stacks. This can be used to place
task stacks in special areas of memory or to uti-
lize a Memory Management Unit so that stack
overflows are detected in hardware.

24.13.1 Custom Task Stack Allocator Ini-
tialization

CONSTANT:
CONFIGURE_TASK_STACK_ALLOCATOR_INIT

DATA TYPE:
Function pointer.

RANGE:
Undefined, NULL or valid function pointer.

DEFAULT VALUE:
The default value is NULL, which indicates
that task stacks will be allocated from the
RTEMS Workspace.

DESCRIPTION:
CONFIGURE_TASK_STACK_ALLOCATOR_INIT
configures the initialization method for
an application or BSP specific task stack
allocation implementation.

NOTES:
A correctly configured system must config-
ure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR

24.13.2 Custom Task Stack Allocator

CONSTANT:
CONFIGURE_TASK_STACK_ALLOCATOR

DATA TYPE:
Function pointer.

RANGE:
Undefined or valid function pointer.

DEFAULT VALUE:
The default value is _Workspace_Allocate,
which indicates that task stacks will be al-
located from the RTEMS Workspace.

DESCRIPTION:
CONFIGURE_TASK_STACK_ALLOCATOR may
point to a user provided routine to allocate
task stacks.

NOTES:
A correctly configured system must config-
ure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR

24.13.3 Custom Task Stack Deallocator

CONSTANT:
CONFIGURE_TASK_STACK_DEALLOCATOR

DATA TYPE:
Function pointer.

RANGE:
Undefined or valid function pointer.

DEFAULT VALUE:
The default value is _Workspace_Free, which
indicates that task stacks will be allocated
from the RTEMS Workspace.

DESCRIPTION:
CONFIGURE_TASK_STACK_DEALLOCATOR may
point to a user provided routine to free task
stacks.

NOTES:
A correctly configured system must config-
ure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR

332 Chapter 24. Configuring a System

Chapter 24 Section 24.14 RTEMS C User Documentation, Release 4.11.3

24.14 Configuring Memory for
Classic API Message Buffers

This section describes the configuration pa-
rameters related to specifying the amount
of memory reserved for Classic API Message
Buffers.

24.14.1 Calculate Memory for a Sin-
gle Classic Message API Message
Queue

CONSTANT:
CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(max_messages,size_per)

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is None.

DESCRIPTION:
This is a helper macro which is used to assist
in computing the total amount of memory
required for message buffers. Each message
queue will have its own configuration with
maximum message size and maximum num-
ber of pending messages.

The interface for this macro is as follows:

1 CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(max_
→˓messages, size_per)

Where max_messages is the maximum num-
ber of pending messages and size_per is the
size in bytes of the user message.

NOTES:

This macro is only
used in support of
CONFIGURE_MESSAGE_BUFFER_MEMORY.

24.14.2 Reserve Memory for All Classic
Message API Message Queues

CONSTANT:
CONFIGURE_MESSAGE_BUFFER_MEMORY

DATA TYPE:
integer summation macro

RANGE:
undefined (zero) or calculation resulting in
a positive integer

DEFAULT VALUE:
This is not defined by default, and zero (0)
memory is reserved.

DESCRIPTION:
This macro is set to the number of bytes the
application requires to be reserved for pend-
ing Classic API Message Queue buffers.

NOTES:
The following illustrates how the help macro
CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE can
be used to assist in calculating the mes-
sage buffer memory required. In this ex-
ample, there are two message queues used
in this application. The first message
queue has maximum of 24 pending mes-
sages with the message structure defined by
the type one_message_type. The other mes-
sage queue has maximum of 500 pending
messages with the message structure defined
by the type other_message_type.

1 #define CONFIGURE_MESSAGE_BUFFER_MEMORY \
2 (CONFIGURE_MESSAGE_BUFFERS_FOR_

→˓QUEUE(\
3 24, sizeof(one_message_

→˓type) \
4) + \
5 CONFIGURE_MESSAGE_BUFFERS_FOR_

→˓QUEUE(\
6 500, sizeof(other_message_

→˓type) \
7)

24.14. Configuring Memory for Classic API Message Buffers 333

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.15

24.15 Seldom Used Configuration
Parameters

This section describes configuration parame-
ters supported by <rtems/confdefs.h> which
are seldom used by applications. These pa-
rameters tend to be oriented to debugging
system configurations and providing work-
arounds when the memory estimated by
<rtems/confdefs.h> is incorrect.

24.15.1 Specify Memory Overhead

CONSTANT:
CONFIGURE_MEMORY_OVERHEAD

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
This parameter is set to the number
of kilobytes the application wishes to
add to the requirements calculated by
<rtems/confdefs.h>.

NOTES:
This configuration parameter should only
be used when it is suspected that a bug
in <rtems/confdefs.h> has resulted in an
underestimation. Typically the memory al-
location will be too low when an applica-
tion does not account for all message queue
buffers or task stacks.

24.15.2 Do Not Generate Configuration
Information

CONSTANT:
CONFIGURE_HAS_OWN_CONFIGURATION_TABLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
This configuration parameter should only be
defined if the application is providing their
own complete set of configuration tables.

NOTES:
None.

334 Chapter 24. Configuring a System

Chapter 24 Section 24.16 RTEMS C User Documentation, Release 4.11.3

24.16 C Library Support Configu-
ration

This section defines the file system and IO
library related configuration parameters sup-
ported by <rtems/confdefs.h>.

24.16.1 Specify Maximum Number of File
Descriptors

CONSTANT:
CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
If CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
is defined, then the default value is 3, oth-
erwise the default value is 0. Three file
descriptors allows RTEMS to support stan-
dard input, output, and error I/O streams
on /dev/console.

DESCRIPTION:
This configuration parameter is set to the
maximum number of file like objects that can
be concurrently open.

NOTES:
None.

24.16.2 Disable POSIX Termios Support

CONSTANT:
CONFIGURE_TERMIOS_DISABLED

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default, and resources
are reserved for the termios functionality.

DESCRIPTION:
This configuration parameter is defined if
the software implementing POSIX termios

functionality is not going to be used by this
application.

NOTES:
The termios support library should not be in-
cluded in an application executable unless it
is directly referenced by the application or a
device driver.

24.16.3 Specify Maximum Termios Ports

CONSTANT:
CONFIGURE_NUMBER_OF_TERMIOS_PORTS

DATA TYPE:
Unsigned integer.

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 1, so a console port can
be used.

DESCRIPTION:
This configuration parameter is set to the
number of ports using the termios function-
ality. Each concurrently active termios port
requires resources.

NOTES:
If the application will be using se-
rial ports including, but not lim-
ited to, the Console Device (e.g.
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER),
then it is highly likely that this configuration
parameter should NOT be is defined.

24.16. C Library Support Configuration 335

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.17

24.17 File System Configuration
Parameters

This section defines File System related config-
uration parameters.

24.17.1 Providing Application Specific
Mount Table

CONSTANT:
CONFIGURE_HAS_OWN_MOUNT_TABLE

DATA TYPE:
Undefined or an array of type
rtems_filesystem_mount_table_t.

RANGE:
Undefined or an array of type
rtems_filesystem_mount_table_t.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
This configuration parameter is de-
fined when the application pro-
vides their own filesystem mount ta-
ble. The mount table is an array of
rtems_filesystem_mount_table_t en-
tries pointed to by the global vari-
able rtems_filesystem_mount_table.
The number of entries in this ta-
ble is in an integer variable named
rtems_filesystem_mount_table_t.

NOTES:
None.

24.17.2 Configure devFS as Root File Sys-
tem

CONSTANT:
CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default. If no other
root file system configuration parameters are

specified, the IMFS will be used as the root
file system.

DESCRIPTION:
This configuration parameter is defined if
the application wishes to use the device-only
filesytem as the root file system.

NOTES:
The device-only filesystem supports only de-
vice nodes and is smaller in executable code
size than the full IMFS and miniIMFS.

The devFS is comparable in functionality to
the pseudo-filesystem name space provided
before RTEMS release 4.5.0.

24.17.3 Specifying Maximum Devices for
devFS

CONSTANT:
CONFIGURE_MAXIMUM_DEVICES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
If BSP_MAXIMUM_DEVICES is defined, then the
default value is BSP_MAXIMUM_DEVICES, oth-
erwise the default value is 4.

DESCRIPTION:
CONFIGURE_MAXIMUM_DEVICES is defined to
the number of individual devices that may
be registered in the device file system (de-
vFS).

NOTES:
This option is specific to the device file
system (devFS) and should not be confused
with the CONFIGURE_MAXIMUM_DRIVERS
option. This parameter only im-
pacts the devFS and thus is only
used by <rtems/confdefs.h> when
CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM
is specified.

24.17.4 Disable File System Support

CONSTANT:
CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

336 Chapter 24. Configuring a System

Chapter 24 Section 24.17 RTEMS C User Documentation, Release 4.11.3

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default. If no other
root file system configuration parameters are
specified, the IMFS will be used as the root
file system.

DESCRIPTION:
This configuration parameter is defined if
the application dose not intend to use any
kind of filesystem support. This include the
device infrastructure necessary to support
printf().

NOTES:
None.

24.17.5 Use a Root IMFS with a Minimal-
istic Feature Set

CONSTANT:
CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the following configuration options will
be defined as well

• CONFIGURE_IMFS_DISABLE_CHMOD,

• CONFIGURE_IMFS_DISABLE_CHOWN,

• CONFIGURE_IMFS_DISABLE_UTIME,

• CONFIGURE_IMFS_DISABLE_LINK,

• CONFIGURE_IMFS_DISABLE_SYMLINK,

• CONFIGURE_IMFS_DISABLE_READLINK,

• CONFIGURE_IMFS_DISABLE_RENAME, and

• CONFIGURE_IMFS_DISABLE_UNMOUNT.

24.17.6 Specify Block Size for IMFS

CONSTANT:
CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK

DATA TYPE:
Boolean feature macro.

RANGE:
Valid values for this configuration parameter
are a power of two (2) between 16 and 512
inclusive. In other words, valid values are
16, 32, 64, 128, 256,and 512.

DEFAULT VALUE:
The default IMFS block size is 128 bytes.

DESCRIPTION:
This configuration parameter specifies the
block size for in-memory files managed by
the IMFS. The configured block size has two
impacts. The first is the average amount of
unused memory in the last block of each file.
For example, when the block size is 512, on
average one-half of the last block of each
file will remain unused and the memory is
wasted. In contrast, when the block size is
16, the average unused memory per file is
only 8 bytes. However, it requires more allo-
cations for the same size file and thus more
overhead per block for the dynamic memory
management.

Second, the block size has an impact on the
maximum size file that can be stored in the
IMFS. With smaller block size, the maximum
file size is correspondingly smaller. The fol-
lowing shows the maximum file size possible
based on the configured block size:

• when the block size is 16 bytes, the
maximum file size is 1,328 bytes.

• when the block size is 32 bytes, the
maximum file size is 18,656 bytes.

• when the block size is 64 bytes, the
maximum file size is 279,488 bytes.

• when the block size is 128 bytes, the
maximum file size is 4,329,344 bytes.

• when the block size is 256 bytes, the
maximum file size is 68,173,568 bytes.

• when the block size is 512 bytes, the
maximum file size is 1,082,195,456

24.17. File System Configuration Parameters 337

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.17

bytes.

24.17.7 Disable Change Owner Support of
Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_CHOWN

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to change the owner is dis-
abled in the root IMFS.

24.17.8 Disable Change Mode Support of
Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_CHMOD

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to change the mode is dis-
abled in the root IMFS.

24.17.9 Disable Change Times Support of
Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_UTIME

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to change times is disabled
in the root IMFS.

24.17.10 Disable Create Hard Link Sup-
port of Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_LINK

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to create hard links is dis-
abled in the root IMFS.

24.17.11 Disable Create Symbolic Link
Support of Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_SYMLINK

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to create symbolic links is
disabled in the root IMFS.

24.17.12 Disable Read Symbolic Link
Support of Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_READLINK

338 Chapter 24. Configuring a System

Chapter 24 Section 24.17 RTEMS C User Documentation, Release 4.11.3

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to read symbolic links is dis-
abled in the root IMFS.

24.17.13 Disable Rename Support of Root
IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_RENAME

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to rename nodes is disabled
in the root IMFS.

24.17.14 Disable Directory Read Support
of Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_READDIR

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to read a directory is dis-
abled in the root IMFS. It is still possible to
open nodes in a directory.

24.17.15 Disable Mount Support of Root
IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_MOUNT

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to mount other file systems
is disabled in the root IMFS.

24.17.16 Disable Unmount Support of
Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_UNMOUNT

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to unmount file systems is
disabled in the root IMFS.

24.17.17 Disable Make Nodes Support of
Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_MKNOD

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

24.17. File System Configuration Parameters 339

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.17

DESCRIPTION:
In case this configuration option is defined,
then the support to make directories, de-
vices, regular files and FIFOs is disabled in
the root IMFS.

24.17.18 Disable Make Files Support of
Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_MKNOD_FILE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to make regular files is dis-
abled in the root IMFS.

24.17.19 Disable Remove Nodes Support
of Root IMFS

CONSTANT:
CONFIGURE_IMFS_DISABLE_RMNOD

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
In case this configuration option is defined,
then the support to remove nodes is disabled
in the root IMFS.

340 Chapter 24. Configuring a System

Chapter 24 Section 24.18 RTEMS C User Documentation, Release 4.11.3

24.18 Block Device Cache Configu-
ration

This section defines Block Device Cache (bd-
buf) related configuration parameters.

24.18.1 Enable Block Device Cache

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_LIBBLOCK

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
Provides a Block Device Cache configuration.

NOTES:
Each option of the Block Device Cache con-
figuration can be explicitly set by the user
with the configuration options below. The
Block Device Cache is used for example by
the RFS and DOSFS file systems.

24.18.2 Size of the Cache Memory

CONSTANT:
CONFIGURE_BDBUF_CACHE_MEMORY_SIZE

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 32768 bytes.

DESCRIPTION:
Size of the cache memory in bytes.

NOTES:
None.

24.18.3 Minimum Size of a Buffer

CONSTANT:
CONFIGURE_BDBUF_BUFFER_MIN_SIZE

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 512 bytes.

DESCRIPTION:
Defines the minimum size of a buffer in
bytes.

NOTES:
None.

24.18.4 Maximum Size of a Buffer

CONSTANT:
CONFIGURE_BDBUF_BUFFER_MAX_SIZE

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
It must be positive and an integral multiple
of the buffer minimum size.

DEFAULT VALUE:
The default value is 4096 bytes.

DESCRIPTION:
Defines the maximum size of a buffer in
bytes.

NOTES:
None.

24.18.5 Swapout Task Swap Period

CONSTANT:
CONFIGURE_SWAPOUT_SWAP_PERIOD

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 250 milliseconds.

DESCRIPTION:
Defines the swapout task swap period in mil-
liseconds.

24.18. Block Device Cache Configuration 341

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.18

NOTES:
None.

24.18.6 Swapout Task Maximum Block
Hold Time

CONSTANT:
CONFIGURE_SWAPOUT_BLOCK_HOLD

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 1000 milliseconds.

DESCRIPTION:
Defines the swapout task maximum block
hold time in milliseconds.

NOTES:
None.

24.18.7 Swapout Task Priority

CONSTANT:
CONFIGURE_SWAPOUT_TASK_PRIORITY

DATA TYPE:
Task priority (rtems_task_priority).

RANGE:
Valid task priority.

DEFAULT VALUE:
The default value is 15.

DESCRIPTION:
Defines the swapout task priority.

NOTES:
None.

24.18.8 Maximum Blocks per Read-Ahead
Request

CONSTANT:
CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
Defines the maximum blocks per read-ahead
request.

NOTES:
A value of 0 disables the read-ahead task
(default). The read-ahead task will issue
speculative read transfers if a sequential ac-
cess pattern is detected. This can improve
the performance on some systems.

24.18.9 Maximum Blocks per Write Re-
quest

CONSTANT:
CONFIGURE_BDBUF_MAX_WRITE_BLOCKS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 16.

DESCRIPTION:
Defines the maximum blocks per write re-
quest.

NOTES:
None.

24.18.10 Task Stack Size of the Block De-
vice Cache Tasks

CONSTANT:
CONFIGURE_BDBUF_TASK_STACK_SIZE

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is
RTEMS_MINIMUM_STACK_SIZE.

342 Chapter 24. Configuring a System

Chapter 24 Section 24.18 RTEMS C User Documentation, Release 4.11.3

DESCRIPTION:
Defines the task stack size of the Block De-
vice Cache tasks in bytes.

NOTES:
None.

24.18.11 Read-Ahead Task Priority

CONSTANT:
CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY

DATA TYPE:
Task priority (rtems_task_priority).

RANGE:
Valid task priority.

DEFAULT VALUE:
The default value is 15.

DESCRIPTION:
Defines the read-ahead task priority.

NOTES:
None.

24.18.12 Swapout Worker Task Count

CONSTANT:
CONFIGURE_SWAPOUT_WORKER_TASKS

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
Defines the swapout worker task count.

NOTES:
None.

24.18.13 Swapout Worker Task Priority

CONSTANT:
CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY

DATA TYPE:
Task priority (rtems_task_priority).

RANGE:
Valid task priority.

DEFAULT VALUE:
The default value is 15.

DESCRIPTION:
Defines the swapout worker task priority.

NOTES:
None.

24.18. Block Device Cache Configuration 343

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.19

24.19 BSP Specific Settings

This section describes BSP specific configura-
tion settings used by <rtems/confdefs.h>. The
BSP specific configuration settings are defined
in <bsp.h>.

24.19.1 Disable BSP Configuration Set-
tings

CONSTANT:
CONFIGURE_DISABLE_BSP_SETTINGS

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
All BSP specific configuration settings can
be disabled by the application with the
CONFIGURE_DISABLE_BSP_SETTINGS option.

NOTES:
None.

24.19.2 Specify BSP Supports sbrk()

CONSTANT:
CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
This configuration parameter is defined by
a BSP to indicate that it does not allocate
all available memory to the C Program Heap
used by the Malloc Family of routines.

If defined, when malloc() is unable to al-
locate memory, it will call the BSP supplied
sbrk() to obtain more memory.

NOTES:
This parameter should not be defined by the
application. Only the BSP knows how it al-
locates memory to the C Program Heap.

24.19.3 Specify BSP Specific Idle Task

CONSTANT:
BSP_IDLE_TASK_BODY

DATA TYPE:
Function pointer.

RANGE:
Undefined or valid function pointer.

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
If BSP_IDLE_TASK_BODY is defined by the BSP
and CONFIGURE_IDLE_TASK_BODY is not de-
fined by the application, then this BSP spe-
cific idle task body will be used.

NOTES:
As it has knowledge of the specific CPU
model, system controller logic, and periph-
eral buses, a BSP specific IDLE task may be
capable of turning components off to save
power during extended periods of no task
activity

24.19.4 Specify BSP Suggested Value for
IDLE Task Stack Size

CONSTANT:
BSP_IDLE_TASK_STACK_SIZE

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Undefined or positive.

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
If BSP_IDLE_TASK_STACK_SIZE
is defined by the BSP and
CONFIGURE_IDLE_TASK_STACK_SIZE is not
defined by the application, then this BSP
suggested idle task stack size will be used.

344 Chapter 24. Configuring a System

Chapter 24 Section 24.19 RTEMS C User Documentation, Release 4.11.3

NOTES:
The order of precedence for configuring the
IDLE task stack size is:

• RTEMS default minimum stack size.

• If defined, then
CONFIGURE_MINIMUM_TASK_STACK_SIZE.

• If defined, then the BSP specific
BSP_IDLE_TASK_SIZE.

• If defined, then the application speci-
fied CONFIGURE_IDLE_TASK_SIZE.

24.19.5 Specify BSP Specific User Exten-
sions

CONSTANT:
BSP_INITIAL_EXTENSION

DATA TYPE:
List of user extension initializers
(rtems_extensions_table).

RANGE:
Undefined or a list of user extension initial-
izers.

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
If BSP_INITIAL_EXTENSION is defined by the
BSP, then this BSP specific initial extension
will be placed as the last entry in the initial
extension table.

NOTES:
None.

24.19.6 Specifying BSP Specific Interrupt
Stack Size

CONSTANT:
BSP_INTERRUPT_STACK_SIZE

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Undefined or positive.

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
If BSP_INTERRUPT_STACK_SIZE
is defined by the BSP and
CONFIGURE_INTERRUPT_STACK_SIZE is not
defined by the application, then this BSP
specific interrupt stack size will be used.

NOTES:
None.

24.19.7 Specifying BSP Specific Maxi-
mum Devices

CONSTANT:
BSP_MAXIMUM_DEVICES

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Undefined or positive.

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
If BSP_MAXIMUM_DEVICES is defined by the
BSP and CONFIGURE_MAXIMUM_DEVICES is not
defined by the application, then this BSP
specific maximum device count will be used.

NOTES:
This option is specific to the device file
system (devFS) and should not be confused
with the CONFIGURE_MAXIMUM_DRIVERS
option. This parameter only im-
pacts the devFS and thus is only
used by <rtems/confdefs.h> when
CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM
is specified.

24.19.8 BSP Recommends RTEMS
Workspace be Cleared

CONSTANT:
BSP_ZERO_WORKSPACE_AUTOMATICALLY

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

24.19. BSP Specific Settings 345

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.19

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
If BSP_ZERO_WORKSPACE_AUTOMATICALLY
is defined by the BSP and
CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY
is not defined by the application, then the
workspace will be zeroed automatically.

NOTES:
Zeroing memory can add significantly to sys-
tem boot time. It is not necessary for RTEMS
but is often assumed by support libraries.

24.19.9 Specify BSP Prerequisite Drivers

CONSTANT:
CONFIGURE_BSP_PREREQUISITE_DRIVERS

DATA TYPE:
List of device driver initializers
(rtems_driver_address_table).

RANGE:
Undefined or array of device drivers.

DEFAULT VALUE:
This option is BSP specific.

DESCRIPTION:
CONFIGURE_BSP_PREREQUISITE_DRIVERS is
defined if the BSP has device drivers it
needs to include in the Device Driver Table.
This should be defined to the set of device
driver entries that will be placed in the table
at the FRONT of the Device Driver Table
and initialized before any other drivers
INCLUDING any application prerequisite
drivers.

NOTES:
CONFIGURE_BSP_PREREQUISITE_DRIVERS is
typically used by BSPs to configure common
infrastructure such as bus controllers or
probe for devices.

346 Chapter 24. Configuring a System

Chapter 24 Section 24.20 RTEMS C User Documentation, Release 4.11.3

24.20 Idle Task Configuration

This section defines the IDLE task re-
lated configuration parameters supported by
<rtems/confdefs.h>.

24.20.1 Specify Application Specific Idle
Task Body

CONSTANT:
CONFIGURE_IDLE_TASK_BODY

DATA TYPE:
Function pointer.

RANGE:
Undefined or valid function pointer.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_IDLE_TASK_BODY is set to the
function name corresponding to the applica-
tion specific IDLE thread body. If not speci-
fied, the BSP or RTEMS default IDLE thread
body will be used.

NOTES:
None.

24.20.2 Specify Idle Task Stack Size

CONSTANT:
CONFIGURE_IDLE_TASK_STACK_SIZE

DATA TYPE:
Unsigned integer (size_t).

RANGE:
Undefined or positive.

DEFAULT VALUE:
The default value is
RTEMS_MINIMUM_STACK_SIZE.

DESCRIPTION:
CONFIGURE_IDLE_TASK_STACK_SIZE is set to
the desired stack size for the IDLE task.

NOTES:
None.

24.20.3 Specify Idle Task Performs Appli-
cation Initialization

CONSTANT:
CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default, the user is as-
sumed to provide one or more initialization
tasks.

DESCRIPTION:
CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION
is set to indicate that the user has config-
ured NO user initialization tasks or threads
and that the user provided IDLE task will
perform application initialization and then
transform itself into an IDLE task.

NOTES:
If you use this option be careful, the user
IDLE task CANNOT block at all during the
initialization sequence. Further, once ap-
plication initialization is complete, it must
make itself preemptible and enter an IDLE
body loop.

The IDLE task must run at the lowest priority
of all tasks in the system.

24.20. Idle Task Configuration 347

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.21

24.21 Scheduler Algorithm Config-
uration

This section defines the configuration parame-
ters related to selecting a scheduling algorithm
for an application. For the schedulers built into
RTEMS, the configuration is straightforward.
All that is required is to define the configu-
ration macro which specifies which scheduler
you want for in your application. The currently
available schedulers are:

The pluggable scheduler interface also enables
the user to provide their own scheduling algo-
rithm. If you choose to do this, you must define
multiple configuration macros.

24.21.1 Use Deterministic Priority Sched-
uler

CONSTANT:
CONFIGURE_SCHEDULER_PRIORITY

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is defined by default. This is the default
scheduler and specifying this configuration
parameter is redundant.

DESCRIPTION:
The Deterministic Priority Scheduler is
the default scheduler in RTEMS for uni-
processor applications and is designed for
predictable performance under the highest
loads. It can block or unblock a thread in
a constant amount of time. This scheduler
requires a variable amount of memory based
upon the number of priorities configured in
the system.

NOTES:
This scheduler may be explicitly selected by
defining CONFIGURE_SCHEDULER_PRIORITY al-
though this is equivalent to the default be-
havior.

24.21.2 Use Simple Priority Scheduler

CONSTANT:
CONFIGURE_SCHEDULER_SIMPLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
When defined, the Simple Priority Scheduler
is used at the thread scheduling algorithm.
This is an alternative scheduler in RTEMS. It
is designed to provide the same task schedul-
ing behaviour as the Deterministic Priority
Scheduler while being simpler in implemen-
tation and uses less memory for data man-
agement. It maintains a single sorted list of
all ready threads. Thus blocking or unblock-
ing a thread is not a constant time operation
with this scheduler.

This scheduler may be explicitly selected by
defining CONFIGURE_SCHEDULER_SIMPLE.

NOTES:
This scheduler is appropriate for use in small
systems where RAM is limited.

24.21.3 Use Earliest Deadline First Sched-
uler

CONSTANT:
CONFIGURE_SCHEDULER_EDF

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
The Earliest Deadline First Scheduler (EDF)
is an alternative scheduler in RTEMS for
uni-processor applications. The EDF sched-
ules tasks with dynamic priorities equal to
deadlines. The deadlines are declared us-
ing only Rate Monotonic manager which

348 Chapter 24. Configuring a System

Chapter 24 Section 24.21 RTEMS C User Documentation, Release 4.11.3

handles periodic behavior. Period is always
equal to deadline. If a task does not have
any deadline declared or the deadline is can-
celled, the task is considered a background
task which is scheduled in case no deadline-
driven tasks are ready to run. Moreover,
multiple background tasks are scheduled ac-
cording their priority assigned upon initial-
ization. All ready tasks reside in a single
ready queue.

This scheduler may be explicitly selected by
defining CONFIGURE_SCHEDULER_EDF.

NOTES:
None.

24.21.4 Use Constant Bandwidth Server
Scheduler

CONSTANT:
CONFIGURE_SCHEDULER_CBS

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
The Constant Bandwidth Server Scheduler
(CBS) is an alternative scheduler in RTEMS
for uni-processor applications. The CBS is
a budget aware extension of EDF scheduler.
The goal of this scheduler is to ensure tem-
poral isolation of tasks. The CBS is equipped
with a set of additional rules and provides
with an extensive API.

This scheduler may be explicitly selected by
defining CONFIGURE_SCHEDULER_CBS.

NOTES:
None.

24.21.5 Use Deterministic Priority SMP
Scheduler

CONSTANT:
CONFIGURE_SCHEDULER_PRIORITY_SMP

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
The Deterministic Priority SMP Scheduler
is derived from the Deterministic Prior-
ity Scheduler but is capable of scheduling
threads across multiple processors.

In a configuration with SMP en-
abled at configure time, it may
be explicitly selected by defining
CONFIGURE_SCHEDULER_PRIORITY_SMP.

NOTES:
This scheduler is only available when
RTEMS is configured with SMP support en-
abled.

This scheduler is currently the default in
SMP configurations and is only selected
when CONFIGURE_SMP_APPLICATION is de-
fined.

24.21.6 Use Simple SMP Priority Sched-
uler

CONSTANT:
CONFIGURE_SCHEDULER_SIMPLE_SMP

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
The Simple SMP Priority Scheduler is de-
rived from the Simple Priority Scheduler but
is capable of scheduling threads across mul-
tiple processors. It is designed to provide
the same task scheduling behaviour as the
Deterministic Priority Scheduler while dis-
tributing threads across multiple processors.
Being based upon the Simple Priority Sched-
uler, it also maintains a single sorted list of

24.21. Scheduler Algorithm Configuration 349

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.21

all ready threads. Thus blocking or unblock-
ing a thread is not a constant time operation
with this scheduler.

In addition, when allocating threads to pro-
cessors, the algorithm is not constant time.
This algorithm was not designed with effi-
ciency as a primary design goal. Its primary
design goal was to provide an SMP-aware
scheduling algorithm that is simple to under-
stand.

In a configuration with SMP enabled at con-
figure time, it may be explicitly selected by
defining CONFIGURE_SCHEDULER_SIMPLE_SMP.

NOTES:
This scheduler is only available when
RTEMS is configured with SMP support en-
abled.

24.21.7 Configuring a Scheduler Name

CONSTANT:
CONFIGURE_SCHEDULER_NAME

DATA TYPE:
RTEMS Name (rtems_name).

RANGE:
Any value.

DEFAULT VALUE:

The default name is

• "UCBS" for the Uni-Processor CBS
scheduler,

• "UEDF" for the Uni-Processor EDF
scheduler,

• "UPD " for the Uni-Processor Deter-
ministic Priority scheduler,

• "UPS " for the Uni-Processor Simple
Priority scheduler,

• "MPA " for the Multi-Processor Priority
Affinity scheduler, and

• "MPD " for the Multi-Processor Deter-
ministic Priority scheduler, and

• "MPS " for the Multi-Processor Simple
Priority scheduler.

DESCRIPTION:
Schedulers can be identified via
rtems_scheduler_ident. The name of
the scheduler is determined by the configu-
ration.

NOTES:
None.

24.21.8 Configuring a User Provided
Scheduler

CONSTANT:
CONFIGURE_SCHEDULER_USER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
RTEMS allows the application to provide
its own task/thread scheduling algorithm.
In order to do this, one must define
CONFIGURE_SCHEDULER_USER to indicate the
application provides its own scheduling al-
gorithm. If CONFIGURE_SCHEDULER_USER is
defined then the following additional macros
must be defined:

• CONFIGURE_SCHEDULER_CONTEXT must be
defined to a static definition of the
scheduler context of the user scheduler.

• CONFIGURE_SCHEDULER_CONTROLS must
be defined to a scheduler control initial-
izer for the user scheduler.

• CONFIGURE_SCHEDULER_USER_PER_THREAD
must be defined to the type of the
per-thread information of the user
scheduler.

NOTES:
At this time, the mechanics and require-
ments for writing a new scheduler are
evolving and not fully documented. It is
recommended that you look at the ex-
isting Deterministic Priority Scheduler in
cpukit/score/src/schedulerpriority*.c
for guidance. For guidance on the

350 Chapter 24. Configuring a System

Chapter 24 Section 24.21 RTEMS C User Documentation, Release 4.11.3

configuration macros, please examine
cpukit/sapi/include/confdefs.h for how
these are defined for the Deterministic
Priority Scheduler.

24.21.9 Configuring Clustered Schedulers

Clustered scheduling helps to control the
worst-case latencies in a multi-processor sys-
tem. The goal is to reduce the amount of
shared state in the system and thus prevention
of lock contention. Modern multi-processor
systems tend to have several layers of data and
instruction caches. With clustered scheduling
it is possible to honour the cache topology of
a system and thus avoid expensive cache syn-
chronization traffic.

We have clustered scheduling in case the set of
processors of a system is partitioned into non-
empty pairwise-disjoint subsets. These subsets
are called clusters. Clusters with a cardinality
of one are partitions. Each cluster is owned by
exactly one scheduler instance. In order to use
clustered scheduling the application designer
has to answer two questions.

1. How is the set of processors partitioned
into clusters?

2. Which scheduler is used for which clus-
ter?

CONFIGURATION:
The schedulers in an SMP system are stat-
ically configured on RTEMS. Firstly the ap-
plication must select which scheduling algo-
rithms are available with the following de-
fines

• CONFIGURE_SCHEDULER_PRIORITY_SMP,

• CONFIGURE_SCHEDULER_SIMPLE_SMP,
and

• CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP.

This is necessary to calculate the per-thread
overhead introduced by the schedulers. Af-
ter these definitions the configuration file
must #include <rtems/scheduler.h> to
have access to scheduler specific configura-
tion macros. Each scheduler needs a context
to store state information at run-time. To
provide a context for each scheduler is the

next step. Use the following macros to cre-
ate scheduler contexts

• RTEMS_SCHEDULER_CONTEXT_PRIORITY_SMP(name,prio_count),

• RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(name),
and

• RTEMS_SCHEDULER_CONTEXT_PRIORITY_AFFINITY_SMP(name,prio_count).

The name parameter is used as part of a
designator for a global variable, so the
usual C/C++ designator rules apply. Addi-
tional parameters are scheduler specific. The
schedulers are registered in the system via
the scheduler table. To create the scheduler
table define CONFIGURE_SCHEDULER_CONTROLS
to a list of the following scheduler control
initializers

• RTEMS_SCHEDULER_CONTROL_PRIORITY_SMP(name,obj_name),

• RTEMS_SCHEDULER_CONTROL_SIMPLE_SMP(name,obj_name),
and

• RTEMS_SCHEDULER_CONTROL_PRIORITY_AFFINITY_SMP(name,obj_name).

The name parameter must correspond to
the parameter defining the scheduler con-
text. The obj_name determines the sched-
uler object name and can be used in
rtems_scheduler_ident() to get the sched-
uler object identifier.

The last step is to define which processor
uses which scheduler. For this purpose a
scheduler assignment table must be defined.
The entry count of this table must be equal
to the configured maximum processors
(CONFIGURE_SMP_MAXIMUM_PROCESSORS).
A processor assignment to a scheduler
can be optional or mandatory. The boot
processor must have a scheduler as-
signed. In case the system needs more
mandatory processors than available then
a fatal run-time error will occur. To
specify the scheduler assignments define
CONFIGURE_SMP_SCHEDULER_ASSIGNMENTS
to a list of
RTEMS_SCHEDULER_ASSIGN(index,attr) and
RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER
macros. The index parameter must be a
valid index into the scheduler table. The
attr parameter defines the scheduler as-
signment attributes. By default a scheduler
assignment to a processor is optional. For

24.21. Scheduler Algorithm Configuration 351

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.21

the scheduler assignment attribute use one
of the mutually exclusive variants

• RTEMS_SCHEDULER_ASSIGN_DEFAULT,

• RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY,
and

• RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL.

ERRORS:
In case one of the scheduler indices
in‘‘CONFIGURE_SMP_SCHEDULER_ASSIGNMENTS‘‘
is invalid a link-time error will oc-
cur with an undefined reference to
RTEMS_SCHEDULER_INVALID_INDEX.

Some fatal errors may occur in case of sched-
uler configuration inconsistencies or a lack
of processors on the system. The fatal source
is RTEMS_FATAL_SOURCE_SMP. None of the er-
rors is internal.

• SMP_FATAL_BOOT_PROCESSOR_NOT_ASSIGNED_TO_SCHEDULER
- the boot processor must have a sched-
uler assigned.

• SMP_FATAL_MANDATORY_PROCESSOR_NOT_PRESENT
- there exists a mandatory processor
beyond the range of physically or
virtually available processors. The
processor demand must be reduced for
this system.

• SMP_FATAL_START_OF_MANDATORY_PROCESSOR_FAILED
- the start of a mandatory processor
failed during system initialization. The
system may not have this processor
at all or it could be a problem with a
boot loader for example. Check the
CONFIGURE_SMP_SCHEDULER_ASSIGNMENTS
definition.

• SMP_FATAL_MULTITASKING_START_ON_UNASSIGNED_PROCESSOR
- it is not allowed to start multitasking
on a processor with no scheduler
assigned.

EXAMPLE:
The following example shows a scheduler
configuration for a hypothetical product us-
ing two chip variants. One variant has
four processors which is used for the nor-
mal product line and another provides eight
processors for the high-performance product
line. The first processor performs hard-real

time control of actuators and sensors. The
second processor is not used by RTEMS at
all and runs a Linux instance to provide a
graphical user interface. The additional pro-
cessors are used for a worker thread pool to
perform data processing operations.

The processors managed by RTEMS use two
Deterministic Priority scheduler instances
capable of dealing with 256 priority levels.
The scheduler with index zero has the name
"IO ". The scheduler with index one has
the name "WORK". The scheduler assign-
ments of the first, third and fourth processor
are mandatory, so the system must have at
least four processors, otherwise a fatal run-
time error will occur during system startup.
The processor assignments for the fifth up to
the eighth processor are optional so that the
same application can be used for the normal
and high-performance product lines. The
second processor has no scheduler assigned
and runs Linux. A hypervisor will ensure
that the two systems cannot interfere in an
undesirable way.

1 #define CONFIGURE_SMP_MAXIMUM_PROCESSORS 8
2 #define CONFIGURE_MAXIMUM_PRIORITY 255
3 /* Make the scheduler algorithm available␣

→˓*/
4 #define CONFIGURE_SCHEDULER_PRIORITY_SMP
5 #include <rtems/scheduler.h>
6 /* Create contexts for the two scheduler␣

→˓instances */
7 RTEMS_SCHEDULER_CONTEXT_PRIORITY_SMP(io, ␣

→˓CONFIGURE_MAXIMUM_PRIORITY + 1);
8 RTEMS_SCHEDULER_CONTEXT_PRIORITY_SMP(work,

→˓ CONFIGURE_MAXIMUM_PRIORITY + 1);
9 /* Define the scheduler table */

10 #define CONFIGURE_SCHEDULER_CONTROLS \\
11 RTEMS_SCHEDULER_CONTROL_

→˓PRIORITY_SMP(\
12 io, \
13 rtems_build_name('I', 'O',

→˓ ' ', ' ') \
14), \
15 RTEMS_SCHEDULER_CONTROL_

→˓PRIORITY_SMP(\
16 work, \
17 rtems_build_name('W', 'O',

→˓ 'R', 'K') \
18)
19 /* Define the processor to scheduler ␣

→˓assignments */
20 #define CONFIGURE_SMP_SCHEDULER_

→˓ASSIGNMENTS \

352 Chapter 24. Configuring a System

Chapter 24 Section 24.21 RTEMS C User Documentation, Release 4.11.3

21 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), ␣
→˓\

22 RTEMS_SCHEDULER_ASSIGN_NO_
→˓SCHEDULER, \

23 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), ␣
→˓\

24 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), ␣
→˓\

25 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \

26 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \

27 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \

28 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_
→˓SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL)

24.21. Scheduler Algorithm Configuration 353

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.22

24.22 SMP Specific Configuration
Parameters

When RTEMS is configured to support SMP
target systems, there are other configuration
parameters which apply.

24.22.1 Enable SMP Support for Applica-
tions

CONSTANT:
CONFIGURE_SMP_APPLICATION

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_SMP_APPLICATION must be de-
fined to enable SMP support for the appli-
cation.

NOTES:
This define may go away in the future in
case all RTEMS components are SMP ready.
This configuration define is ignored on uni-
processor configurations.

24.22.2 Specify Maximum Processors in
SMP System

CONSTANT:
CONFIGURE_SMP_MAXIMUM_PROCESSORS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Defined or undefined.

DEFAULT VALUE:
The default value is 1, (if CONFIG-
URE_SMP_APPLICATION is defined).

DESCRIPTION:
CONFIGURE_SMP_MAXIMUM_PROCESSORS must
be set to the number of processors in the
SMP configuration.

NOTES:
If there are more processors available than
configured, the rest will be ignored. This
configuration define is ignored on uni-
processor configurations.

354 Chapter 24. Configuring a System

Chapter 24 Section 24.23 RTEMS C User Documentation, Release 4.11.3

24.23 Device Driver Table

This section defines the configuration param-
eters related to the automatic generation of a
Device Driver Table. As <rtems/confdefs.h>
only is aware of a small set of standard device
drivers, the generated Device Driver Table is
suitable for simple applications with no custom
device drivers.

Note that network device drivers are not con-
figured in the Device Driver Table.

24.23.1 Specifying the Maximum Number
of Device Drivers

CONSTANT:

CONFIGURE_MAXIMUM_DRIVERS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
This is computed by default,
and is set to the number of de-
vice drivers configured using the
CONFIGURE_APPLICATIONS_NEEDS_XXX_DRIVER
configuration parameters.

DESCRIPTION:
CONFIGURE_MAXIMUM_DRIVERS is defined as
the number of device drivers per node.

NOTES:
If the application will dynamically in-
stall device drivers, then this configu-
ration parameter must be larger than
the number of statically configured de-
vice drivers. Drivers configured using the
CONFIGURE_APPLICATIONS_NEEDS_XXX_DRIVER
configuration parameters are statically in-
stalled.

24.23.2 Enable Console Device Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
is defined if the application wishes to include
the Console Device Driver.

NOTES:
This device driver is responsible for pro-
viding standard input and output using
/dev/console.

BSPs should be constructed in a manner that
allows printk() to work properly without
the need for the console driver to be config-
ured.

24.23.3 Enable Clock Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
is defined if the application wishes to include
the Clock Device Driver.

NOTES:
This device driver is responsible for provid-
ing a regular interrupt which invokes a clock
tick directive.

If neither the Clock Driver not
Benchmark Timer is enabled
and the configuration parameter
CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER
is not defined, then a compile time error will
occur.

24.23. Device Driver Table 355

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.23

24.23.4 Enable the Benchmark Timer
Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER
is defined if the application wishes to in-
clude the Timer Driver. This device driver is
used to benchmark execution times by the
RTEMS Timing Test Suites.

NOTES:
If neither the Clock Driver not
Benchmark Timer is enabled
and the configuration parameter
CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER
is not defined, then a compile time error will
occur.

24.23.5 Specify Clock and Benchmark
Timer Drivers Are Not Needed

CONSTANT:
CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER
is defined when the application does NOT
want the Clock Device Driver and is NOT
using the Timer Driver. The inclusion or ex-
clusion of the Clock Driver must be explicit
in user applications.

NOTES:
This configuration parameter is intended to

prevent the common user error of using the
Hello World example as the baseline for
an application and leaving out a clock tick
source.

24.23.6 Enable Real-Time Clock Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER
is defined if the application wishes to
include the Real-Time Clock Driver.

NOTES:
Most BSPs do not include support for a real-
time clock. This is because many boards do
not include the required hardware.

If this is defined and the BSP does not have
this device driver, then the user will get a
link time error for an undefined symbol.

24.23.7 Enable the Watchdog Device
Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER
is defined if the application wishes to include
the Watchdog Driver.

NOTES:
Most BSPs do not include support for a

356 Chapter 24. Configuring a System

Chapter 24 Section 24.23 RTEMS C User Documentation, Release 4.11.3

watchdog device driver. This is because
many boards do not include the required
hardware.

If this is defined and the BSP does not have
this device driver, then the user will get a
link time error for an undefined symbol.

24.23.8 Enable the Graphics Frame Buffer
Device Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER
is defined if the application wishes to include
the BSP’s Frame Buffer Device Driver.

NOTES:
Most BSPs do not include support for a
Frame Buffer Device Driver. This is because
many boards do not include the required
hardware.

If this is defined and the BSP does not have
this device driver, then the user will get a
link time error for an undefined symbol.

24.23.9 Enable Stub Device Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

is defined if the application wishes to include
the Stub Device Driver.

NOTES:
This device driver simply provides entry
points that return successful and is primar-
ily a test fixture. It is supported by all BSPs.

24.23.10 Specify Application Prerequisite
Device Drivers

CONSTANT:
CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS

DATA TYPE:
device driver entry structures

RANGE:
Undefined or set of device driver entry struc-
tures

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS
is defined if the application has device
drivers it needs to include in the Device
Driver Table. This should be defined to
the set of device driver entries that will be
placed in the table at the FRONT of the De-
vice Driver Table and initialized before any
other drivers EXCEPT any BSP prerequisite
drivers.

NOTES:
In some cases, it is used by System On
Chip BSPs to support peripheral buses be-
yond those normally found on the System
On Chip. For example, this is used by one
RTEMS system which has implemented a
SPARC/ERC32 based board with VMEBus.
The VMEBus Controller initialization is per-
formed by a device driver configured via this
configuration parameter.

24.23.11 Specify Extra Application Device
Drivers

CONSTANT:
CONFIGURE_APPLICATION_EXTRA_DRIVERS

24.23. Device Driver Table 357

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.23

DATA TYPE:
device driver entry structures

RANGE:
Undefined or set of device driver entry struc-
tures

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_APPLICATION_EXTRA_DRIVERS is
defined if the application has device drivers
it needs to include in the Device Driver
Table. This should be defined to the set of
device driver entries that will be placed in
the table at the END of the Device Driver
Table.

NOTES:
None.

24.23.12 Enable /dev/null Device Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
This configuration variable is specified to en-
able /dev/null device driver.

NOTES:
This device driver is supported by all BSPs.

24.23.13 Enable /dev/zero Device Driver

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
This configuration variable is specified to en-
able /dev/zero device driver.

NOTES:
This device driver is supported by all BSPs.

24.23.14 Specifying Application Defined
Device Driver Table

CONSTANT:
CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default, indicating the
<rtems/confdefs.h> is providing the device
driver table.

DESCRIPTION:
CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE
is defined if the application wishes to
provide their own Device Driver Table.

The table must be an array of
rtems_driver_address_table entries
named‘‘ _IO_Driver_address_table‘‘. The
application must also provide a const vari-
able _IO_Number_of_drivers of type size_t
indicating the number of entries in the
_IO_Driver_address_table.

NOTES:
It is expected that there the application
would only rarely need to do this.

358 Chapter 24. Configuring a System

Chapter 24 Section 24.24 RTEMS C User Documentation, Release 4.11.3

24.24 Multiprocessing Configura-
tion

This section defines the multiprocessing re-
lated system configuration parameters sup-
ported by <rtems/confdefs.h>. They are only
used if the Multiprocessing Support (distinct
from the SMP support) is enabled at configure
time using the --enable-multiprocessing op-
tion.

Additionally, this class of Configura-
tion Constants are only applicable if
CONFIGURE_MP_APPLICATION is defined.

24.24.1 Specify Application Will Use Mul-
tiprocessing

CONSTANT:
CONFIGURE_MP_APPLICATION

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
This configuration parameter must be de-
fined to indicate that the application intends
to be part of a multiprocessing configuration.
Additional configuration parameters are as-
sumed to be provided.

NOTES:
This has no impact unless RTEMS
was configured and built using the
--enable-multiprocessing option.

24.24.2 Configure Node Number in Multi-
processor Configuration

CONSTANT:
CONFIGURE_MP_NODE_NUMBER

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is NODE_NUMBER, which is
assumed to be set by the compilation envi-
ronment.

DESCRIPTION:
CONFIGURE_MP_NODE_NUMBER is the node
number of this node in a multiprocessor
system.

NOTES:
In the RTEMS Multiprocessing Test Suite, the
node number is derived from the Makefile
variable NODE_NUMBER. The same code is com-
piled with the NODE_NUMBER set to different
values. The test programs behave differently
based upon their node number.

24.24.3 Configure Maximum Node in
Multiprocessor Configuration

CONSTANT:
CONFIGURE_MP_MAXIMUM_NODES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

DEFAULT VALUE:
The default value is 2.

DESCRIPTION:
CONFIGURE_MP_MAXIMUM_NODES is the maxi-
mum number of nodes in a multiprocessor
system.

NOTES:
None.

24.24.4 Configure Maximum Global Ob-
jects in Multiprocessor Configura-
tion

CONSTANT:
CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Positive.

24.24. Multiprocessing Configuration 359

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.24

DEFAULT VALUE:
The default value is 32.

DESCRIPTION:
CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS is
the maximum number of concurrently active
global objects in a multiprocessor system.

NOTES:
This value corresponds to the total number
of objects which can be created with the
RTEMS_GLOBAL attribute.

24.24.5 Configure Maximum Proxies in
Multiprocessor Configuration

CONSTANT:
CONFIGURE_MP_MAXIMUM_PROXIES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Undefined or positive.

DEFAULT VALUE:
The default value is 32.

DESCRIPTION:
CONFIGURE_MP_MAXIMUM_PROXIES is the
maximum number of concurrently active
thread/task proxies on this node in a
multiprocessor system.

NOTES:
Since a proxy is used to represent a remote
task/thread which is blocking on this node.
This configuration parameter reflects the
maximum number of remote tasks/threads
which can be blocked on objects on this
node.

24.24.6 Configure MPCI in Multiprocessor
Configuration

CONSTANT:
CONFIGURE_MP_MPCI_TABLE_POINTER

DATA TYPE:
pointer to rtems_mpci_table

RANGE:
undefined or valid pointer

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_MP_MPCI_TABLE_POINTER is the
pointer to the MPCI Configuration Ta-
ble. The default value of this field
is‘‘&MPCI_table‘‘.

NOTES:
RTEMS provides a Shared Memory MPCI De-
vice Driver which can be used on any Multi-
processor System assuming the BSP provides
the proper set of supporting methods.

24.24.7 Do Not Generate Multiprocessor
Configuration Table

CONSTANT:
CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE
is defined if the application wishes to pro-
vide their own Multiprocessing Configura-
tion Table. The generated table is named
Multiprocessing_configuration.

NOTES:
This is a configuration parameter which is
very unlikely to be used by an application. If
you find yourself wanting to use it in an ap-
plication, please reconsider and discuss this
on the RTEMS Users mailing list.

360 Chapter 24. Configuring a System

Chapter 24 Section 24.25 RTEMS C User Documentation, Release 4.11.3

24.25 Ada Tasks

This section defines the system configuration
parameters supported by <rtems/confdefs.h>
related to configuring RTEMS to support a task
using Ada tasking with GNAT/RTEMS.

These configuration parameters are only
available when RTEMS is built with the
--enable-ada configure option and the appli-
cation specifies CONFIGURE_GNAT_RTEMS.

Additionally RTEMS includes an Ada language
binding to the Classic API which has a test
suite. This test suite is enabled only when‘‘–
enable-tests‘‘ and --enable-expada are speci-
fied on the configure command.

24.25.1 Specify Application Includes Ada
Code

CONSTANT:
CONFIGURE_GNAT_RTEMS

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_GNAT_RTEMS is defined to inform
RTEMS that the GNAT Ada run-time is to be
used by the application.

NOTES:
This configuration parameter is critical as it
makes‘‘<rtems/confdefs.h>‘‘ configure the
resources (POSIX API Threads, Mutexes,
Condition Variables, and Keys) used implic-
itly by the GNAT run-time.

24.25.2 Specify the Maximum Number of
Ada Tasks.

CONSTANT:
CONFIGURE_MAXIMUM_ADA_TASKS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Undefined or positive.

DEFAULT VALUE:
If CONFIGURE_GNAT_RTEMS is defined, then the
default value is 20, otherwise the default
value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_ADA_TASKS is the num-
ber of Ada tasks that can be concurrently ac-
tive in the system.

NOTES:
None.

24.25.3 Specify the Maximum Fake Ada
Tasks

CONSTANT:

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 0.

DESCRIPTION:
CONFIGURE_MAXIMUM_FAKE_ADA_TASKS is the
number of fake Ada tasks that can be con-
currently active in the system. A fake Ada
task is a non-Ada task that makes calls back
into Ada code and thus implicitly uses the
Ada run-time.

NOTES:
None.

24.25. Ada Tasks 361

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.26

24.26 PCI Library

This section defines the system configuration
parameters supported by rtems/confdefs.h
related to configuring the PCI Library for
RTEMS.

The PCI Library startup behaviour can be con-
figured in four different ways depending on
how CONFIGURE_PCI_CONFIG_LIB is defined:

PCI_LIB_AUTO
Used to enable the PCI auto configura-
tion software. PCI will be automatically
probed, PCI buses enumerated, all devices
and bridges will be initialized using Plug
& Play software routines. The PCI device
tree will be populated based on the PCI de-
vices found in the system, PCI devices will be
configured by allocating address region re-
sources automatically in PCI space according
to the BSP or host bridge driver set up.

PCI_LIB_READ
Used to enable the PCI read configuration
software. The current PCI configuration is
read to create the RAM representation (the
PCI device tree) of the PCI devices present.
PCI devices are assumed to already have
been initialized and PCI buses enumerated,
it is therefore required that a BIOS or a boot
loader has set up configuration space prior
to booting into RTEMS.

PCI_LIB_STATIC
Used to enable the PCI static configuration
software. The user provides a PCI tree with
information how all PCI devices are to be
configured at compile time by linking in a
custom struct pci_bus pci_hb tree. The
static PCI library will not probe PCI for de-
vices, instead it will assume that all devices
defined by the user are present, it will enu-
merate the PCI buses and configure all PCI
devices in static configuration accordingly.
Since probe and allocation software is not
needed the startup is faster, has smaller foot-
print and does not require dynamic memory
allocation.

PCI_LIB_PERIPHERAL
Used to enable the PCI peripheral configura-
tion. It is similar to PCI_LIB_STATIC, but it

will never write the configuration to the PCI
devices since PCI peripherals are not allowed
to access PCI configuration space.

Note that selecting PCI_LIB_STATIC or
PCI_LIB_PERIPHERAL but not defining pci_hb
will reuslt in link errors. Note also that in
these modes Plug & Play is not performed.

362 Chapter 24. Configuring a System

Chapter 24 Section 24.27 RTEMS C User Documentation, Release 4.11.3

24.27 Go Tasks

24.27.1 Specify Application Includes Go
Code

CONSTANT:
CONFIGURE_ENABLE_GO

DATA TYPE:
Boolean feature macro.

RANGE:
Defined or undefined.

DEFAULT VALUE:
This is not defined by default.

DESCRIPTION:
CONFIGURE_ENABLE_GO is defined to inform
RTEMS that the Go run-time is to be used
by the application.

NOTES:
The Go language support is experimental

24.27.2 Specify the maximum number of
Go routines

CONSTANT:
CONFIGURE_MAXIMUM_GOROUTINES

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 400

DESCRIPTION:
CONFIGURE_MAXIMUM_GOROUTINES is defined
to specify the maximum number of Go rou-
tines.

NOTES:
The Go language support is experimental

24.27.3 Specify the maximum number of
Go Channels

CONSTANT:
CONFIGURE_MAXIMUM_GO_CHANNELS

DATA TYPE:
Unsigned integer (uint32_t).

RANGE:
Zero or positive.

DEFAULT VALUE:
The default value is 500

DESCRIPTION:
CONFIGURE_MAXIMUM_GO_CHANNELS is defined
to specify the maximum number of Go chan-
nels.

NOTES:
The Go language support is experimental

24.27. Go Tasks 363

RTEMS C User Documentation, Release 4.11.3 Chapter 24 Section 24.28

24.28 Configuration Data Struc-
tures

It is recommended that applications be config-
ured using <rtems/confdefs.h> as it is sim-
pler and insulates applications from changes
in the underlying data structures. However,
it is sometimes important to understand the
data structures that are automatically filled in
by the configuration parameters. This section
describes the primary configuration data struc-
tures.

If the user wishes to see the details of a par-
ticular data structure, they are are advised to
look at the source code. After all, that is one of
the advantages of RTEMS.

364 Chapter 24. Configuring a System

CHAPTER

TWENTYFIVE

MULTIPROCESSING MANAGER

365

RTEMS C User Documentation, Release 4.11.3 Chapter 25 Section 25.1

25.1 Introduction

In multiprocessor real-time systems, new re-
quirements, such as sharing data and global
resources between processors, are introduced.
This requires an efficient and reliable commu-
nications vehicle which allows all processors to
communicate with each other as necessary. In
addition, the ramifications of multiple proces-
sors affect each and every characteristic of a
real-time system, almost always making them
more complicated.

RTEMS addresses these issues by providing
simple and flexible real-time multiprocessing
capabilities. The executive easily lends itself to
both tightly-coupled and loosely-coupled con-
figurations of the target system hardware. In
addition, RTEMS supports systems composed
of both homogeneous and heterogeneous mix-
tures of processors and target boards.

A major design goal of the RTEMS executive
was to transcend the physical boundaries of
the target hardware configuration. This goal
is achieved by presenting the application soft-
ware with a logical view of the target sys-
tem where the boundaries between processor
nodes are transparent. As a result, the appli-
cation developer may designate objects such
as tasks, queues, events, signals, semaphores,
and memory blocks as global objects. These
global objects may then be accessed by any
task regardless of the physical location of the
object and the accessing task. RTEMS auto-
matically determines that the object being ac-
cessed resides on another processor and per-
forms the actions required to access the de-
sired object. Simply stated, RTEMS allows the
entire system, both hardware and software, to
be viewed logically as a single system.

The directives provided by the Manager are:

• rtems_multiprocessing_announce
(page 375) - A multiprocessing commu-
nications packet has arrived

366 Chapter 25. Multiprocessing Manager

Chapter 25 Section 25.2 RTEMS C User Documentation, Release 4.11.3

25.2 Background

RTEMS makes no assumptions regarding the
connection media or topology of a multipro-
cessor system. The tasks which compose a
particular application can be spread among as
many processors as needed to satisfy the appli-
cation’s timing requirements. The application
tasks can interact using a subset of the RTEMS
directives as if they were on the same proces-
sor. These directives allow application tasks
to exchange data, communicate, and synchro-
nize regardless of which processor they reside
upon.

The RTEMS multiprocessor execution model
is multiple instruction streams with multiple
data streams (MIMD). This execution model
has each of the processors executing code in-
dependent of the other processors. Because of
this parallelism, the application designer can
more easily guarantee deterministic behavior.

By supporting heterogeneous environments,
RTEMS allows the systems designer to select
the most efficient processor for each subsys-
tem of the application. Configuring RTEMS for
a heterogeneous environment is no more diffi-
cult than for a homogeneous one. In keeping
with RTEMS philosophy of providing transpar-
ent physical node boundaries, the minimal het-
erogeneous processing required is isolated in
the MPCI layer.

25.2.1 Nodes

A processor in a RTEMS system is referred to
as a node. Each node is assigned a unique
non-zero node number by the application de-
signer. RTEMS assumes that node numbers
are assigned consecutively from one to the
maximum_nodes configuration parameter. The
node number, node, and the maximum num-
ber of nodes, maximum_nodes, in a system are
found in the Multiprocessor Configuration Ta-
ble. The maximum_nodes field and the number
of global objects, maximum_global_objects, is
required to be the same on all nodes in a sys-
tem.

The node number is used by RTEMS to iden-
tify each node when performing remote oper-

ations. Thus, the Multiprocessor Communica-
tions Interface Layer (MPCI) must be able to
route messages based on the node number.

25.2.2 Global Objects

All RTEMS objects which are created with the
GLOBAL attribute will be known on all other
nodes. Global objects can be referenced from
any node in the system, although certain di-
rective specific restrictions (e.g. one cannot
delete a remote object) may apply. A task
does not have to be global to perform opera-
tions involving remote objects. The maximum
number of global objects is the system is user
configurable and can be found in the maxi-
mum_global_objects field in the Multiproces-
sor Configuration Table. The distribution of
tasks to processors is performed during the ap-
plication design phase. Dynamic task reloca-
tion is not supported by RTEMS.

25.2.3 Global Object Table

RTEMS maintains two tables containing object
information on every node in a multiprocessor
system: a local object table and a global object
table. The local object table on each node is
unique and contains information for all objects
created on this node whether those objects are
local or global. The global object table con-
tains information regarding all global objects
in the system and, consequently, is the same
on every node.

Since each node must maintain an identical
copy of the global object table, the maximum
number of entries in each copy of the table
must be the same. The maximum number of
entries in each copy is determined by the max-
imum_global_objects parameter in the Multi-
processor Configuration Table. This parame-
ter, as well as the maximum_nodes parameter,
is required to be the same on all nodes. To
maintain consistency among the table copies,
every node in the system must be informed of
the creation or deletion of a global object.

25.2. Background 367

RTEMS C User Documentation, Release 4.11.3 Chapter 25 Section 25.2

25.2.4 Remote Operations

When an application performs an operation on
a remote global object, RTEMS must generate
a Remote Request (RQ) message and send it to
the appropriate node. After completing the re-
quested operation, the remote node will build
a Remote Response (RR) message and send it
to the originating node. Messages generated
as a side-effect of a directive (such as deleting
a global task) are known as Remote Processes
(RP) and do not require the receiving node to
respond.

Other than taking slightly longer to execute di-
rectives on remote objects, the application is
unaware of the location of the objects it acts
upon. The exact amount of overhead required
for a remote operation is dependent on the
media connecting the nodes and, to a lesser
degree, on the efficiency of the user-provided
MPCI routines.

The following shows the typical transaction se-
quence during a remote application:

1. The application issues a directive access-
ing a remote global object.

2. RTEMS determines the node on which
the object resides.

3. RTEMS calls the user-provided MPCI
routine GET_PACKET to obtain a packet in
which to build a RQ message.

4. After building a message packet, RTEMS
calls the user-provided MPCI routine
SEND_PACKET to transmit the packet to
the node on which the object resides (re-
ferred to as the destination node).

5. The calling task is blocked until the RR
message arrives, and control of the pro-
cessor is transferred to another task.

6. The MPCI layer on the destination
node senses the arrival of a packet
(commonly in an ISR), and calls the
rtems_multiprocessing_announce direc-
tive. This directive readies the Multipro-
cessing Server.

7. The Multiprocessing Server calls
the user-provided MPCI routine
RECEIVE_PACKET, performs the requested

operation, builds an RR message, and
returns it to the originating node.

8. The MPCI layer on the originating node
senses the arrival of a packet (typically
via an interrupt), and calls the RTEMS
rtems_multiprocessing_announce direc-
tive. This directive readies the Multipro-
cessing Server.

9. The Multiprocessing Server calls
the user-provided MPCI routine
RECEIVE_PACKET, readies the original
requesting task, and blocks until another
packet arrives. Control is transferred to
the original task which then completes
processing of the directive.

If an uncorrectable error occurs in the user-
provided MPCI layer, the fatal error handler
should be invoked. RTEMS assumes the reli-
able transmission and reception of messages
by the MPCI and makes no attempt to detect
or correct errors.

25.2.5 Proxies

A proxy is an RTEMS data structure which re-
sides on a remote node and is used to rep-
resent a task which must block as part of
a remote operation. This action can occur
as part of the rtems_semaphore_obtain and
rtems_message_queue_receive directives. If
the object were local, the task’s control block
would be available for modification to indi-
cate it was blocking on a message queue or
semaphore. However, the task’s control block
resides only on the same node as the task. As a
result, the remote node must allocate a proxy
to represent the task until it can be readied.

The maximum number of proxies is defined in
the Multiprocessor Configuration Table. Each
node in a multiprocessor system may require a
different number of proxies to be configured.
The distribution of proxy control blocks is ap-
plication dependent and is different from the
distribution of tasks.

368 Chapter 25. Multiprocessing Manager

Chapter 25 Section 25.2 RTEMS C User Documentation, Release 4.11.3

25.2.6 Multiprocessor Configuration Ta-
ble

The Multiprocessor Configuration Table con-
tains information needed by RTEMS when
used in a multiprocessor system. This table
is discussed in detail in the section Multipro-
cessor Configuration Table of the Configuring
a System chapter.

25.2. Background 369

RTEMS C User Documentation, Release 4.11.3 Chapter 25 Section 25.3

25.3 Multiprocessor Communica-
tions Interface Layer

The Multiprocessor Communications Interface
Layer (MPCI) is a set of user-provided proce-
dures which enable the nodes in a multiproces-
sor system to communicate with one another.
These routines are invoked by RTEMS at vari-
ous times in the preparation and processing of
remote requests. Interrupts are enabled when
an MPCI procedure is invoked. It is assumed
that if the execution mode and/or interrupt
level are altered by the MPCI layer, that they
will be restored prior to returning to RTEMS.

The MPCI layer is responsible for managing a
pool of buffers called packets and for sending
these packets between system nodes. Packet
buffers contain the messages sent between the
nodes. Typically, the MPCI layer will encap-
sulate the packet within an envelope which
contains the information needed by the MPCI
layer. The number of packets available is de-
pendent on the MPCI layer implementation.

The entry points to the routines in the user’s
MPCI layer should be placed in the Multipro-
cessor Communications Interface Table. The
user must provide entry points for each of the
following table entries in a multiprocessor sys-
tem:

initialization initialize the MPCI
get_packet obtain a packet buffer
return_
packet

return a packet buffer

send_packet send a packet to another
node

receive_
packet

called to get an arrived
packet

A packet is sent by RTEMS in each of the fol-
lowing situations:

• an RQ is generated on an originating
node;

• an RR is generated on a destination
node;

• a global object is created;

• a global object is deleted;

• a local task blocked on a remote object is
deleted;

• during system initialization to check for
system consistency.

If the target hardware supports it, the arrival
of a packet at a node may generate an inter-
rupt. Otherwise, the real-time clock ISR can
check for the arrival of a packet. In any case,
the rtems_multiprocessing_announce direc-
tive must be called to announce the arrival of
a packet. After exiting the ISR, control will be
passed to the Multiprocessing Server to pro-
cess the packet. The Multiprocessing Server
will call the get_packet entry to obtain a packet
buffer and the receive_entry entry to copy the
message into the buffer obtained.

25.3.1 INITIALIZATION

The INITIALIZATION component of the user-
provided MPCI layer is called as part of the
rtems_initialize_executive directive to ini-
tialize the MPCI layer and associated hard-
ware. It is invoked immediately after all of
the device drivers have been initialized. This
component should be adhere to the following
prototype:

1 rtems_mpci_entry user_mpci_initialization(
2 rtems_configuration_table *configuration
3);

where configuration is the address of the user’s
Configuration Table. Operations on global ob-
jects cannot be performed until this compo-
nent is invoked. The INITIALIZATION compo-
nent is invoked only once in the life of any sys-
tem. If the MPCI layer cannot be successfully
initialized, the fatal error manager should be
invoked by this routine.

One of the primary functions of the MPCI layer
is to provide the executive with packet buffers.
The INITIALIZATION routine must create and
initialize a pool of packet buffers. There must
be enough packet buffers so RTEMS can obtain
one whenever needed.

370 Chapter 25. Multiprocessing Manager

Chapter 25 Section 25.3 RTEMS C User Documentation, Release 4.11.3

25.3.2 GET_PACKET

The GET_PACKET component of the user-
provided MPCI layer is called when RTEMS
must obtain a packet buffer to send or broad-
cast a message. This component should be ad-
here to the following prototype:

1 rtems_mpci_entry user_mpci_get_packet(
2 rtems_packet_prefix **packet
3);

where packet is the address of a pointer to
a packet. This routine always succeeds and,
upon return, packet will contain the address of
a packet. If for any reason, a packet cannot
be successfully obtained, then the fatal error
manager should be invoked.

RTEMS has been optimized to avoid the need
for obtaining a packet each time a message is
sent or broadcast. For example, RTEMS sends
response messages (RR) back to the originator
in the same packet in which the request mes-
sage (RQ) arrived.

25.3.3 RETURN_PACKET

The RETURN_PACKET component of the user-
provided MPCI layer is called when RTEMS
needs to release a packet to the free packet
buffer pool. This component should be adhere
to the following prototype:

1 rtems_mpci_entry user_mpci_return_packet(
2 rtems_packet_prefix *packet
3);

where packet is the address of a packet. If the
packet cannot be successfully returned, the fa-
tal error manager should be invoked.

25.3.4 RECEIVE_PACKET

The RECEIVE_PACKET component of the user-
provided MPCI layer is called when RTEMS
needs to obtain a packet which has previously
arrived. This component should be adhere to
the following prototype:

1 rtems_mpci_entry user_mpci_receive_packet(
2 rtems_packet_prefix **packet
3);

where packet is a pointer to the address of
a packet to place the message from another
node. If a message is available, then packet
will contain the address of the message from
another node. If no messages are available,
this entry packet should contain NULL.

25.3.5 SEND_PACKET

The SEND_PACKET component of the user-
provided MPCI layer is called when RTEMS
needs to send a packet containing a message
to another node. This component should be
adhere to the following prototype:

1 rtems_mpci_entry user_mpci_send_packet(
2 uint32_t node,
3 rtems_packet_prefix **packet
4);

where node is the node number of the desti-
nation and packet is the address of a packet
which containing a message. If the packet can-
not be successfully sent, the fatal error man-
ager should be invoked.

If node is set to zero, the packet is to be broad-
casted to all other nodes in the system. Al-
though some MPCI layers will be built upon
hardware which support a broadcast mecha-
nism, others may be required to generate a
copy of the packet for each node in the system.

Many MPCI layers use the packet_length field
of the rtems_packet_prefix portion of the
packet to avoid sending unnecessary data. This
is especially useful if the media connecting the
nodes is relatively slow.

The to_convert field of the
rtems_packet_prefix portion of the packet in-
dicates how much of the packet in 32-bit units
may require conversion in a heterogeneous
system.

25.3. Multiprocessor Communications Interface Layer 371

RTEMS C User Documentation, Release 4.11.3 Chapter 25 Section 25.3

25.3.6 Supporting Heterogeneous Envi-
ronments

Developing an MPCI layer for a heterogeneous
system requires a thorough understanding of
the differences between the processors which
comprise the system. One difficult problem is
the varying data representation schemes used
by different processor types. The most perva-
sive data representation problem is the order
of the bytes which compose a data entity. Pro-
cessors which place the least significant byte at
the smallest address are classified as little en-
dian processors. Little endian byte-ordering is
shown below:

1 +---------------+----------------+----------
→˓-----+----------------+

2 | | | ␣
→˓ | |

3 | Byte 3 | Byte 2 | Byte 1␣
→˓ | Byte 0 |

4 | | | ␣
→˓ | |

5 +---------------+----------------+----------
→˓-----+----------------+

Conversely, processors which place the most
significant byte at the smallest address are
classified as big endian processors. Big endian
byte-ordering is shown below:

1 +---------------+----------------+----------
→˓-----+----------------+

2 | | | ␣
→˓ | |

3 | Byte 0 | Byte 1 | Byte 2␣
→˓ | Byte 3 |

4 | | | ␣
→˓ | |

5 +---------------+----------------+----------
→˓-----+----------------+

Unfortunately, sharing a data structure be-
tween big endian and little endian processors
requires translation into a common endian for-
mat. An application designer typically chooses
the common endian format to minimize con-
version overhead.

Another issue in the design of shared data
structures is the alignment of data structure el-
ements. Alignment is both processor and com-
piler implementation dependent. For example,
some processors allow data elements to begin

on any address boundary, while others impose
restrictions. Common restrictions are that data
elements must begin on either an even address
or on a long word boundary. Violation of these
restrictions may cause an exception or impose
a performance penalty.

Other issues which commonly impact the de-
sign of shared data structures include the
representation of floating point numbers, bit
fields, decimal data, and character strings. In
addition, the representation method for neg-
ative integers could be one’s or two’s com-
plement. These factors combine to increase
the complexity of designing and manipulating
data structures shared between processors.

RTEMS addressed these issues in the design
of the packets used to communicate between
nodes. The RTEMS packet format is designed
to allow the MPCI layer to perform all neces-
sary conversion without burdening the devel-
oper with the details of the RTEMS packet for-
mat. As a result, the MPCI layer must be aware
of the following:

• All packets must begin on a four byte
boundary.

• Packets are composed of both RTEMS
and application data. All RTEMS data is
treated as 32-bit unsigned quantities and
is in the first to_convert 32-bit quanti-
ties of the packet. The to_convert field
is part of the rtems_packet_prefix por-
tion of the packet.

• The RTEMS data component of the
packet must be in native endian for-
mat. Endian conversion may be per-
formed by either the sending or receiving
MPCI layer.

• RTEMS makes no assumptions regarding
the application data component of the
packet.

372 Chapter 25. Multiprocessing Manager

Chapter 25 Section 25.4 RTEMS C User Documentation, Release 4.11.3

25.4 Operations

25.4.1 Announcing a Packet

The rtems_multiprocessing_announce direc-
tive is called by the MPCI layer to inform
RTEMS that a packet has arrived from another
node. This directive can be called from an in-
terrupt service routine or from within a polling
routine.

25.4. Operations 373

RTEMS C User Documentation, Release 4.11.3 Chapter 25 Section 25.5

25.5 Directives

This section details the additional directives
required to support RTEMS in a multiproces-
sor configuration. A subsection is dedicated to
each of this manager’s directives and describes
the calling sequence, related constants, usage,
and status codes.

374 Chapter 25. Multiprocessing Manager

Chapter 25 Section 25.5 RTEMS C User Documentation, Release 4.11.3

25.5.1 MULTIPROCESSING_ANNOUNCE
- Announce the arrival of a packet

CALLING SEQUENCE:

1 void rtems_multiprocessing_announce(void␣
→˓);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive informs RTEMS that a mul-
tiprocessing communications packet has ar-
rived from another node. This directive is
called by the user-provided MPCI, and is
only used in multiprocessor configurations.

NOTES:
This directive is typically called from an ISR.

This directive will almost certainly cause the
calling task to be preempted.

This directive does not generate activity on
remote nodes.

25.5. Directives 375

RTEMS C User Documentation, Release 4.11.3 Chapter 25 Section 25.5

376 Chapter 25. Multiprocessing Manager

CHAPTER

TWENTYSIX

SYMMETRIC MULTIPROCESSING
SERVICES

377

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.1

26.1 Introduction

The Symmetric Multiprocessing (SMP) support
of the RTEMS 4.11.0 and later is available on

• ARM,

• PowerPC, and

• SPARC.

It must be explicitly enabled via the
--enable-smp configure command line
option. To enable SMP in the application
configuration see Chapter 24 Section 22.1 - En-
able SMP Support for Applications (page 354).
The default scheduler for SMP applications
supports up to 32 processors and is a global
fixed priority scheduler, see also Chapter 24
Section 21.9 - Configuring Clustered Sched-
ulers (page 351). For example applications
see:file:testsuites/smptests.

Warning: The SMP support in the release
of RTEMS is a work in progress. Before you
start using this RTEMS version for SMP ask
on the RTEMS mailing list.

This chapter describes the services related
to Symmetric Multiprocessing provided by
RTEMS.

The application level services currently pro-
vided are:

• rtems_get_processor_count (page 389) -
Get processor count

• rtems_get_current_processor (page 390) -
Get current processor index

• rtems_scheduler_ident (page 391) - Get
ID of a scheduler

• rtems_scheduler_get_processor_set
(page 392) - Get processor set of a
scheduler

• rtems_task_get_scheduler (page 393) -
Get scheduler of a task

• rtems_task_set_scheduler (page 394) -
Set scheduler of a task

• rtems_task_get_affinity (page 395) - Get
task processor affinity

• rtems_task_set_affinity (page 396) - Set
task processor affinity

378 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.2 RTEMS C User Documentation, Release 4.11.3

26.2 Background

26.2.1 Uniprocessor versus SMP Paral-
lelism

Uniprocessor systems have long been used in
embedded systems. In this hardware model,
there are some system execution characteris-
tics which have long been taken for granted:

• one task executes at a time

• hardware events result in interrupts

There is no true parallelism. Even when inter-
rupts appear to occur at the same time, they
are processed in largely a serial fashion. This
is true even when the interupt service routines
are allowed to nest. From a tasking viewpoint,
it is the responsibility of the real-time opera-
timg system to simulate parallelism by switch-
ing between tasks. These task switches occur
in response to hardware interrupt events and
explicit application events such as blocking for
a resource or delaying.

With symmetric multiprocessing, the presence
of multiple processors allows for true con-
currency and provides for cost-effective per-
formance improvements. Uniprocessors tend
to increase performance by increasing clock
speed and complexity. This tends to lead to
hot, power hungry microprocessors which are
poorly suited for many embedded applications.

The true concurrency is in sharp contrast to
the single task and interrupt model of unipro-
cessor systems. This results in a fundamen-
tal change to uniprocessor system characteris-
tics listed above. Developers are faced with a
different set of characteristics which, in turn,
break some existing assumptions and result in
new challenges. In an SMP system with N pro-
cessors, these are the new execution character-
istics.

• N tasks execute in parallel

• hardware events result in interrupts

There is true parallelism with a task execut-
ing on each processor and the possibility of in-
terrupts occurring on each processor. Thus in
contrast to their being one task and one inter-
rupt to consider on a uniprocessor, there are

N tasks and potentially N simultaneous inter-
rupts to consider on an SMP system.

This increase in hardware complexity and
presence of true parallelism results in the ap-
plication developer needing to be even more
cautious about mutual exclusion and shared
data access than in a uniprocessor embedded
system. Race conditions that never or rarely
happened when an application executed on
a uniprocessor system, become much more
likely due to multiple threads executing in par-
allel. On a uniprocessor system, these race
conditions would only happen when a task
switch occurred at just the wrong moment.
Now there are N-1 tasks executing in parallel
all the time and this results in many more op-
portunities for small windows in critical sec-
tions to be hit.

26.2.2 Task Affinity

RTEMS provides services to manipulate the
affinity of a task. Affinity is used to specify
the subset of processors in an SMP system on
which a particular task can execute.

By default, tasks have an affinity which allows
them to execute on any available processor.

Task affinity is a possible feature to be sup-
ported by SMP-aware schedulers. However,
only a subset of the available schedulers sup-
port affinity. Although the behavior is sched-
uler specific, if the scheduler does not support
affinity, it is likely to ignore all attempts to set
affinity.

The scheduler with support for arbitary pro-
cessor affinities uses a proof of concept im-
plementation. See https://devel.rtems.org/
ticket/2510.

26.2.3 Task Migration

With more than one processor in the system
tasks can migrate from one processor to an-
other. There are three reasons why tasks mi-
grate in RTEMS.

• The scheduler changes explicitly via
rtems_task_set_scheduler() or similar

26.2. Background 379

https://devel.rtems.org/ticket/2510
https://devel.rtems.org/ticket/2510

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.2

directives.

• The task resumes execution after a block-
ing operation. On a priority based sched-
uler it will evict the lowest priority task
currently assigned to a processor in the
processor set managed by the scheduler
instance.

• The task moves temporarily to another
scheduler instance due to locking proto-
cols like Migratory Priority Inheritance or
the Multiprocessor Resource Sharing Pro-
tocol.

Task migration should be avoided so that the
working set of a task can stay on the most local
cache level.

The current implementation of task migration
in RTEMS has some implications with respect
to the interrupt latency. It is crucial to preserve
the system invariant that a task can execute on
at most one processor in the system at a time.
This is accomplished with a boolean indicator
in the task context. The processor architecture
specific low-level task context switch code will
mark that a task context is no longer executing
and waits that the heir context stopped exe-
cution before it restores the heir context and
resumes execution of the heir task. So there
is one point in time in which a processor is
without a task. This is essential to avoid cyclic
dependencies in case multiple tasks migrate
at once. Otherwise some supervising entity is
necessary to prevent life-locks. Such a global
supervisor would lead to scalability problems
so this approach is not used. Currently the
thread dispatch is performed with interrupts
disabled. So in case the heir task is currently
executing on another processor then this pro-
longs the time of disabled interrupts since one
processor has to wait for another processor to
make progress.

It is difficult to avoid this issue with the inter-
rupt latency since interrupts normally store the
context of the interrupted task on its stack. In
case a task is marked as not executing we must
not use its task stack to store such an interrupt
context. We cannot use the heir stack before
it stopped execution on another processor. So
if we enable interrupts during this transition
we have to provide an alternative task inde-

pendent stack for this time frame. This issue
needs further investigation.

26.2.4 Clustered Scheduling

We have clustered scheduling in case the set of
processors of a system is partitioned into non-
empty pairwise-disjoint subsets. These subsets
are called clusters. Clusters with a cardinality
of one are partitions. Each cluster is owned by
exactly one scheduler instance.

Clustered scheduling helps to control the
worst-case latencies in multi-processor
systems, see Brandenburg, Bjorn B.:
Scheduling and Locking in Multiprocessor
Real-Time Operating Systems. PhD thesis,
2011.http://www.cs.unc.edu/~bbb/diss/brandenburg-
diss.pdf. The goal is to reduce the amount of
shared state in the system and thus prevention
of lock contention. Modern multi-processor
systems tend to have several layers of data and
instruction caches. With clustered scheduling
it is possible to honour the cache topology of
a system and thus avoid expensive cache syn-
chronization traffic. It is easy to implement.
The problem is to provide synchronization
primitives for inter-cluster synchronization
(more than one cluster is involved in the
synchronization process). In RTEMS there are
currently four means available

• events,

• message queues,

• semaphores using the Chapter 12 Section
2.3 - Priority Inheritance (page 169) pro-
tocol (priority boosting), and

• semaphores using the Chapter 12 Section
2.5 - Multiprocessor Resource Sharing Pro-
tocol (page 170) (MrsP).

The clustered scheduling approach enables
separation of functions with real-time require-
ments and functions that profit from fair-
ness and high throughput provided the sched-
uler instances are fully decoupled and ade-
quate inter-cluster synchronization primitives
are used. This is work in progress.

For the configuration of clustered schedulers

380 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.2 RTEMS C User Documentation, Release 4.11.3

see Chapter 24 Section 21.9 - Configuring Clus-
tered Schedulers (page 351).

To set the scheduler of a task see SCHED-
ULER_IDENT - Get ID of a scheduler and Chap-
ter 26 Section 4.6 - TASK_SET_SCHEDULER -
Set scheduler of a task (page 394).

26.2.5 Task Priority Queues

Due to the support for clustered scheduling the
task priority queues need special attention. It
makes no sense to compare the priority values
of two different scheduler instances. Thus, it
is not possible to simply use one plain prior-
ity queue for tasks of different scheduler in-
stances.

One solution to this problem is to use two lev-
els of queues. The top level queue provides
FIFO ordering and contains priority queues.
Each priority queue is associated with a sched-
uler instance and contains only tasks of this
scheduler instance. Tasks are enqueued in the
priority queue corresponding to their sched-
uler instance. In case this priority queue was
empty, then it is appended to the FIFO. To de-
queue a task the highest priority task of the
first priority queue in the FIFO is selected.
Then the first priority queue is removed from
the FIFO. In case the previously first priority
queue is not empty, then it is appended to
the FIFO. So there is FIFO fairness with re-
spect to the highest priority task of each sched-
uler instances. See also Brandenburg, Bjorn
B.: A fully preemptive multiprocessor semaphore
protocol for latency-sensitive real-time applica-
tions. In Proceedings of the 25th Euromi-
cro Conference on Real-Time Systems (ECRTS
2013), pages 292-302, 2013.http://www.mpi-
sws.org/~bbb/papers/pdf/ecrts13b.pdf.

Such a two level queue may need a consider-
able amount of memory if fast enqueue and
dequeue operations are desired (depends on
the scheduler instance count). To mitigate this
problem an approch of the FreeBSD kernel was
implemented in RTEMS. We have the invari-
ant that a task can be enqueued on at most
one task queue. Thus, we need only as many
queues as we have tasks. Each task is equipped
with spare task queue which it can give to an

object on demand. The task queue uses a ded-
icated memory space independent of the other
memory used for the task itself. In case a task
needs to block, then there are two options

• the object already has task queue, then
the task enqueues itself to this already
present queue and the spare task queue
of the task is added to a list of free
queues for this object, or

• otherwise, then the queue of the task is
given to the object and the task enqueues
itself to this queue.

In case the task is dequeued, then there are
two options

• the task is the last task on the queue,
then it removes this queue from the ob-
ject and reclaims it for its own purpose,
or

• otherwise, then the task removes one
queue from the free list of the object and
reclaims it for its own purpose.

Since there are usually more objects than
tasks, this actually reduces the memory de-
mands. In addition the objects contain only a
pointer to the task queue structure. This helps
to hide implementation details and makes it
possible to use self-contained synchronization
objects in Newlib and GCC (C++ and OpenMP
run-time support).

26.2.6 Scheduler Helping Protocol

The scheduler provides a helping protocol to
support locking protocols like Migratory Prior-
ity Inheritance or the Multiprocessor Resource
Sharing Protocol. Each ready task can use at
least one scheduler node at a time to gain ac-
cess to a processor. Each scheduler node has
an owner, a user and an optional idle task. The
owner of a scheduler node is determined a task
creation and never changes during the life time
of a scheduler node. The user of a scheduler
node may change due to the scheduler helping
protocol. A scheduler node is in one of the four
scheduler help states:

help yourself
This scheduler node is solely used by the

26.2. Background 381

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.2

owner task. This task owns no resources us-
ing a helping protocol and thus does not take
part in the scheduler helping protocol. No
help will be provided for other tasks.

help active owner
This scheduler node is owned by a task ac-
tively owning a resource and can be used to
help out tasks. In case this scheduler node
changes its state from ready to scheduled
and the task executes using another node,
then an idle task will be provided as a user
of this node to temporarily execute on behalf
of the owner task. Thus lower priority tasks
are denied access to the processors of this
scheduler instance. In case a task actively
owning a resource performs a blocking op-
eration, then an idle task will be used also in
case this node is in the scheduled state.

help active rival
This scheduler node is owned by a task ac-
tively obtaining a resource currently owned
by another task and can be used to help out
tasks. The task owning this node is ready
and will give away its processor in case the
task owning the resource asks for help.

help passive
This scheduler node is owned by a task ob-
taining a resource currently owned by an-
other task and can be used to help out tasks.
The task owning this node is blocked.

The following scheduler operations return a
task in need for help

• unblock,

• change priority,

• yield, and

• ask for help.

A task in need for help is a task that encoun-
ters a scheduler state change from scheduled
to ready (this is a pre-emption by a higher
priority task) or a task that cannot be sched-
uled in an unblock operation. Such a task can
ask tasks which depend on resources owned by
this task for help.

In case it is not possible to schedule a task in
need for help, then the scheduler nodes avail-
able for the task will be placed into the set

of ready scheduler nodes of the corresponding
scheduler instances. Once a state change from
ready to scheduled happens for one of sched-
uler nodes it will be used to schedule the task
in need for help.

The ask for help scheduler operation is used
to help tasks in need for help returned by the
operations mentioned above. This operation is
also used in case the root of a resource sub-tree
owned by a task changes.

The run-time of the ask for help procedures de-
pend on the size of the resource tree of the task
needing help and other resource trees in case
tasks in need for help are produced during this
operation. Thus the worst-case latency in the
system depends on the maximum resource tree
size of the application.

26.2.7 Critical Section Techniques and
SMP

As discussed earlier, SMP systems have oppor-
tunities for true parallelism which was not pos-
sible on uniprocessor systems. Consequently,
multiple techniques that provided adequate
critical sections on uniprocessor systems are
unsafe on SMP systems. In this section, some
of these unsafe techniques will be discussed.

In general, applications must use proper oper-
ating system provided mutual exclusion mech-
anisms to ensure correct behavior. This pri-
marily means the use of binary semaphores or
mutexes to implement critical sections.

26.2.7.1 Disable Interrupts and Interrupt
Locks

A low overhead means to ensure mutual exclu-
sion in uni-processor configurations is to dis-
able interrupts around a critical section. This
is commonly used in device driver code and
throughout the operating system core. On
SMP configurations, however, disabling the in-
terrupts on one processor has no effect on
other processors. So, this is insufficient to
ensure system wide mutual exclusion. The
macros

• rtems_interrupt_disable(),

382 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.2 RTEMS C User Documentation, Release 4.11.3

• rtems_interrupt_enable(), and

• rtems_interrupt_flush()

are disabled on SMP configurations and its use
will lead to compiler warnings and linker er-
rors. In the unlikely case that interrupts must
be disabled on the current processor, then the

• rtems_interrupt_local_disable(), and

• rtems_interrupt_local_enable()

macros are now available in all configurations.

Since disabling of interrupts is not enough to
ensure system wide mutual exclusion on SMP,
a new low-level synchronization primitive was
added - the interrupt locks. They are a sim-
ple API layer on top of the SMP locks used
for low-level synchronization in the operating
system core. Currently they are implemented
as a ticket lock. On uni-processor configura-
tions they degenerate to simple interrupt dis-
able/enable sequences. It is disallowed to ac-
quire a single interrupt lock in a nested way.
This will result in an infinite loop with inter-
rupts disabled. While converting legacy code
to interrupt locks care must be taken to avoid
this situation.

1 void legacy_code_with_interrupt_disable_
→˓enable(void)

2 {
3 rtems_interrupt_level level;
4 rtems_interrupt_disable(level);
5 /* Some critical stuff */
6 rtems_interrupt_enable(level);
7 }
8

9 RTEMS_INTERRUPT_LOCK_DEFINE(static, lock, ␣
→˓"Name");

10

11 void smp_ready_code_with_interrupt_lock(␣
→˓void)

12 {
13 rtems_interrupt_lock_context lock_

→˓context;
14 rtems_interrupt_lock_acquire(&lock, &

→˓lock_context);
15 /* Some critical stuff */
16 rtems_interrupt_lock_release(&lock, &

→˓lock_context);
17 }

The rtems_interrupt_lock structure is
empty on uni-processor configurations.

Empty structures have a different size in
C (implementation-defined, zero in case of
GCC) and C++ (implementation-defined non-
zero value, one in case of GCC). Thus
the RTEMS_INTERRUPT_LOCK_DECLARE(),
RTEMS_INTERRUPT_LOCK_DEFINE(),
RTEMS_INTERRUPT_LOCK_MEMBER(), and
RTEMS_INTERRUPT_LOCK_REFERENCE() macros
are provided to ensure ABI compatibility.

26.2.7.2 Highest Priority Task Assumption

On a uniprocessor system, it is safe to assume
that when the highest priority task in an appli-
cation executes, it will execute without being
preempted until it voluntarily blocks. Inter-
rupts may occur while it is executing, but there
will be no context switch to another task unless
the highest priority task voluntarily initiates it.

Given the assumption that no other tasks will
have their execution interleaved with the high-
est priority task, it is possible for this task to
be constructed such that it does not need to
acquire a binary semaphore or mutex for pro-
tected access to shared data.

In an SMP system, it cannot be assumed there
will never be a single task executing. It should
be assumed that every processor is execut-
ing another application task. Further, those
tasks will be ones which would not have been
executed in a uniprocessor configuration and
should be assumed to have data synchroniza-
tion conflicts with what was formerly the high-
est priority task which executed without con-
flict.

26.2.7.3 Disable Preemption

On a uniprocessor system, disabling preemp-
tion in a task is very similar to making the high-
est priority task assumption. While preemp-
tion is disabled, no task context switches will
occur unless the task initiates them voluntar-
ily. And, just as with the highest priority task
assumption, there are N-1 processors also run-
ning tasks. Thus the assumption that no other
tasks will run while the task has preemption
disabled is violated.

26.2. Background 383

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.2

26.2.8 Task Unique Data and SMP

Per task variables are a service commonly pro-
vided by real-time operating systems for appli-
cation use. They work by allowing the appli-
cation to specify a location in memory (typi-
cally a void *) which is logically added to the
context of a task. On each task switch, the lo-
cation in memory is stored and each task can
have a unique value in the same memory loca-
tion. This memory location is directly accessed
as a variable in a program.

This works well in a uniprocessor environ-
ment because there is one task executing and
one memory location containing a task-specific
value. But it is fundamentally broken on an
SMP system because there are always N tasks
executing. With only one location in memory,
N-1 tasks will not have the correct value.

This paradigm for providing task unique data
values is fundamentally broken on SMP sys-
tems.

26.2.8.1 Classic API Per Task Variables

The Classic API provides three directives to
support per task variables. These are:

• rtems_task_variable_add - Associate
per task variable

• rtems_task_variable_get - Obtain
value of a a per task variable

• rtems_task_variable_delete - Remove
per task variable

As task variables are unsafe for use on SMP
systems, the use of these services must be elim-
inated in all software that is to be used in an
SMP environment. The task variables API is
disabled on SMP. Its use will lead to compile-
time and link-time errors. It is recommended
that the application developer consider the use
of POSIX Keys or Thread Local Storage (TLS).
POSIX Keys are available in all RTEMS config-
urations. For the availablity of TLS on a par-
ticular architecture please consult the RTEMS
CPU Architecture Supplement.

The only remaining user of task variables in
the RTEMS code base is the Ada support. So

basically Ada is not available on RTEMS SMP.

26.2.9 OpenMP

OpenMP support for RTEMS is available via
the GCC provided libgomp. There is libgomp
support for RTEMS in the POSIX configura-
tion of libgomp since GCC 4.9 (requires a
Newlib snapshot after 2015-03-12). In GCC
6.1 or later (requires a Newlib snapshot after
2015-07-30 for <sys/lock.h> provided self-
contained synchronization objects) there is a
specialized libgomp configuration for RTEMS
which offers a significantly better performance
compared to the POSIX configuration of lib-
gomp. In addition application configurable
thread pools for each scheduler instance are
available in GCC 6.1 or later.

The run-time configuration of libgomp is done
via environment variables documented in the
libgomp manual. The environment variables
are evaluated in a constructor function which
executes in the context of the first initialization
task before the actual initialization task func-
tion is called (just like a global C++ construc-
tor). To set application specific values, a higher
priority constructor function must be used to
set up the environment variables.

1 #include <stdlib.h>
2 void __attribute__((constructor(1000))) ␣

→˓config_libgomp(void)
3 {
4 setenv("OMP_DISPLAY_ENV", "VERBOSE", 1␣

→˓);
5 setenv("GOMP_SPINCOUNT", "30000", 1);
6 setenv("GOMP_RTEMS_THREAD_POOLS", "1

→˓$2@SCHD", 1);
7 }

The environment variable
GOMP_RTEMS_THREAD_POOLS is RTEMS-
specific. It determines the thread pools
for each scheduler instance. The format for
GOMP_RTEMS_THREAD_POOLS is a list of optional
<thread-pool-count>[$<priority>]@<scheduler-name>
configurations separated by : where:

• <thread-pool-count> is the thread pool
count for this scheduler instance.

• $<priority> is an optional priority for
the worker threads of a thread pool ac-

384 Chapter 26. Symmetric Multiprocessing Services

https://gcc.gnu.org/onlinedocs/libgomp/

Chapter 26 Section 26.2 RTEMS C User Documentation, Release 4.11.3

cording to pthread_setschedparam. In
case a priority value is omitted, then a
worker thread will inherit the priority of
the OpenMP master thread that created
it. The priority of the worker thread is
not changed by libgomp after creation,
even if a new OpenMP master thread us-
ing the worker has a different priority.

• @<scheduler-name> is the scheduler in-
stance name according to the RTEMS ap-
plication configuration.

In case no thread pool configuration is spec-
ified for a scheduler instance, then each
OpenMP master thread of this scheduler in-
stance will use its own dynamically allocated
thread pool. To limit the worker thread count
of the thread pools, each OpenMP master
thread must call omp_set_num_threads.

Lets suppose we have three sched-
uler instances IO, WRK0, and WRK1
with GOMP_RTEMS_THREAD_POOLS set to
"1@WRK0:3$4@WRK1". Then there are no
thread pool restrictions for scheduler instance
IO. In the scheduler instance WRK0 there is
one thread pool available. Since no priority
is specified for this scheduler instance, the
worker thread inherits the priority of the
OpenMP master thread that created it. In the
scheduler instance WRK1 there are three thread
pools available and their worker threads run
at priority four.

26.2.10 Thread Dispatch Details

This section gives background information to
developers interested in the interrupt latencies
introduced by thread dispatching. A thread
dispatch consists of all work which must be
done to stop the currently executing thread on
a processor and hand over this processor to an
heir thread.

On SMP systems, scheduling decisions on one
processor must be propagated to other proces-
sors through inter-processor interrupts. So, a
thread dispatch which must be carried out on
another processor happens not instantaneous.
Thus several thread dispatch requests might
be in the air and it is possible that some of

them may be out of date before the corre-
sponding processor has time to deal with them.
The thread dispatch mechanism uses three per-
processor variables,

• the executing thread,

• the heir thread, and

• an boolean flag indicating if a thread dis-
patch is necessary or not.

Updates of the heir thread and the thread dis-
patch necessary indicator are synchronized via
explicit memory barriers without the use of
locks. A thread can be an heir thread on at
most one processor in the system. The thread
context is protected by a TTAS lock embedded
in the context to ensure that it is used on at
most one processor at a time. The thread post-
switch actions use a per-processor lock. This
implementation turned out to be quite efficient
and no lock contention was observed in the
test suite.

The current implementation of thread dis-
patching has some implications with respect to
the interrupt latency. It is crucial to preserve
the system invariant that a thread can execute
on at most one processor in the system at a
time. This is accomplished with a boolean in-
dicator in the thread context. The processor
architecture specific context switch code will
mark that a thread context is no longer exe-
cuting and waits that the heir context stopped
execution before it restores the heir context
and resumes execution of the heir thread (the
boolean indicator is basically a TTAS lock). So,
there is one point in time in which a processor
is without a thread. This is essential to avoid
cyclic dependencies in case multiple threads
migrate at once. Otherwise some supervising
entity is necessary to prevent deadlocks. Such
a global supervisor would lead to scalability
problems so this approach is not used. Cur-
rently the context switch is performed with in-
terrupts disabled. Thus in case the heir thread
is currently executing on another processor,
the time of disabled interrupts is prolonged
since one processor has to wait for another
processor to make progress.

It is difficult to avoid this issue with the inter-
rupt latency since interrupts normally store the

26.2. Background 385

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.2

context of the interrupted thread on its stack.
In case a thread is marked as not executing,
we must not use its thread stack to store such
an interrupt context. We cannot use the heir
stack before it stopped execution on another
processor. If we enable interrupts during this
transition, then we have to provide an alterna-
tive thread independent stack for interrupts in
this time frame. This issue needs further inves-
tigation.

The problematic situation occurs in case we
have a thread which executes with thread dis-
patching disabled and should execute on an-
other processor (e.g. it is an heir thread on
another processor). In this case the interrupts
on this other processor are disabled until the
thread enables thread dispatching and starts
the thread dispatch sequence. The scheduler
(an exception is the scheduler with thread pro-
cessor affinity support) tries to avoid such a sit-
uation and checks if a new scheduled thread
already executes on a processor. In case the
assigned processor differs from the processor
on which the thread already executes and this
processor is a member of the processor set
managed by this scheduler instance, it will re-
assign the processors to keep the already ex-
ecuting thread in place. Therefore normal
scheduler requests will not lead to such a situ-
ation. Explicit thread migration requests, how-
ever, can lead to this situation. Explicit thread
migrations may occur due to the scheduler
helping protocol or explicit scheduler instance
changes. The situation can also be provoked by
interrupts which suspend and resume threads
multiple times and produce stale asynchronous
thread dispatch requests in the system.

386 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.3 RTEMS C User Documentation, Release 4.11.3

26.3 Operations

26.3.1 Setting Affinity to a Single Proces-
sor

On some embedded applications targeting
SMP systems, it may be beneficial to lock indi-
vidual tasks to specific processors. In this way,
one can designate a processor for I/O tasks,
another for computation, etc.. The following
illustrates the code sequence necessary to as-
sign a task an affinity for processor with index
processor_index.

1 #include <rtems.h>
2 #include <assert.h>
3

4 void pin_to_processor(rtems_id task_id, int␣
→˓processor_index)

5 {
6 rtems_status_code sc;
7 cpu_set_t cpuset;
8 CPU_ZERO(&cpuset);
9 CPU_SET(processor_index, &cpuset);

10 sc = rtems_task_set_affinity(task_id,␣
→˓sizeof(cpuset), &cpuset);

11 assert(sc == RTEMS_SUCCESSFUL);
12 }

It is important to note that the cpuset is not
validated until the rtems_task_set_affinity
call is made. At that point, it is validated
against the current system configuration.

26.3. Operations 387

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.4

26.4 Directives

This section details the symmetric multipro-
cessing services. A subsection is dedicated to
each of these services and describes the calling
sequence, related constants, usage, and status
codes.

388 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.4 RTEMS C User Documentation, Release 4.11.3

26.4.1 GET_PROCESSOR_COUNT - Get
processor count

CALLING SEQUENCE:

1 uint32_t rtems_get_processor_count(void);

DIRECTIVE STATUS CODES:
The count of processors in the system.

DESCRIPTION:
On uni-processor configurations a value of
one will be returned.

On SMP configurations this returns the value
of a global variable set during system ini-
tialization to indicate the count of utilized
processors. The processor count depends
on the physically or virtually available pro-
cessors and application configuration. The
value will always be less than or equal to
the maximum count of application config-
ured processors.

NOTES:
None.

26.4. Directives 389

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.4

26.4.2 GET_CURRENT_PROCESSOR -
Get current processor index

CALLING SEQUENCE:

1 uint32_t rtems_get_current_
→˓processor(void);

DIRECTIVE STATUS CODES:
The index of the current processor.

DESCRIPTION:
On uni-processor configurations a value of
zero will be returned.

On SMP configurations an architecture spe-
cific method is used to obtain the index of
the current processor in the system. The set
of processor indices is the range of integers
starting with zero up to the processor count
minus one.

Outside of sections with disabled thread dis-
patching the current processor index may
change after every instruction since the
thread may migrate from one processor to
another. Sections with disabled interrupts
are sections with thread dispatching dis-
abled.

NOTES:
None.

390 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.4 RTEMS C User Documentation, Release 4.11.3

26.4.3 SCHEDULER_IDENT - Get ID of a
scheduler

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successful operation

RTEMS_
INVALID_
ADDRESS

id is NULL

RTEMS_
INVALID_
NAME

invalid scheduler name

RTEMS_
UNSATISFIED

a scheduler with this name
exists, but the processor set of
this scheduler is empty

DESCRIPTION:
Identifies a scheduler by its name. The
scheduler name is determined by the sched-
uler configuration. See Chapter 24 - Config-
uring a System (page 307).

NOTES:
None.

26.4. Directives 391

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.4

26.4.4 SCHEDULER_GET_PROCESSOR_SET
- Get processor set of a scheduler

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_get_
→˓processor_set(

2 rtems_id scheduler_id,
3 size_t cpusetsize,
4 cpu_set_t *cpuset
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successful operation

RTEMS_
INVALID_
ADDRESS

cpuset is NULL

RTEMS_
INVALID_
ID

invalid scheduler id

RTEMS_
INVALID_
NUMBER

the affinity set buffer is too
small for set of processors
owned by the scheduler

DESCRIPTION:
Returns the processor set owned by the
scheduler in cpuset. A set bit in the proces-
sor set means that this processor is owned
by the scheduler and a cleared bit means the
opposite.

NOTES:
None.

392 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.4 RTEMS C User Documentation, Release 4.11.3

26.4.5 TASK_GET_SCHEDULER - Get
scheduler of a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_
→˓scheduler(

2 rtems_id task_id,
3 rtems_id *scheduler_id
4);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL successful

operation
RTEMS_INVALID_
ADDRESS

scheduler_id is
NULL

RTEMS_INVALID_ID invalid task id

DESCRIPTION:
Returns the scheduler identifier of a task
identified by task_id in scheduler_id.

NOTES:
None.

26.4. Directives 393

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.4

26.4.6 TASK_SET_SCHEDULER - Set
scheduler of a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_
→˓scheduler(

2 rtems_id task_id,
3 rtems_id scheduler_id
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successful operation

RTEMS_
INVALID_
ID

invalid task or scheduler id

RTEMS_
INCORRECT_
STATE

the task is in the wrong
state to perform a
scheduler change

DESCRIPTION:
Sets the scheduler of a task identified
by task_id to the scheduler identified by
scheduler_id. The scheduler of a task is ini-
tialized to the scheduler of the task that cre-
ated it.

NOTES:
None.

EXAMPLE:

1 #include <rtems.h>
2 #include <assert.h>
3

4 void task(rtems_task_argument arg);
5

6 void example(void)
7 {
8 rtems_status_code sc;
9 rtems_id task_id;

10 rtems_id scheduler_id;
11 rtems_name scheduler_name;
12

13 scheduler_name = rtems_build_name('W',
→˓ 'O', 'R', 'K');

14

15 sc = rtems_scheduler_ident(scheduler_
→˓name, &scheduler_id);

16 assert(sc == RTEMS_SUCCESSFUL);
17

18 sc = rtems_task_create(
19 rtems_build_name('T', 'A', 'S

→˓', 'K'),

20 1,
21 RTEMS_MINIMUM_STACK_SIZE,
22 RTEMS_DEFAULT_MODES,
23 RTEMS_DEFAULT_ATTRIBUTES,
24 &task_id
25);
26 assert(sc == RTEMS_SUCCESSFUL);
27

28 sc = rtems_task_set_scheduler(task_id,
→˓ scheduler_id);

29 assert(sc == RTEMS_SUCCESSFUL);
30

31 sc = rtems_task_start(task_id, task,␣
→˓0);

32 assert(sc == RTEMS_SUCCESSFUL);
33 }

394 Chapter 26. Symmetric Multiprocessing Services

Chapter 26 Section 26.4 RTEMS C User Documentation, Release 4.11.3

26.4.7 TASK_GET_AFFINITY - Get task
processor affinity

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_affinity(
2 rtems_id id,
3 size_t cpusetsize,
4 cpu_set_t *cpuset
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successful operation

RTEMS_
INVALID_
ADDRESS

cpuset is NULL

RTEMS_
INVALID_
ID

invalid task id

RTEMS_
INVALID_
NUMBER

the affinity set buffer is too
small for the current
processor affinity set of the
task

DESCRIPTION:
Returns the current processor affinity set of
the task in cpuset. A set bit in the affinity set
means that the task can execute on this pro-
cessor and a cleared bit means the opposite.

NOTES:
None.

26.4. Directives 395

RTEMS C User Documentation, Release 4.11.3 Chapter 26 Section 26.4

26.4.8 TASK_SET_AFFINITY - Set task
processor affinity

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_affinity(
2 rtems_id id,
3 size_t cpusetsize,
4 const cpu_set_t *cpuset
5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

successful operation

RTEMS_INVALID_
ADDRESS

cpuset is NULL

RTEMS_INVALID_
ID

invalid task id

RTEMS_INVALID_
NUMBER

invalid processor
affinity set

DESCRIPTION:
Sets the processor affinity set for the task
specified by cpuset. A set bit in the affin-
ity set means that the task can execute on
this processor and a cleared bit means the
opposite.

NOTES:
This function will not change the scheduler
of the task. The intersection of the processor
affinity set and the set of processors owned
by the scheduler of the task must be non-
empty. It is not an error if the processor
affinity set contains processors that are not
part of the set of processors owned by the
scheduler instance of the task. A task will
simply not run under normal circumstances
on these processors since the scheduler ig-
nores them. Some locking protocols may
temporarily use processors that are not in-
cluded in the processor affinity set of the
task. It is also not an error if the processor
affinity set contains processors that are not
part of the system.

396 Chapter 26. Symmetric Multiprocessing Services

CHAPTER

TWENTYSEVEN

PCI LIBRARY

397

RTEMS C User Documentation, Release 4.11.3 Chapter 27 Section 27.1

27.1 Introduction

The Peripheral Component Interconnect (PCI)
bus is a very common computer bus architec-
ture that is found in almost every PC today.
The PCI bus is normally located at the mother-
board where some PCI devices are soldered di-
rectly onto the PCB and expansion slots allows
the user to add custom devices easily. There is
a wide range of PCI hardware available imple-
menting all sorts of interfaces and functions.

This section describes the PCI Library avail-
able in RTEMS used to access the PCI bus in
a portable way across computer architectures
supported by RTEMS.

The PCI Library aims to be compatible with
PCI 2.3 with a couple of limitations, for exam-
ple there is no support for hot-plugging, 64-bit
memory space and cardbus bridges.

In order to support different architectures and
with small foot-print embedded systems in
mind the PCI Library offers four different con-
figuration options listed below. It is selected
during compile time by defining the appropri-
ate macros in confdefs.h. It is also possible
to enable PCI_LIB_NONE (No Configuration)
which can be used for debuging PCI access
functions.

• Auto Configuration (Plug & Play)

• Read Configuration (read BIOS or boot
loader configuration)

• Static Configuration (write user defined
configuration)

• Peripheral Configuration (no access to
cfg-space)

398 Chapter 27. PCI Library

Chapter 27 Section 27.2 RTEMS C User Documentation, Release 4.11.3

27.2 Background

The PCI bus is constructed in a way where on-
board devices and devices in expansion slots
can be automatically found (probed) and con-
figured using Plug & Play completely imple-
mented in software. The bus is set up once
during boot up. The Plug & Play information
can be read and written from PCI configuration
space. A PCI device is identified in configura-
tion space by a unique bus, slot and function
number. Each PCI slot can have up to 8 func-
tions and interface to another PCI sub-bus by
implementing a PCI-to-PCI bridge according to
the PCI Bridge Architecture specification.

Using the unique [bus:slot:func] any device
can be configured regardless of how PCI is cur-
rently set up as long as all PCI buses are enu-
merated correctly. The enumeration is done
during probing, all bridges are given a bus
number in order for the bridges to respond to
accesses from both directions. The PCI library
can assign address ranges to which a PCI de-
vice should respond using Plug & Play tech-
nique or a static user defined configuration.
After the configuration has been performed the
PCI device drivers can find devices by the read-
only PCI Class type, Vendor ID and Device ID
information found in configuration space for
each device.

In some systems there is a boot loader or BIOS
which have already configured all PCI devices,
but on embedded targets it is quite common
that there is no BIOS or boot loader, thus
RTEMS must configure the PCI bus. Only the
PCI host may do configuration space access,
the host driver or BSP is responsible to trans-
late the [bus:slot:func] into a valid PCI config-
uration space access.

If the target is not a host, but a peripheral, con-
figuration space can not be accessed, the pe-
ripheral is set up by the host during start up.
In complex embedded PCI systems the periph-
eral may need to access other PCI boards than
the host. In such systems a custom (static) con-
figuration of both the host and peripheral may
be a convenient solution.

The PCI bus defines four interrupt signals
INTA#..INTD#. The interrupt signals must be

mapped into a system interrupt/vector, it is up
to the BSP or host driver to know the map-
ping, however the BIOS or boot loader may use
the 8-bit read/write “Interrupt Line” register to
pass the knowledge along to the OS.

The PCI standard defines and recommends
that the backplane route the interupt lines in
a systematic way, however in standard there
is no such requirement. The PCI Auto Config-
uration Library implements the recommended
way of routing which is very common but it is
also supported to some extent to override the
interrupt routing from the BSP or Host Bridge
driver using the configuration structure.

27.2.1 Software Components

The PCI library is located in cpukit/libpci, it
consists of different parts:

• PCI Host bridge driver interface

• Configuration routines

• Access (Configuration, I/O and Memory
space) routines

• Interrupt routines (implemented by BSP)

• Print routines

• Static/peripheral configuration creation

• PCI shell command

27.2.2 PCI Configuration

During start up the PCI bus must be config-
ured in order for host and peripherals to access
one another using Memory or I/O accesses and
that interrupts are properly handled. Three
different spaces are defined and mapped sepa-
rately:

1. I/O space (IO)

2. non-prefetchable Memory space
(MEMIO)

3. prefetchable Memory space (MEM)

Regions of the same type (I/O or Memory)
may not overlap which is guaranteed by the
software. MEM regions may be mapped into
MEMIO regions, but MEMIO regions can not

27.2. Background 399

RTEMS C User Documentation, Release 4.11.3 Chapter 27 Section 27.2

be mapped into MEM, for that could lead to
prefetching of registers. The interrupt pin
which a board is driving can be read out from
PCI configuration space, however it is up to
software to know how interrupt signals are
routed between PCI-to-PCI bridges and how
PCI INT[A..D]# pins are mapped to system
IRQ. In systems where previous software (boot
loader or BIOS) has already set up this the con-
figuration is overwritten or simply read out.

In order to support different configuration
methods the following configuration libraries
are selectable by the user:

• Auto Configuration (run Plug & Play soft-
ware)

• Read Configuration (relies on a boot
loader or BIOS)

• Static Configuration (write user defined
setup, no Plug & Play)

• Peripheral Configuration (user defined
setup, no access to configuration space)

A host driver can be made to support all three
configuration methods, or any combination. It
may be defined by the BSP which approach is
used.

The configuration software is called from the
PCI driver (pci_config_init()).

Regardless of configuration method a PCI de-
vice tree is created in RAM during initializa-
tion, the tree can be accessed to find devices
and resources without accessing configuration
space later on. The user is responsible to cre-
ate the device tree at compile time when using
the static/peripheral method.

27.2.2.1 RTEMS Configuration selection

The active configuration method can be se-
lected at compile time in the same way
as other project parameters by including
rtems/confdefs.h and setting

• CONFIGURE_INIT

• RTEMS_PCI_CONFIG_LIB

• CONFIGURE_PCI_LIB =
PCI_LIB_(AUTO,STATIC,READ,PERIPHERAL)

See the RTEMS configuration section how to
setup the PCI library.

27.2.2.2 Auto Configuration

The auto configuration software enumerates
PCI buses and initializes all PCI devices found
using Plug & Play. The auto configuration soft-
ware requires that a configuration setup has
been registered by the driver or BSP in order to
setup the I/O and Memory regions at the cor-
rect address ranges. PCI interrupt pins can op-
tionally be routed over PCI-to-PCI bridges and
mapped to a system interrupt number. BAR re-
sources are sorted by size and required align-
ment, unused “dead” space may be created
when PCI bridges are present due to the PCI
bridge window size does not equal the align-
ment. To cope with that resources are re-
ordered to fit smaller BARs into the dead space
to minimize the PCI space required. If a BAR
or ROM register can not be allocated a PCI ad-
dress region (due to too few resources avail-
able) the register will be given the value of
pci_invalid_address which defaults to 0.

The auto configuration routines support:

• PCI 2.3

• Little and big endian PCI bus

• one I/O 16 or 32-bit range (IO)

• memory space (MEMIO)

• prefetchable memory space (MEM), if
not present MEM will be mapped into
MEMIO

• multiple PCI buses - PCI-to-PCI bridges

• standard BARs, PCI-to-PCI bridge BARs,
ROM BARs

• Interrupt routing over bridges

• Interrupt pin to system interrupt map-
ping

Not supported:

• hot-pluggable devices

• Cardbus bridges

• 64-bit memory space

400 Chapter 27. PCI Library

Chapter 27 Section 27.2 RTEMS C User Documentation, Release 4.11.3

• 16-bit and 32-bit I/O address ranges at
the same time

In PCI 2.3 there may exist I/O BARs that must
be located at the low 64kBytes address range,
in order to support this the host driver or BSP
must make sure that I/O addresses region is
within this region.

27.2.2.3 Read Configuration

When a BIOS or boot loader already has setup
the PCI bus the configuration can be read
directly from the PCI resource registers and
buses are already enumerated, this is a much
simpler approach than configuring PCI our-
selves. The PCI device tree is automatically
created based on the current configuration and
devices present. After initialization is done
there is no difference between the auto or read
configuration approaches.

27.2.2.4 Static Configuration

To support custom configurations and small-
footprint PCI systems, the user may provide
the PCI device tree which contains the current
configuration. The PCI buses are enumerated
and all resources are written to PCI devices
during initialization. When this approach is se-
lected PCI boards must be located at the same
slots every time and devices can not be re-
moved or added, Plug & Play is not performed.
Boards of the same type may of course be ex-
changed.

The user can create a configuration by calling
pci_cfg_print() on a running system that has
had PCI setup by the auto or read configura-
tion routines, it can be called from the PCI shell
command. The user must provide the PCI de-
vice tree named pci_hb.

27.2.2.5 Peripheral Configuration

On systems where a peripheral PCI device
needs to access other PCI devices than the host
the peripheral configuration approach may be
handy. Most PCI devices answers on the PCI
host’s requests and start DMA accesses into the

Hosts memory, however in some complex sys-
tems PCI devices may want to access other de-
vices on the same bus or at another PCI bus.

A PCI peripheral is not allowed to do PCI con-
figuration cycles, which means that it must ei-
ther rely on the host to give it the addresses it
needs, or that the addresses are predefined.

This configuration approach is very similar to
the static option, however the configuration is
never written to PCI bus, instead it is only used
for drivers to find PCI devices and resources
using the same PCI API as for the host

27.2.3 PCI Access

The PCI access routines are low-level routines
provided for drivers, configuration software,
etc. in order to access different regions in a
way not dependent upon the host driver, BSP
or platform.

• PCI configuration space

• PCI I/O space

• Registers over PCI memory space

• Translate PCI address into CPU accessi-
ble address and vice versa

By using the access routines drivers can be
made portable over different architectures.
The access routines take the architecture en-
dianness into consideration and let the host
driver or BSP implement I/O space and con-
figuration space access.

Some non-standard hardware may also define
the PCI bus big-endian, for example the LEON2
AT697 PCI host bridge and some LEON3 sys-
tems may be configured that way. It is up to
the BSP to set the appropriate PCI endianness
on compile time (BSP_PCI_BIG_ENDIAN) in or-
der for inline macros to be correctly defined.
Another possibility is to use the function point-
ers defined by the access layer to implement
drivers that support “run-time endianness de-
tection”.

27.2. Background 401

RTEMS C User Documentation, Release 4.11.3 Chapter 27 Section 27.2

27.2.3.1 Configuration space

Configuration space is accessed using the rou-
tines listed below. The pci_dev_t type is
used to specify a specific PCI bus, device
and function. It is up to the host driver
or BSP to create a valid access to the re-
quested PCI slot. Requests made to slots that
are not supported by hardware should result
in PCISTS_MSTABRT and/or data must be ig-
nored (writes) or 0xFFFFFFFF is always re-
turned (reads).

1 /* Configuration Space Access Read Routines␣
→˓*/

2 extern int pci_cfg_r8(pci_dev_t dev, int ofs,
→˓ uint8_t *data);

3 extern int pci_cfg_r16(pci_dev_t dev, int ␣
→˓ofs, uint16_t *data);

4 extern int pci_cfg_r32(pci_dev_t dev, int ␣
→˓ofs, uint32_t *data);

5

6 /* Configuration Space Access Write Routines␣
→˓*/

7 extern int pci_cfg_w8(pci_dev_t dev, int ofs,
→˓ uint8_t data);

8 extern int pci_cfg_w16(pci_dev_t dev, int ␣
→˓ofs, uint16_t data);

9 extern int pci_cfg_w32(pci_dev_t dev, int ␣
→˓ofs, uint32_t data);

27.2.3.2 I/O space

The BSP or driver provide special routines in
order to access I/O space. Some architectures
have a special instruction accessing I/O space,
others have it mapped into a “PCI I/O window”
in the standard address space accessed by the
CPU. The window size may vary and must be
taken into consideration by the host driver.
The below routines must be used to access I/O
space. The address given to the functions is
not the PCI I/O addresses, the caller must have
translated PCI I/O addresses (available in the
PCI BARs) into a BSP or host driver custom ad-
dress, see Access functions (page 402) for how
addresses are translated.

1 /* Read a register over PCI I/O Space */
2 extern uint8_t pci_io_r8(uint32_t adr);
3 extern uint16_t pci_io_r16(uint32_t adr);
4 extern uint32_t pci_io_r32(uint32_t adr);
5

6 /* Write a register over PCI I/O Space */
7 extern void pci_io_w8(uint32_t adr, uint8_t␣

→˓data);
8 extern void pci_io_w16(uint32_t adr, uint16_

→˓t data);
9 extern void pci_io_w32(uint32_t adr, uint32_

→˓t data);

27.2.3.3 Registers over Memory space

PCI host bridge hardware normally swap data
accesses into the endianness of the host archi-
tecture in order to lower the load of the CPU,
peripherals can do DMA without swapping.
However, the host controller can not separate
a standard memory access from a memory ac-
cess to a register, registers may be mapped into
memory space. This leads to register content
being swapped, which must be swapped back.
The below routines makes it possible to access
registers over PCI memory space in a portable
way on different architectures, the BSP or ar-
chitecture must provide necessary functions in
order to implement this.

1 static inline uint16_t pci_ld_le16(volatile␣
→˓uint16_t *addr);

2 static inline void pci_st_le16(volatile ␣
→˓uint16_t *addr, uint16_t val);

3 static inline uint32_t pci_ld_le32(volatile␣
→˓uint32_t *addr);

4 static inline void pci_st_le32(volatile ␣
→˓uint32_t *addr, uint32_t val);

5 static inline uint16_t pci_ld_be16(volatile␣
→˓uint16_t *addr);

6 static inline void pci_st_be16(volatile ␣
→˓uint16_t *addr, uint16_t val);

7 static inline uint32_t pci_ld_be32(volatile␣
→˓uint32_t *addr);

8 static inline void pci_st_be32(volatile ␣
→˓uint32_t *addr, uint32_t val);

In order to support non-standard big-endian
PCI bus the above pci_* functions is required,
pci_ld_le16 != ld_le16 on big endian PCI
buses.

27.2.3.4 Access functions

The PCI Access Library can provide device
drivers with function pointers executing the
above Configuration, I/O and Memory space

402 Chapter 27. PCI Library

Chapter 27 Section 27.2 RTEMS C User Documentation, Release 4.11.3

accesses. The functions have the same argu-
ments and return values as the above func-
tions.

The pci_access_func() function defined below
can be used to get a function pointer of a spe-
cific access type.

1 /* Get Read/Write function for accessing a␣
→˓register over PCI Memory Space

2 * (non-inline functions).
3 *
4 * Arguments
5 * wr 0(Read), 1(Write)
6 * size 1(Byte), 2(Word), 4(Double␣

→˓Word)
7 * func Where function pointer␣

→˓will be stored
8 * endian PCI_LITTLE_ENDIAN or PCI_

→˓BIG_ENDIAN
9 * type 1(I/O), 3(REG over MEM),␣

→˓4(CFG)
10 *
11 * Return
12 * 0 Found function
13 * others No such function defined␣

→˓by host driver or BSP
14 */
15 int pci_access_func(int wr, int size, void␣

→˓**func, int endian, int type);

PCI device drivers may be written to support
run-time detection of endianess, this is mosly
for debugging or for development systems.
When the product is finally deployed macros
switch to using the inline functions instead
which have been configured for the correct en-
dianness.

27.2.3.5 PCI address translation

When PCI addresses, both I/O and memory
space, is not mapped 1:1 address translation
before access is needed. If drivers read the PCI
resources directly using configuration space
routines or in the device tree, the addresses
given are PCI addresses. The below func-
tions can be used to translate PCI addresses
into CPU accessible addresses or vice versa,
translation may be different for different PCI
spaces/regions.

1 /* Translate PCI address into CPU accessible␣
→˓address */

2 static inline int pci_pci2cpu(uint32_t ␣
→˓*address, int type);

3

4 /* Translate CPU accessible address into PCI␣
→˓address (for DMA) */

5 static inline int pci_cpu2pci(uint32_t ␣
→˓*address, int type);

27.2.4 PCI Interrupt

The PCI specification defines four different in-
terrupt lines INTA#..INTD#, the interrupts are
low level sensitive which make it possible to
support multiple interrupt sources on the same
interrupt line. Since the lines are level sen-
sitive the interrupt sources must be acknowl-
edged before clearing the interrupt contoller,
or the interrupt controller must be masked.
The BSP must provide a routine for clear-
ing/acknowledging the interrupt controller, it
is up to the interrupt service routine to ac-
knowledge the interrupt source.

The PCI Library relies on the BSP for im-
plementing shared interrupt handling
through the BSP_PCI_shared_interrupt_*
functions/macros, they must be defined when
including bsp.h.

PCI device drivers may use the pci_interrupt_*
routines in order to call the BSP specific func-
tions in a platform independent way. The PCI
interrupt interface has been made similar to
the RTEMS IRQ extension so that a BSP can
use the standard RTEMS interrupt functions
directly.

27.2.5 PCI Shell command

The RTEMS shell has a PCI command ‘pci’
which makes it possible to read/write config-
uration space, print the current PCI configura-
tion and print out a configuration C-file for the
static or peripheral library.

27.2. Background 403

RTEMS C User Documentation, Release 4.11.3 Chapter 27 Section 27.2

404 Chapter 27. PCI Library

CHAPTER

TWENTYEIGHT

STACK BOUNDS CHECKER

405

RTEMS C User Documentation, Release 4.11.3 Chapter 28 Section 28.1

28.1 Introduction

The stack bounds checker is an RTEMS support
component that determines if a task has over-
run its run-time stack. The routines provided
by the stack bounds checker manager are:

• rtems_stack_checker_is_blown
(page 409) - Has the Current Task
Blown its Stack

• rtems_stack_checker_report_usage
(page 409) - Report Task Stack Us-
age

406 Chapter 28. Stack Bounds Checker

Chapter 28 Section 28.2 RTEMS C User Documentation, Release 4.11.3

28.2 Background

28.2.1 Task Stack

Each task in a system has a fixed size stack as-
sociated with it. This stack is allocated when
the task is created. As the task executes, the
stack is used to contain parameters, return ad-
dresses, saved registers, and local variables.
The amount of stack space required by a task
is dependent on the exact set of routines used.
The peak stack usage reflects the worst case of
subroutine pushing information on the stack.
For example, if a subroutine allocates a local
buffer of 1024 bytes, then this data must be
accounted for in the stack of every task that
invokes that routine.

Recursive routines make calculating peak stack
usage difficult, if not impossible. Each call to
the recursive routine consumes n bytes of stack
space. If the routine recursives 1000 times,
then 1000 * n bytes of stack space are re-
quired.

28.2.2 Execution

The stack bounds checker operates as a set
of task extensions. At task creation time, the
task’s stack is filled with a pattern to indicate
the stack is unused. As the task executes, it will
overwrite this pattern in memory. At each task
switch, the stack bounds checker’s task switch
extension is executed. This extension checks
that:

• the last n bytes of the task’s stack have
not been overwritten. If this pattern has
been damaged, it indicates that at some
point since this task was context switch
to the CPU, it has used too much stack
space.

• the current stack pointer of the task is
not within the address range allocated
for use as the task’s stack.

If either of these conditions is detected, then a
blown stack error is reported using the printk
routine.

The number of bytes checked for an overwrite

is processor family dependent. The minimum
stack frame per subroutine call varies widely
between processor families. On CISC families
like the Motorola MC68xxx and Intel ix86, all
that is needed is a return address. On more
complex RISC processors, the minimum stack
frame per subroutine call may include space to
save a significant number of registers.

Another processor dependent feature that
must be taken into account by the stack bounds
checker is the direction that the stack grows.
On some processor families, the stack grows
up or to higher addresses as the task executes.
On other families, it grows down to lower ad-
dresses. The stack bounds checker implemen-
tation uses the stack description definitions
provided by every RTEMS port to get for this
information.

28.2. Background 407

RTEMS C User Documentation, Release 4.11.3 Chapter 28 Section 28.3

28.3 Operations

28.3.1 Initializing the Stack Bounds
Checker

The stack checker is initialized automatically
when its task create extension runs for the first
time.

The application must include the stack
bounds checker extension set in its set of
Initial Extensions. This set of extensions
is defined as STACK_CHECKER_EXTENSION.
If using <rtems/confdefs.h> for Con-
figuration Table generation, then all
that is necessary is to define the macro
CONFIGURE_STACK_CHECKER_ENABLED before
including <rtems/confdefs.h> as shown
below:

1 #define CONFIGURE_STACK_CHECKER_ENABLED
2 ...
3 #include <rtems/confdefs.h>

28.3.2 Checking for Blown Task Stack

The application may check whether the stack
pointer of currently executing task is within
proper bounds at any time by calling the
rtems_stack_checker_is_blown method. This
method return FALSE if the task is operating
within its stack bounds and has not damaged
its pattern area.

28.3.3 Reporting Task Stack Usage

The application may dynamically report the
stack usage for every task in the system by call-
ing the rtems_stack_checker_report_usage
routine. This routine prints a table with the
peak usage and stack size of every task in the
system. The following is an example of the re-
port generated:

1 ID NAME LOW HIGH ␣
→˓AVAILABLE USED

2 0x04010001 IDLE 0x003e8a60 0x003e9667 ␣
→˓ 2952 200

3 0x08010002 TA1 0x003e5750 0x003e7b57 ␣
→˓ 9096 1168

4 0x08010003 TA2 0x003e31c8 0x003e55cf ␣
→˓ 9096 1168

5 0x08010004 TA3 0x003e0c40 0x003e3047 ␣
→˓ 9096 1104

6 0xffffffff INTR 0x003ecfc0 0x003effbf ␣
→˓ 12160 128

Notice the last line. The task id is 0xffffffff
and its name is INTR. This is not actually a task,
it is the interrupt stack.

28.3.4 When a Task Overflows the Stack

When the stack bounds checker determines
that a stack overflow has occurred, it will at-
tempt to print a message using printk identi-
fying the task and then shut the system down.
If the stack overflow has caused corruption,
then it is possible that the message cannot be
printed.

The following is an example of the output gen-
erated:

1 BLOWN STACK!!! Offending task(0x3eb360): ␣
→˓id=0x08010002; name=0x54413120

2 stack covers range 0x003e5750 - 0x003e7b57␣
→˓(9224 bytes)

3 Damaged pattern begins at 0x003e5758 and is␣
→˓128 bytes long

The above includes the task id and a pointer to
the task control block as well as enough infor-
mation so one can look at the task’s stack and
see what was happening.

408 Chapter 28. Stack Bounds Checker

Chapter 28 Section 28.4 RTEMS C User Documentation, Release 4.11.3

28.4 Routines

This section details the stack bounds checker’s
routines. A subsection is dedicated to each of
routines and describes the calling sequence, re-
lated constants, usage, and status codes.

28.4.1 STACK_CHECKER_IS_BLOWN -
Has Current Task Blown Its Stack

CALLING SEQUENCE:

1 bool rtems_stack_checker_is_blown(void);

STATUS CODES:
TRUE Stack is operating within its stack

limits
FALSE Current stack pointer is outside

allocated area

DESCRIPTION:
This method is used to determine if the cur-
rent stack pointer of the currently executing
task is within bounds.

NOTES:
This method checks the current stack pointer
against the high and low addresses of the
stack memory allocated when the task was
created and it looks for damage to the high
water mark pattern for the worst case usage
of the task being called.

28.4.2 STACK_CHECKER_REPORT_USAGE
- Report Task Stack Usage

CALLING SEQUENCE:

1 void rtems_stack_checker_report_usage(␣
→˓void);

STATUS CODES:
NONE

DESCRIPTION:
This routine prints a table with the peak
stack usage and stack space allocation of ev-
ery task in the system.

NOTES:
NONE

28.4. Routines 409

RTEMS C User Documentation, Release 4.11.3 Chapter 28 Section 28.4

410 Chapter 28. Stack Bounds Checker

CHAPTER

TWENTYNINE

CPU USAGE STATISTICS

411

RTEMS C User Documentation, Release 4.11.3 Chapter 29 Section 29.1

29.1 Introduction

The CPU usage statistics manager is an RTEMS
support component that provides a convenient
way to manipulate the CPU usage information
associated with each task The routines pro-
vided by the CPU usage statistics manager are:

• rtems_cpu_usage_report (page 416) - Re-
port CPU Usage Statistics

• rtems_cpu_usage_reset (page 417) - Reset
CPU Usage Statistics

412 Chapter 29. CPU Usage Statistics

Chapter 29 Section 29.2 RTEMS C User Documentation, Release 4.11.3

29.2 Background

When analyzing and debugging real-time ap-
plications, it is important to be able to know
how much CPU time each task in the system
consumes. This support component provides
a mechanism to easily obtain this information
with little burden placed on the target.

The raw data is gathered as part of perform-
ing a context switch. RTEMS keeps track of
how many clock ticks have occurred which the
task being switched out has been executing. If
the task has been running less than 1 clock
tick, then for the purposes of the statistics, it
is assumed to have executed 1 clock tick. This
results in some inaccuracy but the alternative
is for the task to have appeared to execute 0
clock ticks.

RTEMS versions newer than the 4.7 release se-
ries, support the ability to obtain timestamps
with nanosecond granularity if the BSP pro-
vides support. It is a desirable enhancement
to change the way the usage data is gathered
to take advantage of this recently added ca-
pability. Please consider sponsoring the core
RTEMS development team to add this capabil-
ity.

29.2. Background 413

RTEMS C User Documentation, Release 4.11.3 Chapter 29 Section 29.3

29.3 Operations

29.3.1 Report CPU Usage Statistics

The application may dynamically report the
CPU usage for every task in the system by call-
ing the rtems_cpu_usage_report routine. This
routine prints a table with the following infor-
mation per task:

• task id

• task name

• number of clock ticks executed

• percentage of time consumed by this task

The following is an example of the report gen-
erated:

1 +---
→˓-----------------------------------+

2 |CPU USAGE BY THREAD ␣
→˓ |

3 +-----------+-------------------------------
→˓---------+-------------------------+

4 |ID | NAME ␣
→˓ | SECONDS | PERCENT |

5 +-----------+-------------------------------
→˓---------+---------------+---------+

6 |0x04010001 | IDLE ␣
→˓ | 0 | 0.000 |

7 +-----------+-------------------------------
→˓---------+---------------+---------+

8 |0x08010002 | TA1 ␣
→˓ | 1203 | 0.748 |

9 +-----------+-------------------------------
→˓---------+---------------+---------+

10 |0x08010003 | TA2 ␣
→˓ | 203 | 0.126 |

11 +-----------+-------------------------------
→˓---------+---------------+---------+

12 |0x08010004 | TA3 ␣
→˓ | 202 | 0.126 |

13 +-----------+-------------------------------
→˓---------+---------------+---------+

14 |TICKS SINCE LAST SYSTEM RESET: ␣
→˓ 1600 |

15 |TOTAL UNITS: ␣
→˓ 1608 |

16 +---
→˓-----------------------------------+

Notice that the TOTAL UNITS is greater than
the ticks per reset. This is an artifact of the
way in which RTEMS keeps track of CPU us-

age. When a task is context switched into the
CPU, the number of clock ticks it has executed
is incremented. While the task is executing,
this number is incremented on each clock tick.
Otherwise, if a task begins and completes ex-
ecution between successive clock ticks, there
would be no way to tell that it executed at all.

Another thing to keep in mind when looking at
idle time, is that many systems - especially dur-
ing debug - have a task providing some type of
debug interface. It is usually fine to think of
the total idle time as being the sum of the IDLE
task and a debug task that will not be included
in a production build of an application.

29.3.2 Reset CPU Usage Statistics

Invoking the rtems_cpu_usage_reset routine
resets the CPU usage statistics for all tasks in
the system.

414 Chapter 29. CPU Usage Statistics

Chapter 29 Section 29.4 RTEMS C User Documentation, Release 4.11.3

29.4 Directives

This section details the CPU usage statistics
manager’s directives. A subsection is dedicated
to each of this manager’s directives and de-
scribes the calling sequence, related constants,
usage, and status codes.

29.4. Directives 415

RTEMS C User Documentation, Release 4.11.3 Chapter 29 Section 29.4

29.4.1 cpu_usage_report - Report CPU Us-
age Statistics

CALLING SEQUENCE:

1 void rtems_cpu_usage_report(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine prints out a table detailing the
CPU usage statistics for all tasks in the sys-
tem.

NOTES:
The table is printed using the printk routine.

416 Chapter 29. CPU Usage Statistics

Chapter 29 Section 29.4 RTEMS C User Documentation, Release 4.11.3

29.4.2 cpu_usage_reset - Reset CPU Usage
Statistics

CALLING SEQUENCE:

1 void rtems_cpu_usage_reset(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine re-initializes the CPU usage
statistics for all tasks in the system to their
initial state. The initial state is that a task
has not executed and thus has consumed no
CPU time. default state which is when zero
period executions have occurred.

NOTES:
NONE

29.4. Directives 417

RTEMS C User Documentation, Release 4.11.3 Chapter 29 Section 29.4

418 Chapter 29. CPU Usage Statistics

CHAPTER

THIRTY

OBJECT SERVICES

419

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.1

30.1 Introduction

RTEMS provides a collection of services to as-
sist in the management and usage of the ob-
jects created and utilized via other managers.
These services assist in the manipulation of
RTEMS objects independent of the API used to
create them. The object related services pro-
vided by RTEMS are:

• build_id

• rtems_build_name (page 424) - build ob-
ject name from characters

• rtems_object_get_classic_name
(page 425) - lookup name from Id

• rtems_object_get_name (page 426) - ob-
tain object name as string

• rtems_object_set_name (page 427) - set
object name

• rtems_object_id_get_api (page 428) - ob-
tain API from Id

• rtems_object_id_get_class (page 429) -
obtain class from Id

• rtems_object_id_get_node (page 430) -
obtain node from Id

• rtems_object_id_get_index (page 431) -
obtain index from Id

• rtems_build_id (page 432) - build object
id from components

• rtems_object_id_api_minimum
(page 433) - obtain minimum API
value

• rtems_object_id_api_maximum
(page 434) - obtain maximum API
value

• rtems_object_id_api_minimum_class
(page 437) - obtain minimum class
value

• rtems_object_id_api_maximum_class
(page 438) - obtain maximum class
value

• rtems_object_get_api_name (page 439) -
obtain API name

• rtems_object_get_api_class_name
(page 440) - obtain class name

• rtems_object_get_class_information
(page 441) - obtain class information

420 Chapter 30. Object Services

Chapter 30 Section 30.2 RTEMS C User Documentation, Release 4.11.3

30.2 Background

30.2.1 APIs

RTEMS implements multiple APIs including an
Internal API, the Classic API, and the POSIX
API. These APIs share the common founda-
tion of SuperCore objects and thus share ob-
ject management code. This includes a com-
mon scheme for object Ids and for managing
object names whether those names be in the
thirty-two bit form used by the Classic API or
C strings.

The object Id contains a field indicating the API
that an object instance is associated with. This
field holds a numerically small non-zero inte-
ger.

30.2.2 Object Classes

Each API consists of a collection of managers.
Each manager is responsible for instances of a
particular object class. Classic API Tasks and
POSIX Mutexes example classes.

The object Id contains a field indicating the
class that an object instance is associated with.
This field holds a numerically small non-zero
integer. In all APIs, a class value of one is re-
served for tasks or threads.

30.2.3 Object Names

Every RTEMS object which has an Id may also
have a name associated with it. Depending on
the API, names may be either thirty-two bit in-
tegers as in the Classic API or strings as in the
POSIX API.

Some objects have Ids but do not have a de-
fined way to associate a name with them.
For example, POSIX threads have Ids but per
POSIX do not have names. In RTEMS, ob-
jects not defined to have thirty-two bit names
may have string names assigned to them via
the rtems_object_set_name service. The orig-
inal impetus in providing this service was so
the normally anonymous POSIX threads could
have a user defined name in CPU Usage Re-
ports.

30.2. Background 421

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.3

30.3 Operations

30.3.1 Decomposing and Recomposing an
Object Id

Services are provided to decompose an object
Id into its subordinate components. The fol-
lowing services are used to do this:

• rtems_object_id_get_api

• rtems_object_id_get_class

• rtems_object_id_get_node

• rtems_object_id_get_index

The following C language example illustrates
the decomposition of an Id and printing the
values.

1 void printObjectId(rtems_id id)
2 {
3 printf(
4 "API=%d Class=%d Node=%d Index=%d\n",
5 rtems_object_id_get_api(id),
6 rtems_object_id_get_class(id),
7 rtems_object_id_get_node(id),
8 rtems_object_id_get_index(id)
9);

10 }

This prints the components of the Ids as inte-
gers.

It is also possible to construct an arbitrary Id
using the rtems_build_id service. The follow-
ing C language example illustrates how to con-
struct the “next Id.”

1 rtems_id nextObjectId(rtems_id id)
2 {
3 return rtems_build_id(
4 rtems_object_id_get_api(id),
5 rtems_object_id_get_class(id),
6 rtems_object_id_get_node(id),
7 rtems_object_id_get_index(id)␣

→˓+ 1
8);
9 }

Note that this Id may not be valid in this system
or associated with an allocated object.

30.3.2 Printing an Object Id

RTEMS also provides services to associate the
API and Class portions of an Object Id with
strings. This allows the application developer
to provide more information about an object in
diagnostic messages.

In the following C language example, an Id
is decomposed into its constituent parts and
“pretty-printed.”

1 void prettyPrintObjectId(rtems_id id)
2 {
3 int tmpAPI, tmpClass;
4

5 tmpAPI = rtems_object_id_get_api(id),
6 tmpClass = rtems_object_id_get_class(id),
7

8 printf(
9 "API=%s Class=%s Node=%d Index=%d\n",

10 rtems_object_get_api_name(tmpAPI),
11 rtems_object_get_api_class_

→˓name(tmpAPI, tmpClass),
12 rtems_object_id_get_node(id),
13 rtems_object_id_get_index(id)
14);
15 }

422 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4 Directives

30.4. Directives 423

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.1 BUILD_NAME - Build object name
from characters

CALLING SEQUENCE:

1 rtems_name rtems_build_name(
2 uint8_t c1,
3 uint8_t c2,
4 uint8_t c3,
5 uint8_t c4
6);

DIRECTIVE STATUS CODES:
Returns a name constructed from the four
characters.

DESCRIPTION:
This service takes the four characters pro-
vided as arguments and constructs a thirty-
two bit object name with c1 in the most sig-
nificant byte and c4 in the least significant
byte.

NOTES:
This directive is strictly local and does not
impact task scheduling.

424 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.2 OBJECT_GET_CLASSIC_NAME -
Lookup name from id

CALLING SEQUENCE:

1 rtems_status_code rtems_object_get_
→˓classic_name(

2 rtems_id id,
3 rtems_name *name
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

name looked up
successfully

RTEMS_INVALID_
ADDRESS

invalid name pointer

RTEMS_INVALID_
ID

invalid object id

DESCRIPTION:
This service looks up the name for the object
id specified and, if found, places the result
in *name.

NOTES:
This directive is strictly local and does not
impact task scheduling.

30.4. Directives 425

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.3 OBJECT_GET_NAME - Obtain ob-
ject name as string

CALLING SEQUENCE:

1 char* rtems_object_get_name(
2 rtems_id id,
3 size_t length,
4 char *name
5);

DIRECTIVE STATUS CODES:
Returns a pointer to the name if successful
or NULL otherwise.

DESCRIPTION:
This service looks up the name of the object
specified by id and places it in the memory
pointed to by name. Every attempt is made to
return name as a printable string even if the
object has the Classic API thirty-two bit style
name.

NOTES:
This directive is strictly local and does not
impact task scheduling.

426 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.4 OBJECT_SET_NAME - Set object
name

CALLING SEQUENCE:

1 rtems_status_code rtems_object_set_name(
2 rtems_id id,
3 const char *name
4);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

name looked up
successfully

RTEMS_INVALID_
ADDRESS

invalid name pointer

RTEMS_INVALID_
ID

invalid object id

DESCRIPTION:
This service sets the name of id to that spec-
ified by the string located at name.

NOTES:
This directive is strictly local and does not
impact task scheduling.

If the object specified by id is of a class that
has a string name, this method will free the
existing name to the RTEMS Workspace and
allocate enough memory from the RTEMS
Workspace to make a copy of the string lo-
cated at name.

If the object specified by id is of a class that
has a thirty-two bit integer style name, then
the first four characters in *name will be used
to construct the name. name to the RTEMS
Workspace and allocate enough memory
from the RTEMS Workspace to make a copy
of the string

30.4. Directives 427

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.5 OBJECT_ID_GET_API - Obtain API
from Id

CALLING SEQUENCE:

1 int rtems_object_id_get_api(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the API portion of the object Id.

DESCRIPTION:
This directive returns the API portion of the
provided object id.

NOTES:
This directive is strictly local and does not
impact task scheduling.

This directive does NOT validate the id pro-
vided.

428 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.6 OBJECT_ID_GET_CLASS - Obtain
Class from Id

CALLING SEQUENCE:

1 int rtems_object_id_get_class(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the class portion of the object Id.

DESCRIPTION:
This directive returns the class portion of the
provided object id.

NOTES:
This directive is strictly local and does not
impact task scheduling.

This directive does NOT validate the id pro-
vided.

30.4. Directives 429

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.7 OBJECT_ID_GET_NODE - Obtain
Node from Id

CALLING SEQUENCE:

1 int rtems_object_id_get_node(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the node portion of the object Id.

DESCRIPTION:
This directive returns the node portion of the
provided object id.

NOTES:
This directive is strictly local and does not
impact task scheduling.

This directive does NOT validate the id pro-
vided.

430 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.8 OBJECT_ID_GET_INDEX - Obtain
Index from Id

CALLING SEQUENCE:

1 int rtems_object_id_get_index(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the index portion of the object Id.

DESCRIPTION:
This directive returns the index portion of
the provided object id.

NOTES:
This directive is strictly local and does not
impact task scheduling.

This directive does NOT validate the id pro-
vided.

30.4. Directives 431

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.9 BUILD_ID - Build Object Id From
Components

CALLING SEQUENCE:

1 rtems_id rtems_build_id(
2 int the_api,
3 int the_class,
4 int the_node,
5 int the_index
6);

DIRECTIVE STATUS CODES:
Returns an object Id constructed from the
provided arguments.

DESCRIPTION:
This service constructs an object Id from the
provided the_api, the_class, the_node, and
the_index.

NOTES:
This directive is strictly local and does not
impact task scheduling.

This directive does NOT validate the argu-
ments provided or the Object id returned.

432 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.10 OBJECT_ID_API_MINIMUM - Ob-
tain Minimum API Value

CALLING SEQUENCE:

1 int rtems_object_id_api_minimum(void);

DIRECTIVE STATUS CODES:
Returns the minimum valid for the API por-
tion of an object Id.

DESCRIPTION:
This service returns the minimum valid for
the API portion of an object Id.

NOTES:
This directive is strictly local and does not
impact task scheduling.

30.4. Directives 433

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.11 OBJECT_ID_API_MAXIMUM -
Obtain Maximum API Value

CALLING SEQUENCE:

1 int rtems_object_id_api_maximum(void);

DIRECTIVE STATUS CODES:
Returns the maximum valid for the API por-
tion of an object Id.

DESCRIPTION:
This service returns the maximum valid for
the API portion of an object Id.

NOTES:
This directive is strictly local and does not
impact task scheduling.

434 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.12 OBJECT_API_MINIMUM_CLASS
- Obtain Minimum Class Value

CALLING SEQUENCE:

1 int rtems_object_api_minimum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the mini-
mum valid for the class portion of an object
Id for the specified api.

DESCRIPTION:
This service returns the minimum valid for
the class portion of an object Id for the spec-
ified api.

NOTES:
This directive is strictly local and does not
impact task scheduling.

30.4. Directives 435

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.13 OBJECT_API_MAXIMUM_CLASS
- Obtain Maximum Class Value

CALLING SEQUENCE:

1 int rtems_object_api_maximum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the maxi-
mum valid for the class portion of an object
Id for the specified api.

DESCRIPTION:
This service returns the maximum valid for
the class portion of an object Id for the spec-
ified api.

NOTES:
This directive is strictly local and does not
impact task scheduling.

436 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.14 OBJECT_ID_API_MINIMUM_CLASS
- Obtain Minimum Class Value
for an API

CALLING SEQUENCE:

1 int rtems_object_get_id_api_minimum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the index
corresponding to the first object class of the
specified api.

DESCRIPTION:
This service returns the index for the first ob-
ject class associated with the specified api.

NOTES:
This directive is strictly local and does not
impact task scheduling.

30.4. Directives 437

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.15 OBJECT_ID_API_MAXIMUM_CLASS
- Obtain Maximum Class Value
for an API

CALLING SEQUENCE:

1 int rtems_object_get_api_maximum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the index
corresponding to the last object class of the
specified api.

DESCRIPTION:
This service returns the index for the last ob-
ject class associated with the specified api.

NOTES:
This directive is strictly local and does not
impact task scheduling.

438 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.16 OBJECT_GET_API_NAME - Ob-
tain API Name

CALLING SEQUENCE:

1 const char* rtems_object_get_api_name(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, the string "BAD API" is
returned.

If successful, this service returns a pointer to
a string containing the name of the specified
api.

DESCRIPTION:
This service returns the name of the specified
api.

NOTES:
This directive is strictly local and does not
impact task scheduling.

The string returned is from constant space.
Do not modify or free it.

30.4. Directives 439

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

30.4.17 OBJECT_GET_API_CLASS_NAME
- Obtain Class Name

CALLING SEQUENCE:

1 const char *rtems_object_get_api_class_
→˓name(

2 int the_api,
3 int the_class
4);

DIRECTIVE STATUS CODES:
If the_api is not valid, the string "BAD API"
is returned.

If the_class is not valid, the string "BAD
CLASS" is returned.

If successful, this service returns a pointer to
a string containing the name of the specified
the_api / the_class pair.

DESCRIPTION:
This service returns the name of the object
class indicated by the specified the_api and
the_class.

NOTES:
This directive is strictly local and does not
impact task scheduling.

The string returned is from constant space.
Do not modify or free it.

440 Chapter 30. Object Services

Chapter 30 Section 30.4 RTEMS C User Documentation, Release 4.11.3

30.4.18 OBJECT_GET_CLASS_INFORMATION
- Obtain Class Information

CALLING SEQUENCE:

1 rtems_status_code rtems_object_get_class_
→˓information(

2 int ␣
→˓the_api,

3 int ␣
→˓the_class,

4 rtems_object_api_class_information ␣
→˓*info

5);

DIRECTIVE STATUS CODES:
RTEMS_
SUCCESSFUL

information obtained
successfully

RTEMS_INVALID_
ADDRESS

info is NULL

RTEMS_INVALID_
NUMBER

invalid api or
the_class

If successful, the structure located at info
will be filled in with information about the
specified api / the_class pairing.

DESCRIPTION:
This service returns information about the
object class indicated by the specified api
and the_class. This structure is defined as
follows:

1 typedef struct {
2 rtems_id minimum_id;
3 rtems_id maximum_id;
4 int maximum;
5 bool auto_extend;
6 int unallocated;
7 } rtems_object_api_class_information;

NOTES:
This directive is strictly local and does not
impact task scheduling.

30.4. Directives 441

RTEMS C User Documentation, Release 4.11.3 Chapter 30 Section 30.4

442 Chapter 30. Object Services

CHAPTER

THIRTYONE

CHAINS

443

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.1

31.1 Introduction

The Chains API is an interface to the Super
Core (score) chain implementation. The Super
Core uses chains for all list type functions. This
includes wait queues and task queues. The
Chains API provided by RTEMS is:

• rtems_chain_initialize (page 448) - ini-
tialize the chain with nodes

• rtems_chain_initialize_empty (page 449)
- initialize the chain as empty

• rtems_chain_is_null_node (page 450) - Is
the node NULL ?

• rtems_chain_head (page 451) - Return
the chain’s head

• rtems_chain_tail (page 452) - Return the
chain’s tail

• rtems_chain_are_nodes_equal (page 453)
- Are the node’s equal ?

• rtems_chain_is_empty (page 454) - Is the
chain empty ?

• rtems_chain_is_first (page 455) - Is the
Node the first in the chain ?

• rtems_chain_is_last (page 456) - Is the
Node the last in the chain ?

• rtems_chain_has_only_one_node
(page 457) - Does the node have
one node ?

• rtems_chain_node_count_unprotected
(page 458) - Returns the node count of
the chain (unprotected)

• rtems_chain_is_head (page 459) - Is the
node the head ?

• rtems_chain_is_tail (page 460) - Is the
node the tail ?

• rtems_chain_extract (page 461) - Extract
the node from the chain

• rtems_chain_extract_unprotected
(page 462) - Extract the node from
the chain (unprotected)

• rtems_chain_get (page 463) - Return the
first node on the chain

• rtems_chain_get_unprotected (page 464)
- Return the first node on the chain (un-
protected)

• rtems_chain_insert (page 465) - Insert
the node into the chain

• rtems_chain_insert_unprotected
(page 466) - Insert the node into
the chain (unprotected)

• rtems_chain_append (page 467) - Ap-
pend the node to chain

• rtems_chain_append_unprotected
(page 468) - Append the node to
chain (unprotected)

• rtems_chain_prepend (page 469) -
Prepend the node to the end of the chain

• rtems_chain_prepend_unprotected
(page 470) - Prepend the node to
chain (unprotected)

444 Chapter 31. Chains

Chapter 31 Section 31.2 RTEMS C User Documentation, Release 4.11.3

31.2 Background

The Chains API maps to the Super Core Chains
API. Chains are implemented as a double
linked list of nodes anchored to a control node.
The list starts at the control node and is termi-
nated at the control node. A node has previ-
ous and next pointers. Being a double linked
list nodes can be inserted and removed with-
out the need to travse the chain.

Chains have a small memory footprint and can
be used in interrupt service routines and are
thread safe in a multi-threaded environment.
The directives list which operations disable in-
terrupts.

Chains are very useful in Board Support pack-
ages and applications.

31.2.1 Nodes

A chain is made up from nodes that orginate
from a chain control object. A node is of type
rtems_chain_node. The node is designed to be
part of a user data structure and a cast is used
to move from the node address to the user data
structure address. For example:

1 typedef struct foo
2 {
3 rtems_chain_node node;
4 int bar;
5 } foo;

creates a type foo that can be placed on a
chain. To get the foo structure from the list
you perform the following:

1 foo* get_foo(rtems_chain_control* control)
2 {
3 return (foo*) rtems_chain_get(control);
4 }

The node is placed at the start of the user’s
structure to allow the node address on the
chain to be easly cast to the user’s structure
address.

31.2.2 Controls

A chain is anchored with a control object.
Chain control provide the user with access to
the nodes on the chain. The control is head of
the node.

1 [Control]
2 first ------------------------>
3 permanent_null <--------------- [NODE]
4 last ------------------------->

The implementation does not require spe-
cial checks for manipulating the first and last
nodes on the chain. To accomplish this the
rtems_chain_control structure is treated as
two overlapping rtems_chain_node structures.
The permanent head of the chain overlays a
node structure on the first and permanent_null
fields. The permanent_tail of the chain over-
lays a node structure on the permanent_null
and last elements of the structure.

31.2. Background 445

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.3

31.3 Operations

31.3.1 Multi-threading

Chains are designed to be used in a multi-
threading environment. The directives list
which operations mask interrupts. Chains sup-
ports tasks and interrupt service routines ap-
pending and extracting nodes with out the
need for extra locks. Chains how-ever cannot
insure the integrity of a chain for all opera-
tions. This is the responsibility of the user. For
example an interrupt service routine extracting
nodes while a task is iterating over the chain
can have unpredictable results.

31.3.2 Creating a Chain

To create a chain you need to declare a chain
control then add nodes to the control. Con-
sider a user structure and chain control:

1 typedef struct foo
2 {
3 rtems_chain_node node;
4 uint8_t char* data;
5 } foo;
6 rtems_chain_control chain;

Add nodes with the following code:

1 rtems_chain_initialize_empty (&chain);
2

3 for (i = 0; i < count; i++)
4 {
5 foo* bar = malloc (sizeof (foo));
6 if (!bar)
7 return -1;
8 bar->data = malloc (size);
9 rtems_chain_append (&chain, &bar->node);

10 }

The chain is initialized and the nodes allocated
and appended to the chain. This is an example
of a pool of buffers.

31.3.3 Iterating a Chain

Iterating a chain is a common function. The
example shows how to iterate the buffer pool
chain created in the last section to find buffers

starting with a specific string. If the buffer is lo-
cated it is extracted from the chain and placed
on another chain:

1 void foobar (const char* match,
2 rtems_chain_control* chain,
3 rtems_chain_control* out)
4 {
5 rtems_chain_node* node;
6 foo* bar;
7

8 rtems_chain_initialize_empty (out);
9

10 node = chain->first;
11 while (!rtems_chain_is_tail (chain, ␣

→˓node))
12 {
13 bar = (foo*) node;
14 rtems_chain_node* next_node = node->

→˓next;
15 if (strcmp (match, bar->data) == 0)
16 {
17 rtems_chain_extract (node);
18 rtems_chain_append (out, node);
19 }
20 node = next_node;
21 }
22 }

446 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4 Directives

The section details the Chains directives.

31.4. Directives 447

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.1 Initialize Chain With Nodes

CALLING SEQUENCE:

1 void rtems_chain_initialize(
2 rtems_chain_control *the_chain,
3 void *starting_address,
4 size_t number_nodes,
5 size_t node_size
6)

RETURNS:
Returns nothing.

DESCRIPTION:
This function take in a pointer to a chain
control and initializes it to contain a set
of chain nodes. The chain will contain
number_nodes chain nodes from the memory
pointed to by start_address. Each node is
assumed to be node_size bytes.

NOTES:
This call will discard any nodes on the chain.

This call does NOT inititialize any user data
on each node.

448 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.2 Initialize Empty

CALLING SEQUENCE:

1 void rtems_chain_initialize_empty(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This function take in a pointer to a chain
control and initializes it to empty.

NOTES:
This call will discard any nodes on the chain.

31.4. Directives 449

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.3 Is Null Node ?

CALLING SEQUENCE:

1 bool rtems_chain_is_null_node(
2 const rtems_chain_node *the_node
3);

RETURNS:
Returns true is the node point is NULL and
false if the node is not NULL.

DESCRIPTION:
Tests the node to see if it is a NULL returning
true if a null.

450 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.4 Head

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_head(
2 rtems_chain_control *the_chain
3)

RETURNS:
Returns the permanent head node of the
chain.

DESCRIPTION:
This function returns a pointer to the first
node on the chain.

31.4. Directives 451

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.5 Tail

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_tail(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns the permanent tail node of the
chain.

DESCRIPTION:
This function returns a pointer to the last
node on the chain.

452 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.6 Are Two Nodes Equal ?

CALLING SEQUENCE:

1 bool rtems_chain_are_nodes_equal(
2 const rtems_chain_node *left,
3 const rtems_chain_node *right
4);

RETURNS:
This function returns true if the left node
and the right node are equal, and false oth-
erwise.

DESCRIPTION:
This function returns true if the left node
and the right node are equal, and false oth-
erwise.

31.4. Directives 453

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.7 Is the Chain Empty

CALLING SEQUENCE:

1 bool rtems_chain_is_empty(
2 rtems_chain_control *the_chain
3);

RETURNS:
This function returns true if there a no
nodes on the chain and false otherwise.

DESCRIPTION:
This function returns true if there a no
nodes on the chain and false otherwise.

454 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.8 Is this the First Node on the Chain
?

CALLING SEQUENCE:

1 bool rtems_chain_is_first(
2 const rtems_chain_node *the_node
3);

RETURNS:
This function returns true if the node is the
first node on a chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the
first node on a chain and false otherwise.

31.4. Directives 455

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.9 Is this the Last Node on the Chain
?

CALLING SEQUENCE:

1 bool rtems_chain_is_last(
2 const rtems_chain_node *the_node
3);

RETURNS:
This function returns true if the node is the
last node on a chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the
last node on a chain and false otherwise.

456 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.10 Does this Chain have only One
Node ?

CALLING SEQUENCE:

1 bool rtems_chain_has_only_one_node(
2 const rtems_chain_control *the_chain
3);

RETURNS:
This function returns true if there is only one
node on the chain and false otherwise.

DESCRIPTION:
This function returns true if there is only one
node on the chain and false otherwise.

31.4. Directives 457

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.11 Returns the node count of the
chain (unprotected)

CALLING SEQUENCE:

1 size_t rtems_chain_node_count_unprotected(
2 const rtems_chain_control *the_chain
3);

RETURNS:
This function returns the node count of the
chain.

DESCRIPTION:
This function returns the node count of the
chain.

458 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.12 Is this Node the Chain Head ?

CALLING SEQUENCE:

1 bool rtems_chain_is_head(
2 rtems_chain_control *the_chain,
3 rtems_const chain_node *the_node
4);

RETURNS:
This function returns true if the node is the
head of the chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the
head of the chain and false otherwise.

31.4. Directives 459

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.13 Is this Node the Chain Tail ?

CALLING SEQUENCE:

1 bool rtems_chain_is_tail(
2 rtems_chain_control *the_chain,
3 const rtems_chain_node *the_node
4)

RETURNS:
This function returns true if the node is the
tail of the chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the
tail of the chain and false otherwise.

460 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.14 Extract a Node

CALLING SEQUENCE:

1 void rtems_chain_extract(
2 rtems_chain_node *the_node
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine extracts the node from the chain
on which it resides.

NOTES:
Interrupts are disabled while extracting the
node to ensure the atomicity of the opera-
tion.

Use rtems_chain_extract_unprotected to
avoid disabling of interrupts.

31.4. Directives 461

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.15 Extract a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_extract_unprotected(
2 rtems_chain_node *the_node
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine extracts the node from the chain
on which it resides.

NOTES:
The function does nothing to ensure the
atomicity of the operation.

462 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.16 Get the First Node

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_get(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns a pointer a node. If a node was
removed, then a pointer to that node is re-
turned. If the chain was empty, then NULL is
returned.

DESCRIPTION:
This function removes the first node from the
chain and returns a pointer to that node. If
the chain is empty, then NULL is returned.

NOTES:
Interrupts are disabled while obtaining the
node to ensure the atomicity of the opera-
tion.

Use rtems_chain_get_unprotected() to
avoid disabling of interrupts.

31.4. Directives 463

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.17 Get the First Node (unprotected)

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_get_
→˓unprotected(

2 rtems_chain_control *the_chain
3);

RETURNS:
A pointer to the former first node is returned.

DESCRIPTION:
Removes the first node from the chain and
returns a pointer to it. In case the chain was
empty, then the results are unpredictable.

NOTES:
The function does nothing to ensure the
atomicity of the operation.

464 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.18 Insert a Node

CALLING SEQUENCE:

1 void rtems_chain_insert(
2 rtems_chain_node *after_node,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine inserts a node on a chain imme-
diately following the specified node.

NOTES:
Interrupts are disabled during the insert to
ensure the atomicity of the operation.

Use rtems_chain_insert_unprotected() to
avoid disabling of interrupts.

31.4. Directives 465

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.19 Insert a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_insert_unprotected(
2 rtems_chain_node *after_node,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine inserts a node on a chain imme-
diately following the specified node.

NOTES:
The function does nothing to ensure the
atomicity of the operation.

466 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.20 Append a Node

CALLING SEQUENCE:

1 void rtems_chain_append(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine appends a node to the end of a
chain.

NOTES:
Interrupts are disabled during the append to
ensure the atomicity of the operation.

Use rtems_chain_append_unprotected to
avoid disabling of interrupts.

31.4. Directives 467

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.21 Append a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_append_unprotected(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine appends a node to the end of a
chain.

NOTES:
The function does nothing to ensure the
atomicity of the operation.

468 Chapter 31. Chains

Chapter 31 Section 31.4 RTEMS C User Documentation, Release 4.11.3

31.4.22 Prepend a Node

CALLING SEQUENCE:

1 void rtems_chain_prepend(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine prepends a node to the front of
the chain.

NOTES:
Interrupts are disabled during the prepend
to ensure the atomicity of the operation.

Use rtems_chain_prepend_unprotected to
avoid disabling of interrupts.

31.4. Directives 469

RTEMS C User Documentation, Release 4.11.3 Chapter 31 Section 31.4

31.4.23 Prepend a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_prepend_unprotected(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine prepends a node to the front of
the chain.

NOTES:
The function does nothing to ensure the
atomicity of the operation.

470 Chapter 31. Chains

CHAPTER

THIRTYTWO

RED-BLACK TREES

471

RTEMS C User Documentation, Release 4.11.3 Chapter 32 Section 32.1

32.1 Introduction

The Red-Black Tree API is an interface to
the SuperCore (score) rbtree implementa-
tion. Within RTEMS, red-black trees are used
when a binary search tree is needed, includ-
ing dynamic priority thread queues and non-
contiguous heap memory. The Red-Black Tree
API provided by RTEMS is:

• rtems_rtems_rbtree_node - Red-Black
Tree node embedded in another struct

• rtems_rtems_rbtree_control - Red-
Black Tree control node for an entire
tree

• rtems_rtems_rbtree_initialize - ini-
tialize the red-black tree with nodes

• rtems_rtems_rbtree_initialize_empty
- initialize the red-black tree as empty

• rtems_rtems_rbtree_set_off_tree -
Clear a node’s links

• rtems_rtems_rbtree_root - Return the
red-black tree’s root node

• rtems_rtems_rbtree_min - Return the
red-black tree’s minimum node

• rtems_rtems_rbtree_max - Return the
red-black tree’s maximum node

• rtems_rtems_rbtree_left - Return a
node’s left child node

• rtems_rtems_rbtree_right - Return a
node’s right child node

• rtems_rtems_rbtree_parent - Return a
node’s parent node

• rtems_rtems_rbtree_are_nodes_equal -
Are the node’s equal ?

• rtems_rtems_rbtree_is_empty - Is the
red-black tree empty ?

• rtems_rtems_rbtree_is_min - Is the
Node the minimum in the red-black tree
?

• rtems_rtems_rbtree_is_max - Is the
Node the maximum in the red-black tree
?

• rtems_rtems_rbtree_is_root - Is the
Node the root of the red-black tree ?

• rtems_rtems_rbtree_find - Find the
node with a matching key in the red-
black tree

• rtems_rtems_rbtree_predecessor - Re-
turn the in-order predecessor of a node.

• rtems_rtems_rbtree_successor - Return
the in-order successor of a node.

• rtems_rtems_rbtree_extract - Remove
the node from the red-black tree

• rtems_rtems_rbtree_get_min - Remove
the minimum node from the red-black
tree

• rtems_rtems_rbtree_get_max - Remove
the maximum node from the red-black
tree

• rtems_rtems_rbtree_peek_min - Returns
the minimum node from the red-black
tree

• rtems_rtems_rbtree_peek_max - Returns
the maximum node from the red-black
tree

• rtems_rtems_rbtree_insert - Add the
node to the red-black tree

472 Chapter 32. Red-Black Trees

Chapter 32 Section 32.2 RTEMS C User Documentation, Release 4.11.3

32.2 Background

The Red-Black Trees API is a thin layer above
the SuperCore Red-Black Trees implementa-
tion. A Red-Black Tree is defined by a control
node with pointers to the root, minimum, and
maximum nodes in the tree. Each node in the
tree consists of a parent pointer, two children
pointers, and a color attribute. A tree is pa-
rameterized as either unique, meaning iden-
tical keys are rejected, or not, in which case
duplicate keys are allowed.

Users must provide a comparison functor that
gets passed to functions that need to compare
nodes. In addition, no internal synchroniza-
tion is offered within the red-black tree imple-
mentation, thus users must ensure at most one
thread accesses a red-black tree instance at a
time.

32.2.1 Nodes

A red-black tree is made up from nodes that
orginate from a red-black tree control object. A
node is of type rtems_rtems_rbtree_node. The
node is designed to be part of a user data struc-
ture. To obtain the encapsulating structure
users can use the RTEMS_CONTAINER_OF macro.
The node can be placed anywhere within the
user’s structure and the macro will calculate
the structure’s address from the node’s ad-
dress.

32.2.2 Controls

A red-black tree is rooted with a control
object. Red-Black Tree control provide the
user with access to the nodes on the red-
black tree. The implementation does not re-
quire special checks for manipulating the root
of the red-black tree. To accomplish this
the rtems_rtems_rbtree_control structure is
treated as a rtems_rtems_rbtree_node struc-
ture with a NULL parent and left child pointing
to the root.

32.2. Background 473

RTEMS C User Documentation, Release 4.11.3 Chapter 32 Section 32.3

32.3 Operations

Examples for using the red-
black trees can be found in the
testsuites/sptests/sprbtree01/init.c
file.

474 Chapter 32. Red-Black Trees

Chapter 32 Section 32.4 RTEMS C User Documentation, Release 4.11.3

32.4 Directives

32.4.1 Documentation for the Red-Black
Tree Directives

Source documentation for the Red-Black Tree
API can be found in the generated Doxygen
output for cpukit/sapi.

32.4. Directives 475

RTEMS C User Documentation, Release 4.11.3 Chapter 32 Section 32.4

476 Chapter 32. Red-Black Trees

CHAPTER

THIRTYTHREE

TIMESPEC HELPERS

477

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.1

33.1 Introduction

The Timespec helpers manager provides direc-
tives to assist in manipulating instances of the
POSIX struct timespec structure.

The directives provided by the timespec
helpers manager are:

• rtems_timespec_set (page 482) - Set time-
spec’s value

• rtems_timespec_zero (page 483) - Zero
timespec’s value

• rtems_timespec_is_valid (page 484) -
Check if timespec is valid

• rtems_timespec_add_to (page 485) - Add
two timespecs

• rtems_timespec_subtract (page 486) -
Subtract two timespecs

• rtems_timespec_divide (page 487) - Di-
vide two timespecs

• rtems_timespec_divide_by_integer
(page 488) - Divide timespec by in-
teger

• rtems_timespec_less_than (page 489) -
Less than operator

• rtems_timespec_greater_than (page 490)
- Greater than operator

• rtems_timespec_equal_to (page 491) -
Check if two timespecs are equal

• rtems_timespec_get_seconds (page 492) -
Obtain seconds portion of timespec

• rtems_timespec_get_nanoseconds
(page 493) - Obtain nanoseconds
portion of timespec

• rtems_timespec_to_ticks (page 494) -
Convert timespec to number of ticks

• rtems_timespec_from_ticks (page 495) -
Convert ticks to timespec

478 Chapter 33. Timespec Helpers

Chapter 33 Section 33.2 RTEMS C User Documentation, Release 4.11.3

33.2 Background

33.2.1 Time Storage Conventions

Time can be stored in many ways. One of
them is the struct timespec format which is
a structure that consists of the fields tv_sec
to represent seconds and tv_nsec to represent
nanoseconds. The‘‘struct timeval‘‘ structure
is simular and consists of seconds (stored in
tv_sec) and microseconds (stored in tv_usec).
Either‘‘struct timespec‘‘ or struct timeval can
be used to represent elapsed time, time of exe-
cuting some operations, or time of day.

33.2. Background 479

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.3

33.3 Operations

33.3.1 Set and Obtain Timespec Value

A user may write a specific time by passing
the desired seconds and nanoseconds values
and the destination struct timespec using the
rtems_timespec_set directive.

The rtems_timespec_zero directive is used to
zero the seconds and nanoseconds portions of
a struct timespec instance.

Users may obtain the seconds or nanosec-
onds portions of a struct timespec in-
stance with the rtems_timespec_get_seconds
or rtems_timespec_get_nanoseconds meth-
ods, respectively.

33.3.2 Timespec Math

A user can perform multiple operations on
struct timespec instances. The helpers in this
manager assist in adding, subtracting, and per-
forming divison on struct timespec instances.

• Adding two struct timespec can be
done using the rtems_timespec_add_to
directive. This directive is used mainly to
calculate total amount of time consumed
by multiple operations.

• The rtems_timespec_subtract is used to
subtract two struct timespecs instances
and determine the elapsed time between
those two points in time.

• The rtems_timespec_divide is used to
use to divide one struct timespec in-
stance by another. This calculates the
percentage with a precision to three dec-
imal points.

• The rtems_timespec_divide_by_integer
is used to divide a struct timespec in-
stance by an integer. It is commonly used
in benchmark calculations to dividing
duration by the number of iterations
performed.

33.3.3 Comparing struct timespec In-
stances

A user can compare two struct timespec in-
stances using the rtems_timespec_less_than,
rtems_timespec_greater_than or
rtems_timespec_equal_to routines.

33.3.4 Conversions and Validity Check

Conversion to and from clock
ticks may be performed by using
the rtems_timespec_to_ticks and
rtems_timespec_from_ticks directives.

User can also check validity of timespec with
rtems_timespec_is_valid routine.

480 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4 Directives

This section details the Timespec Helpers man-
ager’s directives. A subsection is dedicated to
each of this manager’s directives and describes
the calling sequence, related constants, usage,
and status codes.

33.4. Directives 481

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

33.4.1 TIMESPEC_SET - Set struct time-
spec Instance

CALLING SEQUENCE:

1 void rtems_timespec_set(
2 struct timespec *time,
3 time_t seconds,
4 uint32_t nanoseconds
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive sets the struct timespec time
to the desired seconds and nanoseconds val-
ues.

NOTES:
This method does NOT check if nanoseconds
is less than the maximum number of
nanoseconds in a second.

482 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4.2 TIMESPEC_ZERO - Zero struct
timespec Instance

CALLING SEQUENCE:

1 void rtems_timespec_zero(
2 struct timespec *time
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine sets the contents of the struct
timespec instance time to zero.

NOTES:
NONE

33.4. Directives 483

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

33.4.3 TIMESPEC_IS_VALID - Check va-
lidity of a struct timespec instance

CALLING SEQUENCE:

1 bool rtems_timespec_is_valid(
2 const struct timespec *time
3);

DIRECTIVE STATUS CODES:
This method returns true if the instance is
valid, and false otherwise.

DESCRIPTION:
This routine check validity of a struct
timespec instance. It checks if the nanosec-
onds portion of the struct timespec instan-
ceis in allowed range (less than the maxi-
mum number of nanoseconds per second).

NOTES:
NONE

484 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4.4 TIMESPEC_ADD_TO - Add Two
struct timespec Instances

CALLING SEQUENCE:

1 uint32_t rtems_timespec_add_to(
2 struct timespec *time,
3 const struct timespec *add
4);

DIRECTIVE STATUS CODES:
The method returns the number of seconds
time increased by.

DESCRIPTION:
This routine adds two struct timespec in-
stances. The second argument is added to
the first. The parameter time is the base time
to which the add parameter is added.

NOTES:
NONE

33.4. Directives 485

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

33.4.5 TIMESPEC_SUBTRACT - Subtract
Two struct timespec Instances

CALLING SEQUENCE:

1 void rtems_timespec_subtract(
2 const struct timespec *start,
3 const struct timespec *end,
4 struct timespec *result
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine subtracts start from end saves
the difference in result. The primary use of
this directive is to calculate elapsed time.

NOTES:
It is possible to subtract when end is less than
start and it produce negative result. When
doing this you should be careful and remem-
ber that only the seconds portion of a struct
timespec instance is signed, which means
that nanoseconds portion is always increas-
ing. Due to that when your timespec has sec-
onds = -1 and nanoseconds = 500,000,000
it means that result is -0.5 second, NOT the
expected -1.5!

486 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4.6 TIMESPEC_DIVIDE - Divide Two
struct timespec Instances

CALLING SEQUENCE:

1 void rtems_timespec_divide(
2 const struct timespec *lhs,
3 const struct timespec *rhs,
4 uint32_t *ival_percentage,
5 uint32_t *fval_percentage
6);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine divides the struct timespec
instance lhs by the struct timespec in-
stance rhs. The result is returned in the
ival_percentage and fval_percentage, rep-
resenting the integer and fractional results of
the division respectively.

The ival_percentage is integer value of cal-
culated percentage and fval_percentage is
fractional part of calculated percentage.

NOTES:
The intended use is calculating percentges to
three decimal points.

When dividing by zero, this routine return
both ival_percentage and fval_percentage
equal zero.

The division is performed using exclusively
integer operations.

33.4. Directives 487

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

33.4.7 TIMESPEC_DIVIDE_BY_INTEGER
- Divide a struct timespec Instance
by an Integer

CALLING SEQUENCE:

1 int rtems_timespec_divide_by_integer(
2 const struct timespec *time,
3 uint32_t iterations,
4 struct timespec *result
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine divides the struct timespec in-
stance time by the integer value iterations.
The result is saved in result.

NOTES:
The expected use is to assist in benchmark
calculations where you typically divide a du-
ration (time) by a number of iterations what
gives average time.

488 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4.8 TIMESPEC_LESS_THAN - Less
than operator

CALLING SEQUENCE:

1 bool rtems_timespec_less_than(
2 const struct timespec *lhs,
3 const struct timespec *rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is
less than rhs and struct false otherwise.

DESCRIPTION:
This method is the less than operator for
struct timespec instances. The first param-
eter is the left hand side and the second is
the right hand side of the comparison.

NOTES:
NONE

33.4. Directives 489

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

33.4.9 TIMESPEC_GREATER_THAN -
Greater than operator

CALLING SEQUENCE:

1 bool rtems_timespec_greater_than(
2 const struct timespec *_lhs,
3 const struct timespec *_rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is
greater than rhs and struct false other-
wise.

DESCRIPTION:
This method is greater than operator for
struct timespec instances.

NOTES:
NONE

490 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4.10 TIMESPEC_EQUAL_TO - Check
equality of timespecs

CALLING SEQUENCE:

1 bool rtems_timespec_equal_to(
2 const struct timespec *lhs,
3 const struct timespec *rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is
equal to rhs and struct false otherwise.

DESCRIPTION:
This method is equality operator for struct
timespec instances.

NOTES:
NONE

33.4. Directives 491

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

33.4.11 TIMESPEC_GET_SECONDS - Get
Seconds Portion of struct time-
spec Instance

CALLING SEQUENCE:

1 time_t rtems_timespec_get_seconds(
2 struct timespec *time
3);

DIRECTIVE STATUS CODES:
This method returns the seconds portion of
the specified struct timespec instance.

DESCRIPTION:
This method returns the seconds portion of
the specified struct timespec instance time.

NOTES:
NONE

492 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4.12 TIMESPEC_GET_NANOSECONDS
- Get Nanoseconds Portion of the
struct timespec Instance

CALLING SEQUENCE:

1 uint32_t rtems_timespec_get_nanoseconds(
2 struct timespec *_time
3);

DIRECTIVE STATUS CODES:
This method returns the nanoseconds por-
tion of the specified struct timespec in-
stance.

DESCRIPTION:
This method returns the nanoseconds por-
tion of the specified timespec which is
pointed by _time.

NOTES:
NONE

33.4. Directives 493

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

33.4.13 TIMESPEC_TO_TICKS - Convert
struct timespec Instance to Ticks

CALLING SEQUENCE:

1 uint32_t rtems_timespec_to_ticks(
2 const struct timespec *time
3);

DIRECTIVE STATUS CODES:
This directive returns the number of ticks
computed.

DESCRIPTION:
This directive converts the time timespec to
the corresponding number of clock ticks.

NOTES:
NONE

494 Chapter 33. Timespec Helpers

Chapter 33 Section 33.4 RTEMS C User Documentation, Release 4.11.3

33.4.14 TIMESPEC_FROM_TICKS - Con-
vert Ticks to struct timespec Rep-
resentation

CALLING SEQUENCE:

1 void rtems_timespec_from_ticks(
2 uint32_t ticks,
3 struct timespec *time
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine converts the ticks to the cor-
responding struct timespec representation
and stores it in time.

NOTES:
NONE

33.4. Directives 495

RTEMS C User Documentation, Release 4.11.3 Chapter 33 Section 33.4

496 Chapter 33. Timespec Helpers

CHAPTER

THIRTYFOUR

CONSTANT BANDWIDTH SERVER
SCHEDULER API

497

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.1

34.1 Introduction

Unlike simple schedulers, the Constant Band-
width Server (CBS) requires a special API for
tasks to indicate their scheduling parameters.
The directives provided by the CBS API are:

• rtems_cbs_initialize (page 504) - Initial-
ize the CBS library

• rtems_cbs_cleanup (page 505) - Cleanup
the CBS library

• rtems_cbs_create_server (page 506) - Cre-
ate a new bandwidth server

• rtems_cbs_attach_thread (page 507) - At-
tach a thread to server

• rtems_cbs_detach_thread (page 508) -
Detach a thread from server

• rtems_cbs_destroy_server (page 509) -
Destroy a bandwidth server

• rtems_cbs_get_server_id (page 510) - Get
an ID of a server

• rtems_cbs_get_parameters (page 511) -
Get scheduling parameters of a server

• rtems_cbs_set_parameters (page 512) -
Set scheduling parameters of a server

• rtems_cbs_get_execution_time (page 513)
- Get elapsed execution time

• rtems_cbs_get_remaining_budget
(page 514) - Get remainig execution
time

• rtems_cbs_get_approved_budget
(page 515) - Get scheduler approved
execution time

498 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.2 RTEMS C User Documentation, Release 4.11.3

34.2 Background

34.2.1 Constant Bandwidth Server Defini-
tions

The Constant Bandwidth Server API enables
tasks to communicate with the scheduler and
indicate its scheduling parameters. The sched-
uler has to be set up first (by defining
CONFIGURE_SCHEDULER_CBS macro).

The difference to a plain EDF is the presence
of servers. It is a budget aware extention of
the EDF scheduler, therefore, tasks attached to
servers behave in a similar way as with EDF
unless they exceed their budget.

The intention of servers is reservation of a cer-
tain computation time (budget) of the proces-
sor for all subsequent periods. The structure
rtems_cbs_parameters determines the behav-
ior of a server. It contains deadline which is
equal to period, and budget which is the time
the server is allowed to spend on CPU per each
period. The ratio between those two param-
eters yields the maximum percentage of the
CPU the server can use (bandwidth). More-
over, thanks to this limitation the overall uti-
lization of CPU is under control, and the sum of
bandwidths of all servers in the system yields
the overall reserved portion of processor. The
rest is still available for ordinary tasks that are
not attached to any server.

In order to make the server effective to the ex-
ecuting tasks, tasks have to be attached to the
servers. The rtems_cbs_server_id is a type
denoting an id of a server and rtems_id a type
for id of tasks.

34.2.2 Handling Periodic Tasks

Each task’s execution begins with a default
background priority (see the chapter Schedul-
ing Concepts to understand the concept of pri-
orities in EDF). Once you decide the tasks
should start periodic execution, you have two
possibilities. Either you use only the Rate
Monotonic manager which takes care of pe-
riodic behavior, or you declare deadline and
budget using the CBS API in which case

these properties are constant for all subse-
quent periods, unless you change them us-
ing the CBS API again. Task now only has
to indicate and end of each period using
rtems_rate_monotonic_period.

34.2.3 Registering a Callback Function

In case tasks attached to servers are not aware
of their execution time and happen to ex-
ceed it, the scheduler does not guarantee ex-
ecution any more and pulls the priority of
the task to background, which would possi-
bly lead to immediate preemption (if there is
at least one ready task with a higher piror-
ity). However, the task is not blocked but
a callback function is invoked. The callback
function (rtems_cbs_budget_overrun) might
be optionally registered upon a server creation
(rtems_cbs_create_server).

This enables the user to define what should
happen in case of budget overrun. There is ob-
viously no space for huge operations because
the priority is down and not real time any
more, however, you still can at least in release
resources for other tasks, restart the task or
log an error information. Since the routine is
called directly from kernel, use printk() in-
stead of printf().

The calling convention of the callback function
is:

1 void overrun_handler(
2 rtems_cbs_server_id server_id
3);

34.2.4 Limitations

When using this scheduler you have to keep in
mind several things:

• it_limitations

• In the current implementation it is pos-
sible to attach only a single task to each
server.

• If you have a task attached to a server
and you voluntatily block it in the be-
ginning of its execution, its priority will
be probably pulled to background upon

34.2. Background 499

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.2

unblock, thus not guaranteed deadline
any more. This is because you are ef-
fectively raising computation time of the
task. When unbocking, you should be
always sure that the ratio between re-
maining computation time and remain-
ing deadline is not higher that the utiliza-
tion you have agreed with the scheduler.

500 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.3 RTEMS C User Documentation, Release 4.11.3

34.3 Operations

34.3.1 Setting up a server

The directive rtems_cbs_create_server
is used to create a new server that is
characterized by rtems_cbs_parameters.
You also might want to register the
rtems_cbs_budget_overrun callback rou-
tine. After this step tasks can be at-
tached to the server. The directive
rtems_cbs_set_parameters can change
the scheduling parameters to avoid destroying
and creating a new server again.

34.3.2 Attaching Task to a Server

If a task is attached to a server using
rtems_cbs_attach_thread, the task’s compu-
tation time per period is limited by the server
and the deadline (period) of task is equal to
deadline of the server which means if you con-
clude a period using rate_monotonic_period,
the length of next period is always determined
by the server’s property.

The task has a guaranteed bandwidth given
by the server but should not exceed it,
otherwise the priority is pulled to back-
ground until the start of next period and the
rtems_cbs_budget_overrun callback function
is invoked.

When attaching a task to server, the preempt-
ability flag of the task is raised, otherwise it
would not be possible to control the execution
of the task.

34.3.3 Detaching Task from a Server

The directive rtems_cbs_detach_thread is just
an inverse operation to the previous one, the
task continues its execution with the initial pri-
ority.

Preemptability of the task is restored to the ini-
tial value.

34.3.4 Examples

The following example presents a simple com-
mon use of the API.

You can see the initialization and cleanup call
here, if there are multiple tasks in the system,
it is obvious that the initialization should be
called before creating the task.

Notice also that in this case we decided to
register an overrun handler, instead of which
there could be NULL. This handler just prints a
message to terminal, what else may be done
here depends on a specific application.

During the periodic execution, remaining bud-
get should be watched to avoid overrun.

1 void overrun_handler (
2 rtems_cbs_server_id server_id
3)
4 {
5 printk("Budget overrun, fixing the ␣

→˓task\\n");
6 return;
7 }
8

9 rtems_task Tasks_Periodic(
10 rtems_task_argument argument
11)
12 {
13 rtems_id rmid;
14 rtems_cbs_server_id server_id;
15 rtems_cbs_parameters params;
16

17 params.deadline = 10;
18 params.budget = 4;
19

20 rtems_cbs_initialize();
21 rtems_cbs_create_server(¶ms, &

→˓overrun_handler, &server_id)
22 rtems_cbs_attach_thread(server_id, SELF␣

→˓);
23 rtems_rate_monotonic_create(argument, &

→˓rmid);
24

25 while (1) {
26 if (rtems_rate_monotonic_period(rmid,

→˓ params.deadline) == RTEMS_TIMEOUT)
27 break;
28 /* Perform some periodic action */
29 }
30

31 rtems_rate_monotonic_delete(rmid);
32 rtems_cbs_cleanup();
33 exit(1);

34.3. Operations 501

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.3

34 }

502 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.4 RTEMS C User Documentation, Release 4.11.3

34.4 Directives

This section details the Constant Bandwidth
Server’s directives. A subsection is dedicated to
each of this manager’s directives and describes
the calling sequence, related constants, usage,
and status codes.

34.4. Directives 503

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.4

34.4.1 CBS_INITIALIZE - Initialize the
CBS library

CALLING SEQUENCE:

1 int rtems_cbs_initialize(void);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successful

initialization
RTEMS_CBS_ERROR_
NO_MEMORY

not enough
memory for data

DESCRIPTION:
This routine initializes the library in terms of
allocating necessary memory for the servers.
In case not enough memory is available in
the system, RTEMS_CBS_ERROR_NO_MEMORY is
returned, otherwise RTEMS_CBS_OK.

NOTES:
Additional memory per each server
is allocated upon invocation of
rtems_cbs_create_server.

Tasks in the system are not influenced, they
still keep executing with their initial param-
eters.

504 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.4 RTEMS C User Documentation, Release 4.11.3

34.4.2 CBS_CLEANUP - Cleanup the CBS
library

CALLING SEQUENCE:

1 int rtems_cbs_cleanup(void);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK always successful

DESCRIPTION:
This routine detaches all tasks from their
servers, destroys all servers and returns
memory back to the system.

NOTES:
All tasks continue executing with their initial
priorities.

34.4. Directives 505

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.4

34.4.3 CBS_CREATE_SERVER - Create a
new bandwidth server

CALLING SEQUENCE:

1 int rtems_cbs_create_server (
2 rtems_cbs_parameters *params,
3 rtems_cbs_budget_overrun budget_

→˓overrun_callback,
4 rtems_cbs_server_id *server_id
5);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successfully

created
RTEMS_CBS_ERROR_NO_
MEMORY

not enough
memory for data

RTEMS_CBS_ERROR_
FULL

maximum
servers exceeded

RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

DESCRIPTION:
This routine prepares an instance of a
constant bandwidth server. The input
parameter rtems_cbs_parameters specifies
scheduling parameters of the server (pe-
riod and budget). If these are not valid,
RTEMS_CBS_ERROR_INVALID_PARAMETER is re-
turned. The budget_overrun_callback is
an optional callback function, which is in-
voked in case the server’s budget within
one period is exceeded. Output parameter
server_id becomes an id of the newly cre-
ated server. If there is not enough mem-
ory, the RTEMS_CBS_ERROR_NO_MEMORY is re-
turned. If the maximum server count in the
system is exceeded, RTEMS_CBS_ERROR_FULL
is returned.

NOTES:
No task execution is being influenced so far.

506 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.4 RTEMS C User Documentation, Release 4.11.3

34.4.4 CBS_ATTACH_THREAD - Attach a
thread to server

CALLING SEQUENCE:

1 int rtems_cbs_attach_thread (
2 rtems_cbs_server_id server_id,
3 rtems_id task_id
4);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successfully

attached
RTEMS_CBS_ERROR_
FULL

server maximum
tasks exceeded

RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not valid

DESCRIPTION:
Attaches a task (task_id) to a server
(server_id). The server has to be previously
created. Now, the task starts to be scheduled
according to the server parameters and not
using initial priority. This implementation
allows only one task per server, if the user
tries to bind another task to the same server,
RTEMS_CBS_ERROR_FULL is returned.

NOTES:
Tasks attached to servers become pre-
emptible.

34.4. Directives 507

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.4

34.4.5 CBS_DETACH_THREAD - Detach a
thread from server

CALLING SEQUENCE:

1 int rtems_cbs_detach_thread (
2 rtems_cbs_server_id server_id,
3 rtems_id task_id
4);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successfully

detached
RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This directive detaches a thread from server.
The task continues its execution with initial
priority.

NOTES:
The server can be reused for any other task.

508 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.4 RTEMS C User Documentation, Release 4.11.3

34.4.6 CBS_DESTROY_SERVER - Destroy
a bandwidth server

CALLING SEQUENCE:

1 int rtems_cbs_destroy_server (
2 rtems_cbs_server_id server_id
3);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successfully

destroyed
RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This directive destroys a server. If any task
was attached to the server, the task is de-
tached and continues its execution according
to EDF rules with initial properties.

NOTES:
This again enables one more task to be cre-
ated.

34.4. Directives 509

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.4

34.4.7 CBS_GET_SERVER_ID - Get an ID
of a server

CALLING SEQUENCE:

1 int rtems_cbs_get_server_id (
2 rtems_id task_id,
3 rtems_cbs_server_id *server_id
4);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This directive returns an id of server belong-
ing to a given task.

510 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.4 RTEMS C User Documentation, Release 4.11.3

34.4.8 CBS_GET_PARAMETERS - Get
scheduling parameters of a server

CALLING SEQUENCE:

1 rtems_cbs_get_parameters (
2 rtems_cbs_server_id server_id,
3 rtems_cbs_parameters *params
4);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This directive returns a structure with cur-
rent scheduling parameters of a given server
(period and execution time).

NOTES:
It makes no difference if any task is assigned
or not.

34.4. Directives 511

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.4

34.4.9 CBS_SET_PARAMETERS - Set
scheduling parameters

CALLING SEQUENCE:

1 int rtems_cbs_set_parameters (
2 rtems_cbs_server_id server_id,
3 rtems_cbs_parameters *params
4);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This directive sets new scheduling parame-
ters to the server. This operation can be per-
formed regardless of whether a task is as-
signed or not. If a task is assigned, the pa-
rameters become effective imediately, there-
fore it is recommended to apply the change
between two subsequent periods.

NOTES:
There is an upper limit on both period and
budget equal to (2^31)-1 ticks.

512 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.4 RTEMS C User Documentation, Release 4.11.3

34.4.10 CBS_GET_EXECUTION_TIME -
Get elapsed execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_execution_time (
2 rtems_cbs_server_id server_id,
3 time_t *exec_time,
4 time_t *abs_time
5);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This routine returns consumed execution
time (exec_time) of a server during the cur-
rent period.

NOTES:
Absolute time (abs_time) not supported
now.

34.4. Directives 513

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.4

34.4.11 CBS_GET_REMAINING_BUDGET
- Get remaining execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_remaining_budget (
2 rtems_cbs_server_id server_id,
3 time_t *remaining_budget
4);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This directive returns remaining execution
time of a given server for current period.

NOTES:
If the execution time approaches zero, the
assigned task should finish computations of
the current period.

514 Chapter 34. Constant Bandwidth Server Scheduler API

Chapter 34 Section 34.4 RTEMS C User Documentation, Release 4.11.3

34.4.12 CBS_GET_APPROVED_BUDGET -
Get scheduler approved execu-
tion time

CALLING SEQUENCE:

1 int rtems_cbs_get_approved_budget (
2 rtems_cbs_server_id server_id,
3 time_t *appr_budget
4);

DIRECTIVE STATUS CODES:
RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_
INVALID_PARAMETER

invalid input
argument

RTEMS_CBS_ERROR_
NOSERVER

server is not
valid

DESCRIPTION:
This directive returns server’s approved bud-
get for subsequent periods.

34.4. Directives 515

RTEMS C User Documentation, Release 4.11.3 Chapter 34 Section 34.4

516 Chapter 34. Constant Bandwidth Server Scheduler API

CHAPTER

THIRTYFIVE

DIRECTIVE STATUS CODES

517

RTEMS C User Documentation, Release 4.11.3 Chapter 35 Section 35.1

35.1 Introduction

The directive status code directives are:

• rtems_status_text (page 520) - Return the
name for the status code

518 Chapter 35. Directive Status Codes

Chapter 35 Section 35.2 RTEMS C User Documentation, Release 4.11.3

35.2 Directives

The directives are:

RTEMS_SUCCESSFUL successful
completion

RTEMS_TASK_EXITTED returned from a
task

RTEMS_MP_NOT_
CONFIGURED

multiprocessing not
configured

RTEMS_INVALID_NAME invalid object name
RTEMS_INVALID_ID invalid object id
RTEMS_TOO_MANY too many
RTEMS_TIMEOUT timed out waiting
RTEMS_OBJECT_WAS_
DELETED

object was deleted
while waiting

RTEMS_INVALID_SIZE invalid specified
size

RTEMS_INVALID_
ADDRESS

invalid address
specified

RTEMS_INVALID_
NUMBER

number was invalid

RTEMS_NOT_DEFINED item not initialized
RTEMS_RESOURCE_IN_
USE

resources
outstanding

RTEMS_UNSATISFIED request not satisfied
RTEMS_INCORRECT_
STATE

task is in wrong
state

RTEMS_ALREADY_
SUSPENDED

task already in state

RTEMS_ILLEGAL_ON_
SELF

illegal for calling
task

RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

illegal for remote
object

RTEMS_CALLED_FROM_
ISR

invalid
environment

RTEMS_INVALID_
PRIORITY

invalid task priority

RTEMS_INVALID_
CLOCK

invalid time buffer

RTEMS_INVALID_NODE invalid node id
RTEMS_NOT_
CONFIGURED

directive not
configured

RTEMS_NOT_OWNER_
OF_RESOURCE

not owner of
resource

RTEMS_NOT_
IMPLEMENTED

directive not
implemented

RTEMS_INTERNAL_
ERROR

RTEMS
inconsistency
detected

RTEMS_NO_MEMORY could not get
enough memory

35.2. Directives 519

RTEMS C User Documentation, Release 4.11.3 Chapter 35 Section 35.2

35.2.1 STATUS_TEXT - Returns the enu-
meration name for a status code

CALLING SEQUENCE:

1 const char *rtems_status_text(
2 rtems_status_code code
3);

DIRECTIVE STATUS CODES
The status code enumeration name or ”?” in
case the status code is invalid.

DESCRIPTION:
Returns the enumeration name for the spec-
ified status code.

520 Chapter 35. Directive Status Codes

CHAPTER

THIRTYSIX

LINKER SETS

521

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.1

36.1 Introduction

Linker sets are a flexible means to create arrays
of items out of a set of object files at link-time.
For example its possible to define an item I of
type T in object file A and an item J of type T
in object file B to be a member of a linker set
S. The linker will then collect these two items
I and J and place them in consecutive memory
locations, so that they can be accessed like a
normal array defined in one object file. The
size of a linker set is defined by its begin and
end markers. A linker set may be empty. It
should only contain items of the same type.

The following macros are provided to create,
populate and use linker sets.

• RTEMS_LINKER_SET_BEGIN (page 525)
- Designator of the linker set begin
marker

• RTEMS_LINKER_SET_END (page 526) -
Designator of the linker set end marker

• RTEMS_LINKER_SET_SIZE (page 527) -
The linker set size in characters

• RTEMS_LINKER_ROSET_DECLARE
(page 528) - Declares a read-only linker
set

• RTEMS_LINKER_ROSET (page 529) - De-
fines a read-only linker set

• RTEMS_LINKER_ROSET_ITEM_DECLARE
(page 530) - Declares a read-only linker
set item

• RTEMS_LINKER_ROSET_ITEM_REFERENCE
(page 531) - References a read-only
linker set item

• RTEMS_LINKER_ROSET_ITEM
(page 532) - Defines a read-only
linker set item

• RTEMS_LINKER_ROSET_ITEM_ORDERED
(page 533) - Defines an ordered read-
only linker set item

• RTEMS_LINKER_RWSET_DECLARE
(page 534) - Declares a read-write linker
set

• RTEMS_LINKER_RWSET (page 535) -
Defines a read-write linker set

• RTEMS_LINKER_RWSET_ITEM_DECLARE
(page 536) - Declares a read-write linker
set item

• RTEMS_LINKER_RWSET_ITEM_REFERENCE
(page 537) - References a read-write
linker set item

• RTEMS_LINKER_RWSET_ITEM
(page 538) - Defines a read-write
linker set item

• RTEMS_LINKER_RWSET_ITEM_ORDERED
(page 539) - Defines an ordered read-
write linker set item

522 Chapter 36. Linker Sets

Chapter 36 Section 36.2 RTEMS C User Documentation, Release 4.11.3

36.2 Background

Linker sets are used not only in RTEMS, but
also for example in Linux, in FreeBSD, for the
GNU C constructor extension and for global
C++ constructors. They provide a space effi-
cient and flexible means to initialize modules.
A linker set consists of

• dedicated input sections for the linker
(e.g. .ctors and .ctors.* in the case
of global constructors),

• a begin marker (e.g. provided by
crtbegin.o, and

• an end marker (e.g. provided by
ctrend.o).

A module may place a certain data item into
the dedicated input section. The linker will
collect all such data items in this section and
creates a begin and end marker. The initializa-
tion code can then use the begin and end mark-
ers to find all the collected data items (e.g.
pointers to initialization functions).

In the linker command file of the GNU linker
we need the following output section descrip-
tions.

1 /* To be placed in a read-only memory region␣
→˓*/

2 .rtemsroset : {
3 KEEP (*(SORT(.rtemsroset.*)))
4 }
5 /* To be placed in a read-write memory region␣

→˓*/
6 .rtemsrwset : {
7 KEEP (*(SORT(.rtemsrwset.*)))
8 }

The KEEP() ensures that a garbage collection
by the linker will not discard the content of
this section. This would normally be the case
since the linker set items are not referenced
directly. The SORT() directive sorts the input
sections lexicographically. Please note the lexi-
cographical order of the .begin, .content and
.end section name parts in the RTEMS linker
sets macros which ensures that the position of
the begin and end markers are right.

So, what is the benefit of using linker sets
to initialize modules? It can be used to ini-

tialize and include only those RTEMS man-
agers and other components which are used
by the application. For example, in case
an application uses message queues, it must
call rtems_message_queue_create(). In the
module implementing this function, we can
place a linker set item and register the mes-
sage queue handler constructor. Otherwise,
in case the application does not use mes-
sage queues, there will be no reference to the
rtems_message_queue_create() function and
the constructor is not registered, thus nothing
of the message queue handler will be in the
final executable.

For an example see test program
sptests/splinkersets01.

36.2. Background 523

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3 Directives

524 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.1 RTEMS_LINKER_SET_BEGIN -
Designator of the linker set begin
marker

CALLING SEQUENCE:

1 volatile type *begin = RTEMS_LINKER_SET_
→˓BEGIN(set);

DESCRIPTION:
This macro generates the designator of the
begin marker of the linker set identified by
set. The item at the begin marker address is
the first member of the linker set if it exists,
e.g. the linker set is not empty. A linker set
is empty, if and only if the begin and end
markers have the same address.

The set parameter itself must be a valid C
designator on which no macro expansion is
performed. It uniquely identifies the linker
set.

36.3. Directives 525

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3.2 RTEMS_LINKER_SET_END - Des-
ignator of the linker set end marker

CALLING SEQUENCE:

1 volatile type *end = RTEMS_LINKER_SET_END(␣
→˓set);

DESCRIPTION:
This macro generates the designator of the
end marker of the linker set identified by
set. The item at the end marker address is
not a member of the linker set. The set pa-
rameter itself must be a valid C designator
on which no macro expansion is performed.
It uniquely identifies the linker set.

526 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.3 RTEMS_LINKER_SET_SIZE - The
linker set size in characters

CALLING SEQUENCE:

1 size_t size = RTEMS_LINKER_SET_SIZE(set␣
→˓);

DESCRIPTION:
This macro returns the size of the linker set
identified by set in characters. The set pa-
rameter itself must be a valid C designator
on which no macro expansion is performed.
It uniquely identifies the linker set.

36.3. Directives 527

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3.4 RTEMS_LINKER_ROSET_DECLARE
- Declares a read-only linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_DECLARE(set, type);

DESCRIPTION:
This macro generates declarations for the be-
gin and end markers of a read-only linker set
identified by set. The set parameter itself
must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parameter
defines the type of the linker set items. The
type must be the same for all macro invoca-
tions of a particular linker set.

528 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.5 RTEMS_LINKER_ROSET - Defines
a read-only linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET(set, type);

DESCRIPTION:
This macro generates definitions for the be-
gin and end markers of a read-only linker set
identified by set. The set parameter itself
must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parameter
defines the type of the linker set items. The
type must be the same for all macro invoca-
tions of a particular linker set.

36.3. Directives 529

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3.6 RTEMS_LINKER_ROSET_ITEM_DECLARE
- Declares a read-only linker set
item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_DECLARE(set, ␣
→˓type, item);

DESCRIPTION:
This macro generates a declaration of an
item contained in the read-only linker set
identified by set. The set parameter itself
must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parame-
ter defines the type of the linker set items.
The type must be the same for all macro in-
vocations of a particular linker set. The item
parameter itself must be a valid C designator
on which no macro expansion is performed.
It uniquely identifies an item in the linker
set.

530 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.7 RTEMS_LINKER_ROSET_ITEM_REFERENCE
- References a read-only linker set
item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_REFERENCE(set, ␣
→˓type, item);

DESCRIPTION:
This macro generates a reference to an item
contained in the read-only linker set identi-
fied by set. The set parameter itself must be
a valid C designator on which no macro ex-
pansion is performed. It uniquely identifies
the linker set. The type parameter defines
the type of the linker set items. The type
must be the same for all macro invocations
of a particular linker set. The item param-
eter itself must be a valid C designator on
which no macro expansion is performed. It
uniquely identifies an item in the linker set.

36.3. Directives 531

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3.8 RTEMS_LINKER_ROSET_ITEM -
Defines a read-only linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM(set, type, item␣
→˓);

DESCRIPTION:
This macro generates a definition of an item
contained in the read-only linker set identi-
fied by set. The set parameter itself must be
a valid C designator on which no macro ex-
pansion is performed. It uniquely identifies
the linker set. The type parameter defines
the type of the linker set items. The type
must be the same for all macro invocations
of a particular linker set. The item param-
eter itself must be a valid C designator on
which no macro expansion is performed. It
uniquely identifies an item in the linker set.

532 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.9 RTEMS_LINKER_ROSET_ITEM_ORDERED
- Defines an ordered read-only
linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_ORDERED(set, ␣
→˓type, item, order);

DESCRIPTION:
This macro generates a definition of an or-
dered item contained in the read-only linker
set identified by set. The set parameter it-
self must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parame-
ter defines the type of the linker set items.
The type must be the same for all macro
invocations of a particular linker set. The
item parameter itself must be a valid C des-
ignator on which no macro expansion is per-
formed. It uniquely identifies an item in
the linker set. The order parameter must
be a valid linker input section name part on
which macro expansion is performed. The
items are lexicographically ordered accord-
ing to the order parameter within a linker
set. Ordered items are placed before un-
ordered items in the linker set.

NOTES:
To be resilient to typos in the order param-
eter, it is recommended to use the following
construct in macros defining items for a par-
ticular linker set (see enum in XYZ_ITEM()).

1 #include <rtems/linkersets.h>
2

3 typedef struct {
4 int foo;
5 } xyz_item;
6

7 /* The XYZ-order defines */
8 #define XYZ_ORDER_FIRST 0x00001000
9 #define XYZ_ORDER_AND_SO_ON 0x00002000

10

11 /* Defines an ordered XYZ-item */
12 #define XYZ_ITEM(item, order) \
13 enum { xyz_##item = order -␣

→˓order }; \
14 RTEMS_LINKER_ROSET_ITEM_

→˓ORDERED(\
15 xyz, const xyz_item *,␣

→˓item, order \

16) = { &item }
17

18 /* Example item */
19 static const xyz_item some_item = { 123 };
20 XYZ_ITEM(some_item, XYZ_ORDER_FIRST);

36.3. Directives 533

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3.10 RTEMS_LINKER_RWSET_DECLARE
- Declares a read-write linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_DECLARE(set, type);

DESCRIPTION:
This macro generates declarations for the be-
gin and end markers of a read-write linker
set identified by set. The set parameter it-
self must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parameter
defines the type of the linker set items. The
type must be the same for all macro invoca-
tions of a particular linker set.

534 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.11 RTEMS_LINKER_RWSET - De-
fines a read-write linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET(set, type);

DESCRIPTION:
This macro generates definitions for the be-
gin and end markers of a read-write linker
set identified by set. The set parameter it-
self must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parameter
defines the type of the linker set items. The
type must be the same for all macro invoca-
tions of a particular linker set.

36.3. Directives 535

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3.12 RTEMS_LINKER_RWSET_ITEM_DECLARE
- Declares a read-write linker set
item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_DECLARE(set, ␣
→˓type, item);

DESCRIPTION:
This macro generates a declaration of an
item contained in the read-write linker set
identified by set. The set parameter itself
must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parame-
ter defines the type of the linker set items.
The type must be the same for all macro in-
vocations of a particular linker set. The item
parameter itself must be a valid C designator
on which no macro expansion is performed.
It uniquely identifies an item in the linker
set.

536 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.13 RTEMS_LINKER_RWSET_ITEM_REFERENCE
- References a read-write linker
set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_REFERENCE(set, ␣
→˓type, item);

DESCRIPTION:
This macro generates a reference to an item
contained in the read-write linker set identi-
fied by set. The set parameter itself must be
a valid C designator on which no macro ex-
pansion is performed. It uniquely identifies
the linker set. The type parameter defines
the type of the linker set items. The type
must be the same for all macro invocations
of a particular linker set. The item param-
eter itself must be a valid C designator on
which no macro expansion is performed. It
uniquely identifies an item in the linker set.

36.3. Directives 537

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

36.3.14 RTEMS_LINKER_RWSET_ITEM -
Defines a read-write linker set
item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM(set, type, item␣
→˓);

DESCRIPTION:
This macro generates a definition of an item
contained in the read-write linker set identi-
fied by set. The set parameter itself must be
a valid C designator on which no macro ex-
pansion is performed. It uniquely identifies
the linker set. The type parameter defines
the type of the linker set items. The type
must be the same for all macro invocations
of a particular linker set. The item param-
eter itself must be a valid C designator on
which no macro expansion is performed. It
uniquely identifies an item in the linker set.

538 Chapter 36. Linker Sets

Chapter 36 Section 36.3 RTEMS C User Documentation, Release 4.11.3

36.3.15 RTEMS_LINKER_RWSET_ITEM_ORDERED
- Defines an ordered read-write
linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_ORDERED(set, ␣
→˓type, item, order);

DESCRIPTION:
This macro generates a definition of an or-
dered item contained in the read-write linker
set identified by set. The set parameter it-
self must be a valid C designator on which no
macro expansion is performed. It uniquely
identifies the linker set. The type parame-
ter defines the type of the linker set items.
The type must be the same for all macro
invocations of a particular linker set. The
item parameter itself must be a valid C des-
ignator on which no macro expansion is per-
formed. It uniquely identifies an item in
the linker set. The order parameter must
be a valid linker input section name part on
which macro expansion is performed. The
items are lexicographically ordered accord-
ing to the order parameter within a linker
set. Ordered items are placed before un-
ordered items in the linker set.

NOTES:
To be resilient to typos in the order param-
eter, it is recommended to use the following
construct in macros defining items for a par-
ticular linker set (see enum in XYZ_ITEM()).

1 #include <rtems/linkersets.h>
2

3 typedef struct {
4 int foo;
5 } xyz_item;
6

7 /* The XYZ-order defines */
8 #define XYZ_ORDER_FIRST 0x00001000
9 #define XYZ_ORDER_AND_SO_ON 0x00002000

10

11 /* Defines an ordered XYZ-item */
12 #define XYZ_ITEM(item, order) \
13 enum { xyz_##item = order -␣

→˓order }; \
14 RTEMS_LINKER_RWSET_ITEM_

→˓ORDERED(\
15 xyz, const xyz_item *,␣

→˓item, order \

16) = { &item }
17 /* Example item */
18 static const xyz_item some_item = { 123 };
19 XYZ_ITEM(some_item, XYZ_ORDER_FIRST);

36.3. Directives 539

RTEMS C User Documentation, Release 4.11.3 Chapter 36 Section 36.3

540 Chapter 36. Linker Sets

CHAPTER

THIRTYSEVEN

EXAMPLE APPLICATION

1 /*
2 * This file contains an example of a simple␣

→˓RTEMS
3 * application. It instantiates the RTEMS␣

→˓Configuration
4 * Information using confdef.h and contains␣

→˓two tasks:
5 * a user initialization task and a simple␣

→˓task.
6 */
7

8 #include <rtems.h>
9

10 rtems_task user_application(rtems_task_
→˓argument argument);

11

12 rtems_task init_task(
13 rtems_task_argument ignored
14)
15 {
16 rtems_id tid;
17 rtems_status_code status;
18 rtems_name name;
19

20 name = rtems_build_name('A', 'P', 'P',
→˓'1')

21

22 status = rtems_task_create(
23 name, 1, RTEMS_MINIMUM_STACK_SIZE,
24 RTEMS_NO_PREEMPT, RTEMS_FLOATING_

→˓POINT, &tid
25);
26 if (status != RTEMS_STATUS_SUCCESSFUL␣

→˓) {
27 printf("rtems_task_create failed␣

→˓with status of %d.\n", status);
28 exit(1);
29 }
30

31 status = rtems_task_start(tid, user_
→˓application, 0);

32 if (status != RTEMS_STATUS_SUCCESSFUL␣
→˓) {

33 printf("rtems_task_start failed␣
→˓with status of %d.\n", status);

34 exit(1);
35 }

36

37 status = rtems_task_delete(SELF); /
→˓* should not return */

38

39 printf("rtems_task_delete returned with␣
→˓status of %d.\n", status);

40 exit(1);
41 }
42

43 rtems_task user_application(rtems_task_
→˓argument argument)

44 {
45 /* application specific initialization␣

→˓goes here */
46 while (1) { /* infinite␣

→˓loop */
47 /* APPLICATION CODE GOES HERE
48 *
49 * This code will typically include␣

→˓at least one
50 * directive which causes the ␣

→˓calling task to
51 * give up the processor.
52 */
53 }
54 }
55

56 /* The Console Driver supplies Standard I/O.
→˓ */

57 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_
→˓DRIVER

58 /* The Clock Driver supplies the clock tick.
→˓ */

59 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_
→˓DRIVER

60 #define CONFIGURE_MAXIMUM_TASKS 2
61 #define CONFIGURE_INIT_TASK_NAME rtems_

→˓build_name('E', 'X', 'A', 'M')
62 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
63 #define CONFIGURE_INIT
64 #include <rtems/confdefs.h>

541

RTEMS C User Documentation, Release 4.11.3 Chapter 37 Section 37.0

542 Chapter 37. Example Application

CHAPTER

THIRTYEIGHT

GLOSSARY

active
A term used to describe an object which has
been created by an application.

aperiodic task
A task which must execute only at irregular
intervals and has only a soft deadline.

application
In this document, software which makes use
of RTEMS.

ASR
see Asynchronous Signal Routine.

asynchronous
Not related in order or timing to other occur-
rences in the system.

Asynchronous Signal Routine
Similar to a hardware interrupt except that
it is associated with a task and is run in the
context of a task. The directives provided by
the signal manager are used to service sig-
nals.

atomic operations
Atomic operations are defined in terms of
ISO/IEC 9899:2011.

awakened
A term used to describe a task that has been
unblocked and may be scheduled to the CPU.

big endian
A data representation scheme in which the
bytes composing a numeric value are ar-
ranged such that the most significant byte is
at the lowest address.

bit-mapped
A data encoding scheme in which each bit
in a variable is used to represent something
different. This makes for compact data rep-
resentation.

block
A physically contiguous area of memory.

blocked task
The task state entered by a task which has
been previously started and cannot continue
execution until the reason for waiting has
been satisfied. Blocked tasks are not an ele-
ment of the set of ready tasks of a scheduler
instance.

broadcast
To simultaneously send a message to a logi-
cal set of destinations.

BSP
see Board Support Package.

Board Support Package
A collection of device initialization and con-
trol routines specific to a particular type of
board or collection of boards.

buffer
A fixed length block of memory allocated
from a partition.

calling convention
The processor and compiler dependent rules
which define the mechanism used to invoke
subroutines in a high-level language. These
rules define the passing of arguments, the
call and return mechanism, and the register
set which must be preserved.

Central Processing Unit
This term is equivalent to the terms proces-
sor and microprocessor.

chain
A data structure which allows for efficient
dynamic addition and removal of elements.
It differs from an array in that it is not lim-
ited to a predefined size.

543

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

cluster
We have clustered scheduling in case the set
of processors of a system is partitioned into
non-empty pairwise disjoint subsets. These
subsets are called:dfn:clusters. Clusters with
a cardinality of one are partitions. Each clus-
ter is owned by exactly one scheduler in-
stance.

coalesce
The process of merging adjacent holes into a
single larger hole. Sometimes this process is
referred to as garbage collection.

Configuration Table
A table which contains information used to
tailor RTEMS for a particular application.

context
All of the processor registers and operat-
ing system data structures associated with a
task.

context switch
Alternate term for task switch. Taking con-
trol of the processor from one task and trans-
ferring it to another task.

control block
A data structure used by the executive to de-
fine and control an object.

core
When used in this manual, this term refers
to the internal executive utility functions.
In the interest of application portability, the
core of the executive should not be used di-
rectly by applications.

CPU
An acronym for Central Processing Unit.

critical section
A section of code which must be executed
indivisibly.

CRT
An acronym for Cathode Ray Tube. Normally
used in reference to the man-machine inter-
face.

deadline
A fixed time limit by which a task must have
completed a set of actions. Beyond this
point, the results are of reduced value and
may even be considered useless or harmful.

device
A peripheral used by the application that re-
quires special operation software. See also
device driver.

device driver
Control software for special peripheral de-
vices used by the application.

directives
RTEMS’ provided routines that provide sup-
port mechanisms for real-time applications.

dispatch
The act of loading a task’s context onto the
CPU and transferring control of the CPU to
that task.

dormant
The state entered by a task after it is created
and before it has been started.

Device Driver Table
A table which contains the entry points for
each of the configured device drivers.

dual-ported
A term used to describe memory which can
be accessed at two different addresses.

embedded
An application that is delivered as a hidden
part of a larger system. For example, the
software in a fuel-injection control system
is an embedded application found in many
late-model automobiles.

envelope
A buffer provided by the MPCI layer to
RTEMS which is used to pass messages be-
tween nodes in a multiprocessor system.
It typically contains routing information
needed by the MPCI. The contents of an en-
velope are referred to as a packet.

entry point
The address at which a function or task be-
gins to execute. In C, the entry point of a
function is the function’s name.

events
A method for task communication and syn-
chronization. The directives provided by the
event manager are used to service events.

exception
A synonym for interrupt.

544 Chapter 38. Glossary

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

executing task
The task state entered by a task after it has
been given control of the processor. On
SMP configurations a task may be registered
as executing on more than one processor
for short time frames during task migration.
Blocked tasks can be executing until they is-
sue a thread dispatch.

executive
In this document, this term is used to re-
ferred to RTEMS. Commonly, an executive is
a small real-time operating system used in
embedded systems.

exported
An object known by all nodes in a multipro-
cessor system. An object created with the
GLOBAL attribute will be exported.

external address
The address used to access dual-ported
memory by all the nodes in a system which
do not own the memory.

FIFO
An acronym for First In First Out.

First In First Out
A discipline for manipulating entries in a
data structure.

floating point coprocessor
A component used in computer systems to
enhance performance in mathematically in-
tensive situations. It is typically viewed as a
logical extension of the primary processor.

freed
A resource that has been released by the ap-
plication to RTEMS.

Giant lock
The Giant lock is a recursive SMP lock pro-
tecting most parts of the operating system
state. Virtually every operating system ser-
vice must acquire and release the Giant lock
during its operation.

global
An object that has been created with the
GLOBAL attribute and exported to all nodes
in a multiprocessor system.

handler
The equivalent of a manager, except that it

is internal to RTEMS and forms part of the
core. A handler is a collection of routines
which provide a related set of functions. For
example, there is a handler used by RTEMS
to manage all objects.

hard real-time system
A real-time system in which a missed dead-
line causes the worked performed to have no
value or to result in a catastrophic effect on
the integrity of the system.

heap
A data structure used to dynamically allocate
and deallocate variable sized blocks of mem-
ory.

heir task
A task is an heir if it is registered as an heir in
a processor of the system. A task can be the
heir on at most one processor in the system.
In case the executing and heir tasks differ on
a processor and a thread dispatch is marked
as necessary, then the next thread dispatch
will make the heir task the executing task.

heterogeneous
A multiprocessor computer system com-
posed of dissimilar processors.

homogeneous
A multiprocessor computer system com-
posed of a single type of processor.

ID
An RTEMS assigned identification tag used
to access an active object.

IDLE task
A special low priority task which assumes
control of the CPU when no other task is able
to execute.

interface
A specification of the methodology used to
connect multiple independent subsystems.

internal address
The address used to access dual-ported
memory by the node which owns the mem-
ory.

interrupt
A hardware facility that causes the CPU to
suspend execution, save its status, and trans-
fer control to a specific location.

545

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

interrupt level
A mask used to by the CPU to determine
which pending interrupts should be serviced.
If a pending interrupt is below the current
interrupt level, then the CPU does not recog-
nize that interrupt.

Interrupt Service Routine
An ISR is invoked by the CPU to process a
pending interrupt.

I/O
An acronym for Input/Output.

ISR
An acronym for Interrupt Service Routine.

kernel
In this document, this term is used as a syn-
onym for executive.

list
A data structure which allows for dynamic
addition and removal of entries. It is not
statically limited to a particular size.

little endian
A data representation scheme in which the
bytes composing a numeric value are ar-
ranged such that the least significant byte is
at the lowest address.

local
An object which was created with the LOCAL
attribute and is accessible only on the node
it was created and resides upon. In a single
processor configuration, all objects are local.

local operation
The manipulation of an object which resides
on the same node as the calling task.

logical address
An address used by an application. In a sys-
tem without memory management, logical
addresses will equal physical addresses.

loosely-coupled
A multiprocessor configuration where
shared memory is not used for communica-
tion.

major number
The index of a device driver in the Device
Driver Table.

manager
A group of related RTEMS’ directives which
provide access and control over resources.

memory pool
Used interchangeably with heap.

message
A sixteen byte entity used to communicate
between tasks. Messages are sent to message
queues and stored in message buffers.

message buffer
A block of memory used to store messages.

message queue
An RTEMS object used to synchronize and
communicate between tasks by transport-
ing messages between sending and receiving
tasks.

Message Queue Control Block
A data structure associated with each mes-
sage queue used by RTEMS to manage that
message queue.

minor number
A numeric value passed to a device driver,
the exact usage of which is driver dependent.

mode
An entry in a task’s control block that is used
to determine if the task allows preemption,
timeslicing, processing of signals, and the in-
terrupt disable level used by the task.

MPCI
An acronym for Multiprocessor Communica-
tions Interface Layer.

multiprocessing
The simultaneous execution of two or more
processes by a multiple processor computer
system.

multiprocessor
A computer with multiple CPUs available for
executing applications.

Multiprocessor Communications Interface
Layer
A set of user-provided routines which enable
the nodes in a multiprocessor system to com-
municate with one another.

Multiprocessor Configuration Table
The data structure defining the characteris-

546 Chapter 38. Glossary

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

tics of the multiprocessor target system with
which RTEMS will communicate.

multitasking
The alternation of execution amongst a
group of processes on a single CPU. A
scheduling algorithm is used to determine
which process executes at which time.

mutual exclusion
A term used to describe the act of preventing
other tasks from accessing a resource simul-
taneously.

nested
A term used to describe an ASR that occurs
during another ASR or an ISR that occurs
during another ISR.

node
A term used to reference a processor running
RTEMS in a multiprocessor system.

non-existent
The state occupied by an uncreated or
deleted task.

numeric coprocessor
A component used in computer systems to
enhance performance in mathematically in-
tensive situations. It is typically viewed as a
logical extension of the primary processor.

object
In this document, this term is used to refer
collectively to tasks, timers, message queues,
partitions, regions, semaphores, ports, and
rate monotonic periods. All RTEMS objects
have IDs and user-assigned names.

object-oriented
A term used to describe systems with com-
mon mechanisms for utilizing a variety of
entities. Object-oriented systems shield the
application from implementation details.

operating system
The software which controls all the com-
puter’s resources and provides the base upon
which application programs can be written.

overhead
The portion of the CPUs processing power
consumed by the operating system.

packet
A buffer which contains the messages passed

between nodes in a multiprocessor system. A
packet is the contents of an envelope.

partition
An RTEMS object which is used to allocate
and deallocate fixed size blocks of memory
from an dynamically specified area of mem-
ory.

partition
Clusters with a cardinality of one are parti-
tions.

Partition Control Block
A data structure associated with each parti-
tion used by RTEMS to manage that parti-
tion.

pending
A term used to describe a task blocked wait-
ing for an event, message, semaphore, or sig-
nal.

periodic task
A task which must execute at regular inter-
vals and comply with a hard deadline.

physical address
The actual hardware address of a resource.

poll
A mechanism used to determine if an event
has occurred by periodically checking for a
particular status. Typical events include ar-
rival of data, completion of an action, and
errors.

pool
A collection from which resources are allo-
cated.

portability
A term used to describe the ease with which
software can be rehosted on another com-
puter.

posting
The act of sending an event, message,
semaphore, or signal to a task.

preempt
The act of forcing a task to relinquish the
processor and dispatching to another task.

priority
A mechanism used to represent the relative
importance of an element in a set of items.

547

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

RTEMS uses priority to determine which task
should execute.

priority boosting
A simple approach to extend the priority in-
heritance protocol for clustered scheduling is
priority boosting. In case a mutex is owned
by a task of another cluster, then the priority
of the owner task is raised to an artificially
high priority, the pseudo-interrupt priority.

priority inheritance
An algorithm that calls for the lower prior-
ity task holding a resource to have its prior-
ity increased to that of the highest priority
task blocked waiting for that resource. This
avoids the problem of priority inversion.

priority inversion
A form of indefinite postponement which oc-
curs when a high priority tasks requests ac-
cess to shared resource currently allocated to
low priority task. The high priority task must
block until the low priority task releases the
resource.

processor utilization
The percentage of processor time used by a
task or a set of tasks.

proxy
An RTEMS control structure used to repre-
sent, on a remote node, a task which must
block as part of a remote operation.

Proxy Control Block
A data structure associated with each proxy
used by RTEMS to manage that proxy.

PTCB
An acronym for Partition Control Block.

PXCB
An acronym for Proxy Control Block.

quantum
The application defined unit of time in which
the processor is allocated.

queue
Alternate term for message queue.

QCB
An acronym for Message Queue Control
Block.

ready task
A task occupies this state when it is available
to be given control of a processor. A ready
task has no processor assigned. The sched-
uler decided that other tasks are currently
more important. A task that is ready to ex-
ecute and has a processor assigned is called
scheduled.

real-time
A term used to describe systems which are
characterized by requiring deterministic re-
sponse times to external stimuli. The exter-
nal stimuli require that the response occur at
a precise time or the response is incorrect.

reentrant
A term used to describe routines which do
not modify themselves or global variables.

region
An RTEMS object which is used to allocate
and deallocate variable size blocks of mem-
ory from a dynamically specified area of
memory.

Region Control Block
A data structure associated with each region
used by RTEMS to manage that region.

registers
Registers are locations physically located
within a component, typically used for de-
vice control or general purpose storage.

remote
Any object that does not reside on the local
node.

remote operation
The manipulation of an object which does
not reside on the same node as the calling
task.

return code
Also known as error code or return value.

resource
A hardware or software entity to which ac-
cess must be controlled.

resume
Removing a task from the suspend state. If
the task’s state is ready following a call to the
rtems_task_resume directive, then the task
is available for scheduling.

548 Chapter 38. Glossary

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

return code
A value returned by RTEMS directives to in-
dicate the completion status of the directive.

RNCB
An acronym for Region Control Block.

round-robin
A task scheduling discipline in which tasks
of equal priority are executed in the order in
which they are made ready.

RS-232
A standard for serial communications.

running
The state of a rate monotonic timer while
it is being used to delineate a period. The
timer exits this state by either expiring or be-
ing canceled.

schedulable
A set of tasks which can be guaranteed to
meet their deadlines based upon a specific
scheduling algorithm.

schedule
The process of choosing which task should
next enter the executing state.

scheduled task
A task is scheduled if it is allowed to execute
and has a processor assigned. Such a task
executes currently on a processor or is about
to start execution. A task about to start ex-
ecution it is an heir task on exactly one pro-
cessor in the system.

scheduler
A scheduler or scheduling algorithm allocates
processors to a subset of its set of ready
tasks. So it manages access to the processor
resource. Various algorithms exist to choose
the tasks allowed to use a processor out of
the set of ready tasks. One method is to as-
sign each task a priority number and assign
the tasks with the lowest priority number to
one processor of the set of processors owned
by a scheduler instance.

scheduler instance
A scheduler instance is a scheduling algo-
rithm with a corresponding context to store
its internal state. Each processor in the sys-
tem is owned by at most one scheduler in-
stance. The processor to scheduler instance

assignment is determined at application con-
figuration time. See Chapter 24 - Configuring
a System (page 307).

segments
Variable sized memory blocks allocated from
a region.

semaphore
An RTEMS object which is used to synchro-
nize tasks and provide mutually exclusive ac-
cess to resources.

Semaphore Control Block
A data structure associated with each
semaphore used by RTEMS to manage that
semaphore.

shared memory
Memory which is accessible by multiple
nodes in a multiprocessor system.

signal
An RTEMS provided mechanism to commu-
nicate asynchronously with a task. Upon re-
ception of a signal, the ASR of the receiving
task will be invoked.

signal set
A thirty-two bit entity which is used to rep-
resent a task’s collection of pending signals
and the signals sent to a task.

SMCB
An acronym for Semaphore Control Block.

SMP locks
The SMP locks ensure mutual exclusion on
the lowest level and are a replacement for
the sections of disabled interrupts. Inter-
rupts are usually disabled while holding an
SMP lock. They are implemented using
atomic operations. Currently a ticket lock is
used in RTEMS.

SMP barriers
The SMP barriers ensure that a defined set of
independent threads of execution on a set of
processors reaches a common synchroniza-
tion point in time. They are implemented
using atomic operations. Currently a sense
barrier is used in RTEMS.

soft real-time system
A real-time system in which a missed dead-
line does not compromise the integrity of the

549

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

system.

sporadic task
A task which executes at irregular intervals
and must comply with a hard deadline. A
minimum period of time between successive
iterations of the task can be guaranteed.

stack
A data structure that is managed using a Last
In First Out (LIFO) discipline. Each task has
a stack associated with it which is used to
store return information and local variables.

status code
Also known as error code or return value.

suspend
A term used to describe a task that is not
competing for the CPU because it has had
a rtems_task_suspend directive.

synchronous
Related in order or timing to other occur-
rences in the system.

system call
In this document, this is used as an alternate
term for directive.

target
The system on which the application will ul-
timately execute.

task
A logically complete thread of execution. It
consists normally of a set of registers and a
stack. The terms task and thread are syn-
onym in RTEMS. The scheduler assigns pro-
cessors to a subset of the ready tasks.

Task Control Block
A data structure associated with each task
used by RTEMS to manage that task.

task migration
Task migration happens in case a task stops
execution on one processor and resumes ex-
ecution on another processor.

task processor affinity
The set of processors on which a task is al-
lowed to execute.

task switch
Alternate terminology for context switch.

Taking control of the processor from one task
and given to another.

TCB
An acronym for Task Control Block.

thread dispatch
The thread dispatch transfers control of
the processor from the currently executing
thread to the heir thread of the processor.

tick
The basic unit of time used by RTEMS. It is a
user-configurable number of microseconds.
The current tick expires when a clock tick
directive is invoked.

tightly-coupled
A multiprocessor configuration system
which communicates via shared memory.

timeout
An argument provided to a number of direc-
tives which determines the maximum length
of time an application task is willing to wait
to acquire the resource if it is not immedi-
ately available.

timer
An RTEMS object used to invoke subpro-
grams at a later time.

Timer Control Block
A data structure associated with each timer
used by RTEMS to manage that timer.

timeslicing
A task scheduling discipline in which tasks of
equal priority are executed for a specific pe-
riod of time before being preempted by an-
other task.

timeslice
The application defined unit of time in which
the processor is allocated.

TMCB
An acronym for Timer Control Block.

transient overload
A temporary rise in system activity which
may cause deadlines to be missed. Rate
Monotonic Scheduling can be used to deter-
mine if all deadlines will be met under tran-
sient overload.

550 Chapter 38. Glossary

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

user extensions
Software routines provided by the applica-
tion to enhance the functionality of RTEMS.

User Extension Table
A table which contains the entry points for
each user extensions.

User Initialization Tasks Table
A table which contains the information
needed to create and start each of the user
initialization tasks.

user-provided
Alternate term for user-supplied. This term
is used to designate any software routines
which must be written by the application de-
signer.

user-supplied
Alternate term for user-provided. This term
is used to designate any software routines
which must be written by the application de-
signer.

vector
Memory pointers used by the processor to
fetch the address of routines which will han-
dle various exceptions and interrupts.

wait queue
The list of tasks blocked pending the release
of a particular resource. Message queues, re-
gions, and semaphores have a wait queue as-
sociated with them.

yield
When a task voluntarily releases control of
the processor.

• genindex

• search

551

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

552 Chapter 38. Glossary

INDEX

/dev/null, 358
/dev/zero, 358
_Internal_errors_What_happened, 280
<rtems/confdefs.h>, 308
‘‘CONFIGURE_MAXIMUM_FAKE_ADA_

TASKS‘‘, 361

add memory, 246
add memory to a region, 246
announce, 282, 283
announce arrival of package, 375
announce fatal error, 282, 283
ASR, 221
ASR mode, 221
ASR vs. ISR, 221
asynchronous signal routine, 221
attach a thread to server, 507

barrier, 185
binary semaphores, 167
Board Support Packages, 287
broadcast message to a queue, 207
BSP, 288
BSP_IDLE_TASK_BODY, 344
BSP_IDLE_TASK_STACK_SIZE, 344
BSP_INITIAL_EXTENSION, 345
BSP_INTERRUPT_STACK_SIZE, 345
BSP_MAXIMUM_DEVICES, 345
BSP_ZERO_WORKSPACE_AUTOMATICALLY,

345
BSPs, 287
buffers, 229
build object id from components, 432
build object name, 424
building, 62, 213, 221, 229, 239

C Program Heap, 328
cancel a period, 158
cancel a timer, 136
cbs, 497
CBS limitations, 499

CBS overrun handler, 499
CBS parameters, 499
CBS periodic tasks, 499
chain append a node, 467
chain append a node unprotected, 468
chain extract a node, 461
chain extract a node unprotected, 462
chain get first node, 463, 464
chain get head, 451
chain get tail, 452
chain initialize, 448
chain initialize empty, 449
chain insert a node, 465
chain insert a node unprotected, 466
chain is chain empty, 454
chain is node null, 450
chain is node the first, 455
chain is node the head, 459
chain is node the last, 456
chain is node the tail, 460
chain iterate, 446
chain only one node, 457, 458
chains, 443
chare are nodes equal, 453
cleanup the CBS library, 505
clear C Program Heap, 330
clear RTEMS Workspace, 330
clock, 109
clock get nanoseconds uptime, 128
clock get uptime, 125
clock get uptime interval, 126
clock get uptime seconds, 127
close a device, 273
communication and synchronization, 27
conclude current period, 160
confdefs.h, 308
configure message queue buffer memory, 333
CONFIGURE_APPLICATION_DISABLE_

FILESYSTEM, 336
CONFIGURE_APPLICATION_DOES_NOT_

553

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

NEED_CLOCK_DRIVER, 356
CONFIGURE_APPLICATION_EXTRA_

DRIVERS, 357
CONFIGURE_APPLICATION_NEEDS_CLOCK_

DRIVER, 355
CONFIGURE_APPLICATION_NEEDS_

CONSOLE_DRIVER, 355
CONFIGURE_APPLICATION_NEEDS_FRAME_

BUFFER_DRIVER, 357
CONFIGURE_APPLICATION_NEEDS_

LIBBLOCK, 341
CONFIGURE_APPLICATION_NEEDS_NULL_

DRIVER, 358
CONFIGURE_APPLICATION_NEEDS_RTC_

DRIVER, 356
CONFIGURE_APPLICATION_NEEDS_STUB_

DRIVER, 357
CONFIGURE_APPLICATION_NEEDS_TIMER_

DRIVER, 356
CONFIGURE_APPLICATION_NEEDS_

WATCHDOG_DRIVER, 356
CONFIGURE_APPLICATION_NEEDS_ZERO_

DRIVER, 358
CONFIGURE_APPLICATION_PREREQUISITE_

DRIVERS, 357
CONFIGURE_BDBUF_BUFFER_MAX_SIZE,

341
CONFIGURE_BDBUF_BUFFER_MIN_SIZE,

341
CONFIGURE_BDBUF_CACHE_MEMORY_

SIZE, 341
CONFIGURE_BDBUF_MAX_READ_AHEAD_

BLOCKS, 342
CONFIGURE_BDBUF_MAX_WRITE_BLOCKS,

342
CONFIGURE_BDBUF_READ_AHEAD_TASK_

PRIORITY, 343
CONFIGURE_BDBUF_TASK_STACK_SIZE, 342
CONFIGURE_BSP_PREREQUISITE_DRIVERS,

346
CONFIGURE_DISABLE_BSP_SETTINGS, 344
CONFIGURE_ENABLE_CLASSIC_API_

NOTEPADS, 317
CONFIGURE_ENABLE_GO, 363
CONFIGURE_EXTRA_TASK_STACKS, 330
CONFIGURE_GNAT_RTEMS, 361
CONFIGURE_HAS_OWN_CONFIGURATION_

TABLE, 334
CONFIGURE_HAS_OWN_DEVICE_DRIVER_

TABLE, 358
CONFIGURE_HAS_OWN_INIT_TASK_TABLE,

322
CONFIGURE_HAS_OWN_MOUNT_TABLE,

336
CONFIGURE_HAS_OWN_

MULTIPROCESSING_TABLE, 360
CONFIGURE_IDLE_TASK_BODY, 347
CONFIGURE_IDLE_TASK_INITIALIZES_

APPLICATION, 347
CONFIGURE_IDLE_TASK_STACK_SIZE, 347
CONFIGURE_IMFS_DISABLE_CHMOD, 338
CONFIGURE_IMFS_DISABLE_CHOWN, 338
CONFIGURE_IMFS_DISABLE_LINK, 338
CONFIGURE_IMFS_DISABLE_MKNOD, 339
CONFIGURE_IMFS_DISABLE_MKNOD_FILE,

340
CONFIGURE_IMFS_DISABLE_MOUNT, 339
CONFIGURE_IMFS_DISABLE_READDIR, 339
CONFIGURE_IMFS_DISABLE_READLINK, 338
CONFIGURE_IMFS_DISABLE_RENAME, 339
CONFIGURE_IMFS_DISABLE_RMNOD, 340
CONFIGURE_IMFS_DISABLE_SYMLINK, 338
CONFIGURE_IMFS_DISABLE_UNMOUNT,

339
CONFIGURE_IMFS_DISABLE_UTIME, 338
CONFIGURE_IMFS_MEMFILE_BYTES_PER_

BLOCK, 337
CONFIGURE_INIT_TASK_ARGUMENTS, 321
CONFIGURE_INIT_TASK_ATTRIBUTES, 321
CONFIGURE_INIT_TASK_ENTRY_POINT, 320
CONFIGURE_INIT_TASK_INITIAL_MODES,

321
CONFIGURE_INIT_TASK_NAME, 320
CONFIGURE_INIT_TASK_PRIORITY, 321
CONFIGURE_INIT_TASK_STACK_SIZE, 320
CONFIGURE_INITIAL_EXTENSIONS, 331
CONFIGURE_INTERRUPT_STACK_SIZE, 329
CONFIGURE_LIBIO_MAXIMUM_FILE_

DESCRIPTORS, 335
CONFIGURE_MALLOC_BSP_SUPPORTS_

SBRK, 344
CONFIGURE_MAXIMUM_ADA_TASKS, 361
CONFIGURE_MAXIMUM_BARRIERS, 318
CONFIGURE_MAXIMUM_DEVICES, 336
CONFIGURE_MAXIMUM_DRIVERS, 355
CONFIGURE_MAXIMUM_FAKE_ADA_TASKS,

361
CONFIGURE_MAXIMUM_GO_CHANNELS,

363
CONFIGURE_MAXIMUM_GOROUTINES, 363
CONFIGURE_MAXIMUM_MESSAGE_

QUEUES, 318

554 Index

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

CONFIGURE_MAXIMUM_MRSP_
SEMAPHORES, 318

CONFIGURE_MAXIMUM_PARTITIONS, 319
CONFIGURE_MAXIMUM_PERIODS, 318
CONFIGURE_MAXIMUM_PORTS, 319
CONFIGURE_MAXIMUM_POSIX_BARRIERS,

325
CONFIGURE_MAXIMUM_POSIX_

CONDITION_VARIABLES, 323
CONFIGURE_MAXIMUM_POSIX_KEYS, 323
CONFIGURE_MAXIMUM_POSIX_MESSAGE_

QUEUE_DESCRIPTORS, 324
CONFIGURE_MAXIMUM_POSIX_MESSAGE_

QUEUES, 324
CONFIGURE_MAXIMUM_POSIX_MUTEXES,

323
CONFIGURE_MAXIMUM_POSIX_QUEUED_

SIGNALS, 324
CONFIGURE_MAXIMUM_POSIX_RWLOCKS,

325
CONFIGURE_MAXIMUM_POSIX_

SEMAPHORES, 325
CONFIGURE_MAXIMUM_POSIX_SPINLOCKS,

325
CONFIGURE_MAXIMUM_POSIX_THREADS,

323
CONFIGURE_MAXIMUM_POSIX_TIMERS,

324
CONFIGURE_MAXIMUM_PRIORITY, 329
CONFIGURE_MAXIMUM_REGIONS, 319
CONFIGURE_MAXIMUM_SEMAPHORES, 318
CONFIGURE_MAXIMUM_TASKS, 317
CONFIGURE_MAXIMUM_TIMERS, 317
CONFIGURE_MAXIMUM_USER_

EXTENSIONS, 319
CONFIGURE_MEMORY_OVERHEAD, 334
CONFIGURE_MESSAGE_BUFFER_MEMORY,

333
CONFIGURE_MESSAGE_BUFFERS_FOR_

QUEUE, 333
CONFIGURE_MICROSECONDS_PER_TICK,

328
CONFIGURE_MINIMUM_TASK_STACK_SIZE,

329
CONFIGURE_MP_APPLICATION, 359
CONFIGURE_MP_MAXIMUM_GLOBAL_

OBJECTS, 359
CONFIGURE_MP_MAXIMUM_NODES, 359
CONFIGURE_MP_MAXIMUM_PROXIES, 360
CONFIGURE_MP_MPCI_TABLE_POINTER,

360

CONFIGURE_MP_NODE_NUMBER, 359
CONFIGURE_NUMBER_OF_TERMIOS_

PORTS, 335
CONFIGURE_POSIX_HAS_OWN_INIT_

THREAD_TABLE, 327
CONFIGURE_POSIX_INIT_THREAD_ENTRY_

POINT, 326
CONFIGURE_POSIX_INIT_THREAD_STACK_

SIZE, 326
CONFIGURE_POSIX_INIT_THREAD_TABLE,

326
CONFIGURE_RTEMS_INIT_TASKS_TABLE,

320
CONFIGURE_SCHEDULER_CBS, 349
CONFIGURE_SCHEDULER_EDF, 348
CONFIGURE_SCHEDULER_NAME, 350
CONFIGURE_SCHEDULER_PRIORITY, 348
CONFIGURE_SCHEDULER_PRIORITY_SMP,

349
CONFIGURE_SCHEDULER_SIMPLE, 348
CONFIGURE_SCHEDULER_SIMPLE_SMP, 349
CONFIGURE_SCHEDULER_USER, 350
CONFIGURE_SMP_APPLICATION, 354
CONFIGURE_SMP_MAXIMUM_

PROCESSORS, 354
CONFIGURE_STACK_CHECKER_ENABLED,

330
CONFIGURE_SWAPOUT_BLOCK_HOLD, 342
CONFIGURE_SWAPOUT_SWAP_PERIOD, 341
CONFIGURE_SWAPOUT_TASK_PRIORITY,

342
CONFIGURE_SWAPOUT_WORKER_TASK_

PRIORITY, 343
CONFIGURE_SWAPOUT_WORKER_TASKS,

343
CONFIGURE_TASK_STACK_ALLOCATOR, 332
CONFIGURE_TASK_STACK_ALLOCATOR_

INIT, 332
CONFIGURE_TASK_STACK_DEALLOCATOR,

332
CONFIGURE_TERMIOS_DISABLED, 335
CONFIGURE_TICKS_PER_TIMESLICE, 328
CONFIGURE_UNIFIED_WORK_AREAS, 328
CONFIGURE_UNLIMITED_OBJECTS, 316
CONFIGURE_USE_DEVFS_AS_BASE_

FILESYSTEM, 336
CONFIGURE_USE_MINIIMFS_AS_BASE_

FILESYSTEM, 337
CONFIGURE_ZERO_WORKSPACE_

AUTOMATICALLY, 330
configuring a system, 307

Index 555

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

constant bandwidth server scheduling, 40
convert external to internal address, 259
convert internal to external address, 260
counting semaphores, 167
create a barrier, 190
create a message queue, 202
create a new bandwidth server, 506
create a partition, 232
create a period, 156
create a port, 256
create a region, 243
create a semaphore, 176
create a task, 68
create a timer, 134
create an extension set, 304
current task mode, 79
current task priority, 78

definition, 59, 148, 213, 229, 239, 253, 288,
367, 368, 370

delay a task for an interval, 82
delay a task until a wall time, 83
delays, 111
delete a barrier, 192
delete a message queue, 204
delete a partition, 234
delete a period, 159
delete a port, 258
delete a region, 245
delete a semaphore, 179
delete a timer, 137
delete an extension set, 306
deleting a task, 74
destroy a bandwidth server, 509
detach a thread from server, 508
device driver interface, 264
Device Driver Table, 263
device drivers, 261
device names, 263
disable interrupts, 97, 100
disabling interrupts, 91
dispatching, 43
dual ported memory, 251, 253

earliest deadline first scheduling, 40
enable interrupts, 98, 101
establish an ASR, 225
establish an ISR, 96
event condition, 213
event flag, 213
event set, 213
events, 211

exception frame, 284
extension set, 297
external addresses, 253

fatal error, 282, 283, 285, 286
fatal error detection, 279
fatal error processing, 279
fatal error user extension, 279
fatal errors, 277
fire a task-based timer at wall time, 142
fire a timer after an interval, 138
fire a timer at wall time, 139
fire task-based a timer after an interval, 141
flash interrupts, 99
floating point, 61
flush a semaphore, 182
flush messages on a queue, 210

get an ID of a server, 510
get buffer from partition, 235
get class from object ID, 26
get current ticks counter value, 121
get elapsed execution time, 513
get ID of a barrier, 191
get ID of a message queue, 203
get ID of a partition, 233
get ID of a period, 157
get ID of a port, 257
get ID of a region, 244
get ID of a semaphore, 178
get ID of a task, 70
get ID of an extension set, 305
get index from object ID, 26
get name from id, 425
get node from object ID, 26
get number of pending messages, 209
get object name as string, 426
get per-task variable, 86
get remaining execution time, 514
get scheduler approved execution time, 515
get scheduling parameters of a server, 511
get segment from region, 247
get size of segment, 249
get statistics of period, 162
get status of period, 161
get task mode, 79
get task notepad entry, 80
get task preemption mode, 79
get task priority, 78
global objects, 367
global objects table, 367

556 Index

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

heterogeneous multiprocessing, 372

initialization tasks, 49
initialize a device driver, 269
initialize RTEMS, 54
initialize the CBS library, 504
initiate the Timer Server, 140
install an ASR, 225
install an ISR, 96
int16_t, 34
int32_t, 34
int64_t, 34
int8_t, 34
internal addresses, 253
interrupt level, 60
interrupt levels, 91
interrupt processing, 91
interrupt stack size, 329
IO Control, 276
IO Manager, 261
is interrupt in progress, 107
is task suspended, 77
ISR vs. ASR, 221
iterate over all threads, 84

libpci, 397
linkersets, 521
lock a barrier, 193
lock a semaphore, 180
lookup device major and minor number, 271

major device number, 263
manual round robin, 42
maximum file descriptors, 335
maximum priority, 329
memory for a single message queue’s buffers,

333
memory for task tasks, 330
memory management, 29
message queue attributes, 197
message queues, 195
messages, 195
minimum task stack size, 329
minor device number, 263
MPCI, 370
MPCI and remote operations, 368
MPCI entry points, 370
multiprocessing, 365
multiprocessing topologies, 367
mutual exclusion, 167

nodes, 367
number of priority levels, 329

object ID, 25
object ID composition, 25
object manipulation, 419
object name, 25
objects, 25
obtain a barrier, 193
obtain a semaphore, 180
obtain API from id, 428
obtain API name, 439
obtain buffer from partition, 235
obtain class from object id, 429
obtain class information, 441
obtain class name, 440
obtain ID of a barrier, 191
obtain ID of a partition, 233
obtain ID of a period, 157
obtain ID of a port, 257
obtain ID of a region, 244
obtain ID of a semaphore, 178
obtain ID of an extension set, 305
obtain ID of caller, 71
obtain index from object id, 431
obtain maximum API value, 434
obtain maximum class value, 436
obtain maximum class value for an API, 438
obtain minimum API value, 433
obtain minimum class value, 435
obtain minimum class value for an API, 437
obtain name from id, 425
obtain node from object id, 430
obtain object name as string, 426
obtain per-task variable, 86
obtain seconds since epoch, 119, 120
obtain statistics of period, 162
obtain status of period, 161
obtain task mode, 79
obtain task priority, 78
obtain the ID of a timer, 135
obtain the time of day, 116–118
obtain ticks since boot, 121
obtaining class from object ID, 26
obtaining index from object ID, 26
obtaining node from object ID, 26
open a devive, 272

partition, 229
partition attribute set, 229
partitions, 227
PCI_LIB_AUTO, 362
PCI_LIB_PERIPHERAL, 362
PCI_LIB_READ, 362
PCI_LIB_STATIC, 362

Index 557

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

per task variables, 61
per-task variable, 85, 87
period initiation, 160
period statistics report, 165
periodic task, 148
periodic tasks, 145
ports, 251
preemption, 42, 60
prepend node, 469
prepend node unprotected, 470
print period statistics report, 165
priority, 59
priority scheduling, 39
proxy, 368
put message at front of queue, 206

rate mononitonic tasks, 145
Rate Monotonic Scheduling Algorithm, 148
rbtree doc, 475
rbtrees, 471
read from a device, 274
receive event condition, 217
receive message from a queue, 208
region, 239, 246
region attribute set, 239
regions, 237
register a device driver, 267
register device, 270
release a barrier, 194
release a semaphore, 181
reset a timer, 143
reset statistics of all periods, 164
reset statistics of period, 163
resize segment, 250
restarting a task, 73
resuming a task, 76
return buffer to partitition, 236
return segment to region, 248
RMS Algorithm, 148
RMS First Deadline Rule, 150
RMS Processor Utilization Rule, 149
RMS schedulability analysis, 149
round robin scheduling, 42
rtems extensions table index, 298
RTEMS Workspace, 328
rtems_address, 33
rtems_asr, 33, 223, 499
rtems_asr_entry, 33
rtems_attribute, 33
rtems_barrier_create, 190
rtems_barrier_delete, 192
rtems_barrier_ident, 191

rtems_barrier_release, 194
rtems_barrier_wait, 193
rtems_boolean, 33
rtems_build_id, 432
rtems_build_name, 424
rtems_cbs_attach_thread, 507
rtems_cbs_cleanup, 505
rtems_cbs_create_server, 506
rtems_cbs_destroy_server, 509
rtems_cbs_detach_thread, 508
rtems_cbs_get_approved_budget, 515
rtems_cbs_get_execution_time, 513
rtems_cbs_get_parameters, 511
rtems_cbs_get_remaining_budget, 514
rtems_cbs_get_server_id, 510
rtems_cbs_initialize, 504
rtems_cbs_parameters, 499
rtems_cbs_set_parameters, 512
rtems_chain_append, 467
rtems_chain_append_unprotected, 468
rtems_chain_are_nodes_equal, 453
rtems_chain_extract, 461
rtems_chain_extract_unprotected, 462
rtems_chain_get, 463
rtems_chain_get_unprotected, 464
rtems_chain_has_only_one_node, 457
rtems_chain_head, 451
rtems_chain_initialize, 448
rtems_chain_initialize_empty, 449
rtems_chain_insert, 465
rtems_chain_insert_unprotected, 466
rtems_chain_is_empty, 454
rtems_chain_is_first, 455
rtems_chain_is_head, 459
rtems_chain_is_last, 456
rtems_chain_is_null_node, 450
rtems_chain_is_tail, 460
rtems_chain_node_count_unprotected, 458
rtems_chain_prepend, 469
rtems_chain_prepend_unprotected, 470
rtems_chain_tail, 452
rtems_clock_get, 116
rtems_clock_get_options, 113, 116
rtems_clock_get_seconds_since_epoch, 119
rtems_clock_get_ticks_per_second, 120
rtems_clock_get_ticks_since_boot, 121
rtems_clock_get_tod, 117
rtems_clock_get_tod_timeval, 118
rtems_clock_get_uptime, 125
rtems_clock_get_uptime_nanoseconds, 128
rtems_clock_get_uptime_seconds, 127

558 Index

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

rtems_clock_get_uptime_timeval, 126
rtems_clock_set, 115
rtems_clock_tick_before, 124
rtems_clock_tick_later, 122
rtems_clock_tick_later_usec, 123
rtems_context, 33
rtems_context_fp, 33
rtems_device_driver, 33
rtems_device_driver_entry, 33
rtems_device_major_number, 33, 263
rtems_device_minor_number, 33, 263
rtems_double, 33
rtems_event_receive, 217
rtems_event_send, 216
rtems_event_set, 33, 213
rtems_exception_frame_print, 284
rtems_extension, 33, 298
rtems_extension_create, 304
rtems_extension_delete, 306
rtems_extension_ident, 305
rtems_fatal, 283
rtems_fatal_error_occurred, 282
rtems_fatal_extension, 33, 300
rtems_fatal_source_text, 285
rtems_id, 25, 33
rtems_initialize_executive, 54
rtems_internal_error_text, 286
rtems_interrupt_catch, 96
rtems_interrupt_disable, 97
rtems_interrupt_enable, 98
rtems_interrupt_flash, 99
rtems_interrupt_frame, 33
rtems_interrupt_is_in_progress, 107
rtems_interrupt_level, 33
rtems_interrupt_local_disable, 100
rtems_interrupt_local_enable, 101
rtems_interrupt_lock_acquire, 103
rtems_interrupt_lock_acquire_isr, 105
rtems_interrupt_lock_initialize, 102
rtems_interrupt_lock_release, 104
rtems_interrupt_lock_release_isr, 106
rtems_interval, 28, 33
rtems_io_close, 273
rtems_io_control, 276
rtems_io_initialize, 269
rtems_io_lookup_name, 271
rtems_io_open, 272
rtems_io_read, 274
rtems_io_register_driver, 267
rtems_io_register_name, 270
rtems_io_unregister_driver, 268

rtems_io_write, 275
rtems_isr, 33, 91
rtems_isr_entry, 33
rtems_iterate_over_all_threads, 84
RTEMS_LINKER_ROSET, 529
RTEMS_LINKER_ROSET_DECLARE, 528
RTEMS_LINKER_ROSET_ITEM, 532
RTEMS_LINKER_ROSET_ITEM_DECLARE,

530
RTEMS_LINKER_ROSET_ITEM_ORDERED,

533
RTEMS_LINKER_ROSET_ITEM_REFERENCE,

531
RTEMS_LINKER_RWSET, 535
RTEMS_LINKER_RWSET_DECLARE, 534
RTEMS_LINKER_RWSET_ITEM, 538
RTEMS_LINKER_RWSET_ITEM_DECLARE,

536
RTEMS_LINKER_RWSET_ITEM_ORDERED,

539
RTEMS_LINKER_RWSET_ITEM_REFERENCE,

537
RTEMS_LINKER_SET_BEGIN, 525
RTEMS_LINKER_SET_END, 526
RTEMS_LINKER_SET_SIZE, 527
rtems_message_queue_broadcast, 207
rtems_message_queue_create, 202
rtems_message_queue_delete, 204
rtems_message_queue_flush, 210
rtems_message_queue_get_number_pending,

209
rtems_message_queue_ident, 203
rtems_message_queue_receive, 208
rtems_message_queue_send, 205
rtems_message_queue_urgent, 206
rtems_mode, 33
rtems_mp_packet_classes, 33
rtems_mpci_entry, 34, 370
rtems_mpci_get_packet_entry, 34
rtems_mpci_initialization_entry, 34
rtems_mpci_receive_packet_entry, 34
rtems_mpci_return_packet_entry, 34
rtems_mpci_send_packet_entry, 34
rtems_mpci_table, 34
rtems_multiprocessing_announce, 375
rtems_name, 25, 34
rtems_object_api_maximum_class, 436
rtems_object_api_minimum_class, 435
rtems_object_get_api_class_name, 440
rtems_object_get_api_name, 439
rtems_object_get_class_information, 441

Index 559

RTEMS C User Documentation, Release 4.11.3 Chapter 38 Section 38.0

rtems_object_get_classic_name, 425
rtems_object_get_name, 25, 426
rtems_object_id_api_maximum, 434
rtems_object_id_api_maximum_class, 438
rtems_object_id_api_minimum, 433
rtems_object_id_api_minimum_class, 437
rtems_object_id_get_api, 26, 428
rtems_object_id_get_class, 26, 429
rtems_object_id_get_index, 26, 431
rtems_object_id_get_node, 26, 430
rtems_object_set_name, 427
rtems_option, 34
rtems_packet_prefix, 34
rtems_partition_create, 232
rtems_partition_delete, 234
rtems_partition_get_buffer, 235
rtems_partition_ident, 233
rtems_partition_return_buffer, 236
rtems_port_create, 256
rtems_port_delete, 258
rtems_port_external_to_internal, 259
rtems_port_ident, 257
rtems_port_internal_to_external, 260
rtems_rate_monotonic_cancel, 158
rtems_rate_monotonic_create, 156
rtems_rate_monotonic_delete, 159
rtems_rate_monotonic_get_statistics, 162
rtems_rate_monotonic_get_status, 161
rtems_rate_monotonic_ident, 157
rtems_rate_monotonic_period, 160
rtems_rate_monotonic_period_statistics, 162,

165
rtems_rate_monotonic_period_status, 161
rtems_rate_monotonic_report_statistics, 165
rtems_rate_monotonic_reset_all_statistics,

164
rtems_rate_monotonic_reset_statistics, 163
rtems_region_delete, 245
rtems_region_extend, 246
rtems_region_get_segment, 247
rtems_region_get_segment_size, 249
rtems_region_ident, 244
rtems_region_resize_segment, 250
rtems_region_return_segment, 248
rtems_resource_is_unlimited, 316
rtems_resource_maximum_per_allocation,

316
rtems_resource_unlimited, 315
rtems_semaphore_create, 176
rtems_semaphore_delete, 179
rtems_semaphore_flush, 182

rtems_semaphore_ident, 178
rtems_semaphore_obtain, 180
rtems_semaphore_release, 181
rtems_semaphore_set_priority, 183
rtems_shutdown_executive, 55
rtems_signal_catch, 225
rtems_signal_send, 226
rtems_signal_set, 34, 221
rtems_single, 34
rtems_status_codes, 34
rtems_status_text, 520
rtems_task, 34, 60
rtems_task_argument, 34
rtems_task_begin_extension, 35, 299
rtems_task_create, 68
rtems_task_create_extension, 35, 298
rtems_task_delete, 74
rtems_task_delete_extension, 35, 299
rtems_task_entry, 35
rtems_task_exitted_extension, 35, 300
rtems_task_get_note, 65, 80
rtems_task_ident, 70
rtems_task_is_suspended, 77
rtems_task_mode, 60, 79
rtems_task_priority, 35, 59
rtems_task_restart, 73
rtems_task_restart_extension, 35, 299
rtems_task_resume, 76
rtems_task_self, 71
rtems_task_set_note, 65, 81
rtems_task_set_priority, 78
rtems_task_start, 72
rtems_task_start_extension, 35, 298
rtems_task_suspend, 75
rtems_task_switch_extension, 35, 299
rtems_task_variable_add, 85
rtems_task_variable_delete, 87
rtems_task_variable_get, 86
rtems_task_wake_after, 82
rtems_task_wake_when, 83
rtems_tcb, 35
rtems_time_of_day, 28, 35, 111
rtems_timer_cancel, 136
rtems_timer_create, 134
rtems_timer_delete, 137
rtems_timer_fire_after, 138
rtems_timer_fire_when, 139
rtems_timer_ident, 135
rtems_timer_initiate_server, 140
rtems_timer_reset, 143
rtems_timer_server_fire_after, 141

560 Index

Chapter 38 Section 38.0 RTEMS C User Documentation, Release 4.11.3

rtems_timer_server_fire_when, 142
rtems_timer_service_routine, 35, 131
rtems_timer_service_routine_entry, 35
rtems_timespec_add_to, 485
rtems_timespec_divide, 487
rtems_timespec_divide_by_integer, 488
rtems_timespec_equal_to, 491
rtems_timespec_from_ticks, 495
rtems_timespec_get_nanoseconds, 493
rtems_timespec_get_seconds, 492
rtems_timespec_greater_than, 490
rtems_timespec_is_valid, 484
rtems_timespec_less_than, 489
rtems_timespec_set, 482
rtems_timespec_subtract, 486
rtems_timespec_to_ticks, 494
rtems_timespec_zero, 483
rtems_vector_number, 35, 91
runtime driver registration, 263

scheduling, 37
scheduling algorithms, 39
scheduling mechanisms, 42
segment, 239
semaphores, 167
send event set to a task, 216
send message to a queue, 205
send signal set, 226
separate work areas, 328
set object name, 427
set priority by scheduler for a semaphore, 183
set scheduling parameters, 512
set struct timespec instance, 482
set task mode, 79
set task notepad entry, 81
set task preemption mode, 79
set task priority, 78
set the time of day, 115
shutdown RTEMS, 55
signal set, 221
signals, 219
special device services, 276
sporadic task, 148
stack, 405
start current period, 160
start multitasking, 54
starting a task, 72
suspending a task, 75

task, 59, 60
task affinity, 379
task arguments, 60

task attributes, 62
task migration, 379
task mode, 60, 62
task priority, 42, 59
task private data, 85, 87
task private variable, 85, 87
task prototype, 60
task scheduling, 37
task stack allocator, 332
task stack deallocator, 332
task state transitions, 44
task states, 59
tasks, 57
TCB extension area, 297
thread affinity, 379
thread migration, 379
tick quantum, 328
ticks per timeslice, 328
time, 28
timeouts, 111
timers, 129
timeslicing, 42, 60, 111

uint16_t, 35
uint32_t, 35
uint64_t, 35
uint8_t, 35
uintptr_t, 35
unblock all tasks waiting on a semaphore, 182
unified work areas, 328
unlock a semaphore, 181
unregister a device driver, 268
uptime, 125–128
user extensions, 295

wait at a barrier, 194
wake up after an interval, 82
wake up at a wall time, 83
write to a device, 275

zero C Program Heap, 330
zero RTEMS Workspace, 330

Index 561

	I RTEMS C User's Guide
	Preface
	Overview
	Introduction
	Real-time Application Systems
	Real-time Executive
	RTEMS Application Architecture
	RTEMS Internal Architecture
	User Customization and Extensibility
	Portability
	Memory Requirements
	Audience
	Conventions
	Manual Organization

	Key Concepts
	Introduction
	Objects
	Object Names
	Object IDs
	Thirty-Two Object ID Format
	Sixteen Bit Object ID Format

	Object ID Description

	Communication and Synchronization
	Time
	Memory Management

	RTEMS Data Types
	Introduction
	List of Data Types

	Scheduling Concepts
	Introduction
	Scheduling Algorithms
	Priority Scheduling
	Deterministic Priority Scheduler
	Simple Priority Scheduler
	Simple SMP Priority Scheduler
	Earliest Deadline First Scheduler
	Constant Bandwidth Server Scheduling (CBS)

	Scheduling Modification Mechanisms
	Task Priority and Scheduling
	Preemption
	Timeslicing
	Manual Round-Robin

	Dispatching Tasks
	Task State Transitions

	Initialization Manager
	Introduction
	Background
	Initialization Tasks
	System Initialization
	The Idle Task
	Initialization Manager Failure

	Operations
	Initializing RTEMS
	Shutting Down RTEMS

	Directives
	INITIALIZE_EXECUTIVE - Initialize RTEMS
	SHUTDOWN_EXECUTIVE - Shutdown RTEMS

	Task Manager
	Introduction
	Background
	Task Definition
	Task Control Block
	Task States
	Task Priority
	Task Mode
	Accessing Task Arguments
	Floating Point Considerations
	Per Task Variables
	Building a Task Attribute Set
	Building a Mode and Mask

	Operations
	Creating Tasks
	Obtaining Task IDs
	Starting and Restarting Tasks
	Suspending and Resuming Tasks
	Delaying the Currently Executing Task
	Changing Task Priority
	Changing Task Mode
	Notepad Locations
	Task Deletion
	Transition Advice for Obsolete Directives
	Notepads

	Directives
	TASK_CREATE - Create a task
	TASK_IDENT - Get ID of a task
	TASK_SELF - Obtain ID of caller
	TASK_START - Start a task
	TASK_RESTART - Restart a task
	TASK_DELETE - Delete a task
	TASK_SUSPEND - Suspend a task
	TASK_RESUME - Resume a task
	TASK_IS_SUSPENDED - Determine if a task is Suspended
	TASK_SET_PRIORITY - Set task priority
	TASK_MODE - Change the current task mode
	TASK_GET_NOTE - Get task notepad entry
	TASK_SET_NOTE - Set task notepad entry
	TASK_WAKE_AFTER - Wake up after interval
	TASK_WAKE_WHEN - Wake up when specified
	ITERATE_OVER_ALL_THREADS - Iterate Over Tasks
	TASK_VARIABLE_ADD - Associate per task variable
	TASK_VARIABLE_GET - Obtain value of a per task variable
	TASK_VARIABLE_DELETE - Remove per task variable

	Interrupt Manager
	Introduction
	Background
	Processing an Interrupt
	RTEMS Interrupt Levels
	Disabling of Interrupts by RTEMS

	Operations
	Establishing an ISR
	Directives Allowed from an ISR

	Directives
	INTERRUPT_CATCH - Establish an ISR
	INTERRUPT_DISABLE - Disable Interrupts
	INTERRUPT_ENABLE - Enable Interrupts
	INTERRUPT_FLASH - Flash Interrupts
	INTERRUPT_LOCAL_DISABLE - Disable Interrupts on Current Processor
	INTERRUPT_LOCAL_ENABLE - Enable Interrupts on Current Processor
	INTERRUPT_LOCK_INITIALIZE - Initialize an ISR Lock
	INTERRUPT_LOCK_ACQUIRE - Acquire an ISR Lock
	INTERRUPT_LOCK_RELEASE - Release an ISR Lock
	INTERRUPT_LOCK_ACQUIRE_ISR - Acquire an ISR Lock from ISR
	INTERRUPT_LOCK_RELEASE_ISR - Release an ISR Lock from ISR
	INTERRUPT_IS_IN_PROGRESS - Is an ISR in Progress

	Clock Manager
	Introduction
	Background
	Required Support
	Time and Date Data Structures
	Clock Tick and Timeslicing
	Delays
	Timeouts

	Operations
	Announcing a Tick
	Setting the Time
	Obtaining the Time

	Directives
	CLOCK_SET - Set date and time
	CLOCK_GET - Get date and time information
	CLOCK_GET_TOD - Get date and time in TOD format
	CLOCK_GET_TOD_TIMEVAL - Get date and time in timeval format
	CLOCK_GET_SECONDS_SINCE_EPOCH - Get seconds since epoch
	CLOCK_GET_TICKS_PER_SECOND - Get ticks per second
	CLOCK_GET_TICKS_SINCE_BOOT - Get current ticks counter value
	CLOCK_TICK_LATER - Get tick value in the future
	CLOCK_TICK_LATER_USEC - Get tick value in the future in microseconds
	CLOCK_TICK_BEFORE - Is tick value is before a point in time
	CLOCK_GET_UPTIME - Get the time since boot
	CLOCK_GET_UPTIME_TIMEVAL - Get the time since boot in timeval format
	CLOCK_GET_UPTIME_SECONDS - Get the seconds since boot
	CLOCK_GET_UPTIME_NANOSECONDS - Get the nanoseconds since boot

	Timer Manager
	Introduction
	Background
	Required Support
	Timers
	Timer Server
	Timer Service Routines

	Operations
	Creating a Timer
	Obtaining Timer IDs
	Initiating an Interval Timer
	Initiating a Time of Day Timer
	Canceling a Timer
	Resetting a Timer
	Initiating the Timer Server
	Deleting a Timer

	Directives
	TIMER_CREATE - Create a timer
	TIMER_IDENT - Get ID of a timer
	TIMER_CANCEL - Cancel a timer
	TIMER_DELETE - Delete a timer
	TIMER_FIRE_AFTER - Fire timer after interval
	TIMER_FIRE_WHEN - Fire timer when specified
	TIMER_INITIATE_SERVER - Initiate server for task-based timers
	TIMER_SERVER_FIRE_AFTER - Fire task-based timer after interval
	TIMER_SERVER_FIRE_WHEN - Fire task-based timer when specified
	TIMER_RESET - Reset an interval timer

	Rate Monotonic Manager
	Introduction
	Background
	Rate Monotonic Manager Required Support
	Period Statistics
	Rate Monotonic Manager Definitions
	Rate Monotonic Scheduling Algorithm
	Schedulability Analysis
	Assumptions
	Processor Utilization Rule
	Processor Utilization Rule Example
	First Deadline Rule
	First Deadline Rule Example
	Relaxation of Assumptions
	Further Reading

	Operations
	Creating a Rate Monotonic Period
	Manipulating a Period
	Obtaining the Status of a Period
	Canceling a Period
	Deleting a Rate Monotonic Period
	Examples
	Simple Periodic Task
	Task with Multiple Periods

	Directives
	RATE_MONOTONIC_CREATE - Create a rate monotonic period
	RATE_MONOTONIC_IDENT - Get ID of a period
	RATE_MONOTONIC_CANCEL - Cancel a period
	RATE_MONOTONIC_DELETE - Delete a rate monotonic period
	RATE_MONOTONIC_PERIOD - Conclude current/Start next period
	RATE_MONOTONIC_GET_STATUS - Obtain status from a period
	RATE_MONOTONIC_GET_STATISTICS - Obtain statistics from a period
	RATE_MONOTONIC_RESET_STATISTICS - Reset statistics for a period
	RATE_MONOTONIC_RESET_ALL_STATISTICS - Reset statistics for all periods
	RATE_MONOTONIC_REPORT_STATISTICS - Print period statistics report

	Semaphore Manager
	Introduction
	Background
	Nested Resource Access
	Priority Inversion
	Priority Inheritance
	Priority Ceiling
	Multiprocessor Resource Sharing Protocol
	Building a Semaphore Attribute Set
	Building a SEMAPHORE_OBTAIN Option Set

	Operations
	Creating a Semaphore
	Obtaining Semaphore IDs
	Acquiring a Semaphore
	Releasing a Semaphore
	Deleting a Semaphore

	Directives
	SEMAPHORE_CREATE - Create a semaphore
	SEMAPHORE_IDENT - Get ID of a semaphore
	SEMAPHORE_DELETE - Delete a semaphore
	SEMAPHORE_OBTAIN - Acquire a semaphore
	SEMAPHORE_RELEASE - Release a semaphore
	SEMAPHORE_FLUSH - Unblock all tasks waiting on a semaphore
	SEMAPHORE_SET_PRIORITY - Set priority by scheduler for a semaphore

	Barrier Manager
	Introduction
	Background
	Automatic Versus Manual Barriers
	Building a Barrier Attribute Set

	Operations
	Creating a Barrier
	Obtaining Barrier IDs
	Waiting at a Barrier
	Releasing a Barrier
	Deleting a Barrier

	Directives
	BARRIER_CREATE - Create a barrier
	BARRIER_IDENT - Get ID of a barrier
	BARRIER_DELETE - Delete a barrier
	BARRIER_OBTAIN - Acquire a barrier
	BARRIER_RELEASE - Release a barrier

	Message Manager
	Introduction
	Background
	Messages
	Message Queues
	Building a Message Queue Attribute Set
	Building a MESSAGE_QUEUE_RECEIVE Option Set

	Operations
	Creating a Message Queue
	Obtaining Message Queue IDs
	Receiving a Message
	Sending a Message
	Broadcasting a Message
	Deleting a Message Queue

	Directives
	MESSAGE_QUEUE_CREATE - Create a queue
	MESSAGE_QUEUE_IDENT - Get ID of a queue
	MESSAGE_QUEUE_DELETE - Delete a queue
	MESSAGE_QUEUE_SEND - Put message at rear of a queue
	MESSAGE_QUEUE_URGENT - Put message at front of a queue
	MESSAGE_QUEUE_BROADCAST - Broadcast N messages to a queue
	MESSAGE_QUEUE_RECEIVE - Receive message from a queue
	MESSAGE_QUEUE_GET_NUMBER_PENDING - Get number of messages pending on a queue
	MESSAGE_QUEUE_FLUSH - Flush all messages on a queue

	Event Manager
	Introduction
	Background
	Event Sets
	Building an Event Set or Condition
	Building an EVENT_RECEIVE Option Set

	Operations
	Sending an Event Set
	Receiving an Event Set
	Determining the Pending Event Set
	Receiving all Pending Events

	Directives
	EVENT_SEND - Send event set to a task
	EVENT_RECEIVE - Receive event condition

	Signal Manager
	Introduction
	Background
	Signal Manager Definitions
	A Comparison of ASRs and ISRs
	Building a Signal Set
	Building an ASR Mode

	Operations
	Establishing an ASR
	Sending a Signal Set
	Processing an ASR

	Directives
	SIGNAL_CATCH - Establish an ASR
	SIGNAL_SEND - Send signal set to a task

	Partition Manager
	Introduction
	Background
	Partition Manager Definitions
	Building a Partition Attribute Set

	Operations
	Creating a Partition
	Obtaining Partition IDs
	Acquiring a Buffer
	Releasing a Buffer
	Deleting a Partition

	Directives
	PARTITION_CREATE - Create a partition
	PARTITION_IDENT - Get ID of a partition
	PARTITION_DELETE - Delete a partition
	PARTITION_GET_BUFFER - Get buffer from a partition
	PARTITION_RETURN_BUFFER - Return buffer to a partition

	Region Manager
	Introduction
	Background
	Region Manager Definitions
	Building an Attribute Set
	Building an Option Set

	Operations
	Creating a Region
	Obtaining Region IDs
	Adding Memory to a Region
	Acquiring a Segment
	Releasing a Segment
	Obtaining the Size of a Segment
	Changing the Size of a Segment
	Deleting a Region

	Directives
	REGION_CREATE - Create a region
	REGION_IDENT - Get ID of a region
	REGION_DELETE - Delete a region
	REGION_EXTEND - Add memory to a region
	REGION_GET_SEGMENT - Get segment from a region
	REGION_RETURN_SEGMENT - Return segment to a region
	REGION_GET_SEGMENT_SIZE - Obtain size of a segment
	REGION_RESIZE_SEGMENT - Change size of a segment

	Dual-Ported Memory Manager
	Introduction
	Background
	Operations
	Creating a Port
	Obtaining Port IDs
	Converting an Address
	Deleting a DPMA Port

	Directives
	PORT_CREATE - Create a port
	PORT_IDENT - Get ID of a port
	PORT_DELETE - Delete a port
	PORT_EXTERNAL_TO_INTERNAL - Convert external to internal address
	PORT_INTERNAL_TO_EXTERNAL - Convert internal to external address

	I/O Manager
	Introduction
	Background
	Device Driver Table
	Major and Minor Device Numbers
	Device Names
	Device Driver Environment
	Runtime Driver Registration
	Device Driver Interface
	Device Driver Initialization

	Operations
	Register and Lookup Name
	Accessing an Device Driver

	Directives
	IO_REGISTER_DRIVER - Register a device driver
	IO_UNREGISTER_DRIVER - Unregister a device driver
	IO_INITIALIZE - Initialize a device driver
	IO_REGISTER_NAME - Register a device
	IO_LOOKUP_NAME - Lookup a device
	IO_OPEN - Open a device
	IO_CLOSE - Close a device
	IO_READ - Read from a device
	IO_WRITE - Write to a device
	IO_CONTROL - Special device services

	Fatal Error Manager
	Introduction
	Background
	Operations
	Announcing a Fatal Error

	Directives
	FATAL_ERROR_OCCURRED - Invoke the fatal error handler
	FATAL - Invoke the fatal error handler with error source
	EXCEPTION_FRAME_PRINT - Prints the exception frame
	FATAL_SOURCE_TEXT - Returns a text for a fatal source
	INTERNAL_ERROR_TEXT - Returns a text for an internal error code

	Board Support Packages
	Introduction
	Reset and Initialization
	Interrupt Stack Requirements
	Processors with a Separate Interrupt Stack
	Processors Without a Separate Interrupt Stack

	Device Drivers
	Clock Tick Device Driver

	User Extensions
	Multiprocessor Communications Interface (MPCI)
	Tightly-Coupled Systems
	Loosely-Coupled Systems
	Systems with Mixed Coupling
	Heterogeneous Systems

	User Extensions Manager
	Introduction
	Background
	Extension Sets
	TCB Extension Area
	Extensions
	TASK_CREATE Extension
	TASK_START Extension
	TASK_RESTART Extension
	TASK_DELETE Extension
	TASK_SWITCH Extension
	TASK_BEGIN Extension
	TASK_EXITTED Extension
	FATAL Error Extension

	Order of Invocation

	Operations
	Creating an Extension Set
	Obtaining Extension Set IDs
	Deleting an Extension Set

	Directives
	EXTENSION_CREATE - Create a extension set
	EXTENSION_IDENT - Get ID of a extension set
	EXTENSION_DELETE - Delete a extension set

	Configuring a System
	Introduction
	Default Value Selection Philosophy
	Sizing the RTEMS Workspace
	Potential Issues with RTEMS Workspace Size Estimation
	Format to be followed for making changes in this file
	Configuration Example
	Unlimited Objects
	Per Object Class Unlimited Object Instances
	Unlimited Object Instances
	Enable Unlimited Object Instances
	Specify Unlimited Objects Allocation Size

	Classic API Configuration
	Specify Maximum Classic API Tasks
	Specify Maximum Classic API Timers
	Specify Maximum Classic API Timers
	Specify Maximum Classic API Semaphores
	Specify Maximum Classic API Semaphores usable with MrsP
	Specify Maximum Classic API Message Queues
	Specify Maximum Classic API Barriers
	Specify Maximum Classic API Periods
	Specify Maximum Classic API Partitions
	Specify Maximum Classic API Regions
	Specify Maximum Classic API Ports
	Specify Maximum Classic API User Extensions

	Classic API Initialization Tasks Table Configuration
	Instantiate Classic API Initialization Task Table
	Specifying Classic API Initialization Task Entry Point
	Specifying Classic API Initialization Task Name
	Specifying Classic API Initialization Task Stack Size
	Specifying Classic API Initialization Task Priority
	Specifying Classic API Initialization Task Attributes
	Specifying Classic API Initialization Task Modes
	Specifying Classic API Initialization Task Arguments
	Not Using Generated Initialization Tasks Table

	POSIX API Configuration
	Specify Maximum POSIX API Threads
	Specify Maximum POSIX API Mutexes
	Specify Maximum POSIX API Condition Variables
	Specify Maximum POSIX API Keys
	Specify Maximum POSIX API Timers
	Specify Maximum POSIX API Queued Signals
	Specify Maximum POSIX API Message Queues
	Specify Maximum POSIX API Message Queue Descriptors
	Specify Maximum POSIX API Semaphores
	Specify Maximum POSIX API Barriers
	Specify Maximum POSIX API Spinlocks
	Specify Maximum POSIX API Read/Write Locks

	POSIX Initialization Threads Table Configuration
	Instantiate POSIX API Initialization Thread Table
	Specifying POSIX API Initialization Thread Entry Point
	Specifying POSIX API Initialization Thread Stack Size
	Not Using Generated POSIX Initialization Threads Table

	Basic System Information
	Separate or Unified Work Areas
	Length of Each Clock Tick
	Specifying Timeslicing Quantum
	Specifying the Number of Thread Priority Levels
	Specifying the Minimum Task Size
	Configuring the Size of the Interrupt Stack
	Reserve Task/Thread Stack Memory Above Minimum
	Automatically Zeroing the RTEMS Workspace and C Program Heap
	Enable The Task Stack Usage Checker
	Specify Application Specific User Extensions

	Configuring Custom Task Stack Allocation
	Custom Task Stack Allocator Initialization
	Custom Task Stack Allocator
	Custom Task Stack Deallocator

	Configuring Memory for Classic API Message Buffers
	Calculate Memory for a Single Classic Message API Message Queue
	Reserve Memory for All Classic Message API Message Queues

	Seldom Used Configuration Parameters
	Specify Memory Overhead
	Do Not Generate Configuration Information

	C Library Support Configuration
	Specify Maximum Number of File Descriptors
	Disable POSIX Termios Support
	Specify Maximum Termios Ports

	File System Configuration Parameters
	Providing Application Specific Mount Table
	Configure devFS as Root File System
	Specifying Maximum Devices for devFS
	Disable File System Support
	Use a Root IMFS with a Minimalistic Feature Set
	Specify Block Size for IMFS
	Disable Change Owner Support of Root IMFS
	Disable Change Mode Support of Root IMFS
	Disable Change Times Support of Root IMFS
	Disable Create Hard Link Support of Root IMFS
	Disable Create Symbolic Link Support of Root IMFS
	Disable Read Symbolic Link Support of Root IMFS
	Disable Rename Support of Root IMFS
	Disable Directory Read Support of Root IMFS
	Disable Mount Support of Root IMFS
	Disable Unmount Support of Root IMFS
	Disable Make Nodes Support of Root IMFS
	Disable Make Files Support of Root IMFS
	Disable Remove Nodes Support of Root IMFS

	Block Device Cache Configuration
	Enable Block Device Cache
	Size of the Cache Memory
	Minimum Size of a Buffer
	Maximum Size of a Buffer
	Swapout Task Swap Period
	Swapout Task Maximum Block Hold Time
	Swapout Task Priority
	Maximum Blocks per Read-Ahead Request
	Maximum Blocks per Write Request
	Task Stack Size of the Block Device Cache Tasks
	Read-Ahead Task Priority
	Swapout Worker Task Count
	Swapout Worker Task Priority

	BSP Specific Settings
	Disable BSP Configuration Settings
	Specify BSP Supports sbrk()
	Specify BSP Specific Idle Task
	Specify BSP Suggested Value for IDLE Task Stack Size
	Specify BSP Specific User Extensions
	Specifying BSP Specific Interrupt Stack Size
	Specifying BSP Specific Maximum Devices
	BSP Recommends RTEMS Workspace be Cleared
	Specify BSP Prerequisite Drivers

	Idle Task Configuration
	Specify Application Specific Idle Task Body
	Specify Idle Task Stack Size
	Specify Idle Task Performs Application Initialization

	Scheduler Algorithm Configuration
	Use Deterministic Priority Scheduler
	Use Simple Priority Scheduler
	Use Earliest Deadline First Scheduler
	Use Constant Bandwidth Server Scheduler
	Use Deterministic Priority SMP Scheduler
	Use Simple SMP Priority Scheduler
	Configuring a Scheduler Name
	Configuring a User Provided Scheduler
	Configuring Clustered Schedulers

	SMP Specific Configuration Parameters
	Enable SMP Support for Applications
	Specify Maximum Processors in SMP System

	Device Driver Table
	Specifying the Maximum Number of Device Drivers
	Enable Console Device Driver
	Enable Clock Driver
	Enable the Benchmark Timer Driver
	Specify Clock and Benchmark Timer Drivers Are Not Needed
	Enable Real-Time Clock Driver
	Enable the Watchdog Device Driver
	Enable the Graphics Frame Buffer Device Driver
	Enable Stub Device Driver
	Specify Application Prerequisite Device Drivers
	Specify Extra Application Device Drivers
	Enable /dev/null Device Driver
	Enable /dev/zero Device Driver
	Specifying Application Defined Device Driver Table

	Multiprocessing Configuration
	Specify Application Will Use Multiprocessing
	Configure Node Number in Multiprocessor Configuration
	Configure Maximum Node in Multiprocessor Configuration
	Configure Maximum Global Objects in Multiprocessor Configuration
	Configure Maximum Proxies in Multiprocessor Configuration
	Configure MPCI in Multiprocessor Configuration
	Do Not Generate Multiprocessor Configuration Table

	Ada Tasks
	Specify Application Includes Ada Code
	Specify the Maximum Number of Ada Tasks.
	Specify the Maximum Fake Ada Tasks

	PCI Library
	Go Tasks
	Specify Application Includes Go Code
	Specify the maximum number of Go routines
	Specify the maximum number of Go Channels

	Configuration Data Structures

	Multiprocessing Manager
	Introduction
	Background
	Nodes
	Global Objects
	Global Object Table
	Remote Operations
	Proxies
	Multiprocessor Configuration Table

	Multiprocessor Communications Interface Layer
	INITIALIZATION
	GET_PACKET
	RETURN_PACKET
	RECEIVE_PACKET
	SEND_PACKET
	Supporting Heterogeneous Environments

	Operations
	Announcing a Packet

	Directives
	MULTIPROCESSING_ANNOUNCE - Announce the arrival of a packet

	Symmetric Multiprocessing Services
	Introduction
	Background
	Uniprocessor versus SMP Parallelism
	Task Affinity
	Task Migration
	Clustered Scheduling
	Task Priority Queues
	Scheduler Helping Protocol
	Critical Section Techniques and SMP
	Disable Interrupts and Interrupt Locks
	Highest Priority Task Assumption
	Disable Preemption

	Task Unique Data and SMP
	Classic API Per Task Variables

	OpenMP
	Thread Dispatch Details

	Operations
	Setting Affinity to a Single Processor

	Directives
	GET_PROCESSOR_COUNT - Get processor count
	GET_CURRENT_PROCESSOR - Get current processor index
	SCHEDULER_IDENT - Get ID of a scheduler
	SCHEDULER_GET_PROCESSOR_SET - Get processor set of a scheduler
	TASK_GET_SCHEDULER - Get scheduler of a task
	TASK_SET_SCHEDULER - Set scheduler of a task
	TASK_GET_AFFINITY - Get task processor affinity
	TASK_SET_AFFINITY - Set task processor affinity

	PCI Library
	Introduction
	Background
	Software Components
	PCI Configuration
	RTEMS Configuration selection
	Auto Configuration
	Read Configuration
	Static Configuration
	Peripheral Configuration

	PCI Access
	Configuration space
	I/O space
	Registers over Memory space
	Access functions
	PCI address translation

	PCI Interrupt
	PCI Shell command

	Stack Bounds Checker
	Introduction
	Background
	Task Stack
	Execution

	Operations
	Initializing the Stack Bounds Checker
	Checking for Blown Task Stack
	Reporting Task Stack Usage
	When a Task Overflows the Stack

	Routines
	STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack
	STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage

	CPU Usage Statistics
	Introduction
	Background
	Operations
	Report CPU Usage Statistics
	Reset CPU Usage Statistics

	Directives
	cpu_usage_report - Report CPU Usage Statistics
	cpu_usage_reset - Reset CPU Usage Statistics

	Object Services
	Introduction
	Background
	APIs
	Object Classes
	Object Names

	Operations
	Decomposing and Recomposing an Object Id
	Printing an Object Id

	Directives
	BUILD_NAME - Build object name from characters
	OBJECT_GET_CLASSIC_NAME - Lookup name from id
	OBJECT_GET_NAME - Obtain object name as string
	OBJECT_SET_NAME - Set object name
	OBJECT_ID_GET_API - Obtain API from Id
	OBJECT_ID_GET_CLASS - Obtain Class from Id
	OBJECT_ID_GET_NODE - Obtain Node from Id
	OBJECT_ID_GET_INDEX - Obtain Index from Id
	BUILD_ID - Build Object Id From Components
	OBJECT_ID_API_MINIMUM - Obtain Minimum API Value
	OBJECT_ID_API_MAXIMUM - Obtain Maximum API Value
	OBJECT_API_MINIMUM_CLASS - Obtain Minimum Class Value
	OBJECT_API_MAXIMUM_CLASS - Obtain Maximum Class Value
	OBJECT_ID_API_MINIMUM_CLASS - Obtain Minimum Class Value for an API
	OBJECT_ID_API_MAXIMUM_CLASS - Obtain Maximum Class Value for an API
	OBJECT_GET_API_NAME - Obtain API Name
	OBJECT_GET_API_CLASS_NAME - Obtain Class Name
	OBJECT_GET_CLASS_INFORMATION - Obtain Class Information

	Chains
	Introduction
	Background
	Nodes
	Controls

	Operations
	Multi-threading
	Creating a Chain
	Iterating a Chain

	Directives
	Initialize Chain With Nodes
	Initialize Empty
	Is Null Node ?
	Head
	Tail
	Are Two Nodes Equal ?
	Is the Chain Empty
	Is this the First Node on the Chain ?
	Is this the Last Node on the Chain ?
	Does this Chain have only One Node ?
	Returns the node count of the chain (unprotected)
	Is this Node the Chain Head ?
	Is this Node the Chain Tail ?
	Extract a Node
	Extract a Node (unprotected)
	Get the First Node
	Get the First Node (unprotected)
	Insert a Node
	Insert a Node (unprotected)
	Append a Node
	Append a Node (unprotected)
	Prepend a Node
	Prepend a Node (unprotected)

	Red-Black Trees
	Introduction
	Background
	Nodes
	Controls

	Operations
	Directives
	Documentation for the Red-Black Tree Directives

	Timespec Helpers
	Introduction
	Background
	Time Storage Conventions

	Operations
	Set and Obtain Timespec Value
	Timespec Math
	Comparing struct timespec Instances
	Conversions and Validity Check

	Directives
	TIMESPEC_SET - Set struct timespec Instance
	TIMESPEC_ZERO - Zero struct timespec Instance
	TIMESPEC_IS_VALID - Check validity of a struct timespec instance
	TIMESPEC_ADD_TO - Add Two struct timespec Instances
	TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances
	TIMESPEC_DIVIDE - Divide Two struct timespec Instances
	TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by an Integer
	TIMESPEC_LESS_THAN - Less than operator
	TIMESPEC_GREATER_THAN - Greater than operator
	TIMESPEC_EQUAL_TO - Check equality of timespecs
	TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec Instance
	TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the struct timespec Instance
	TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks
	TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representation

	Constant Bandwidth Server Scheduler API
	Introduction
	Background
	Constant Bandwidth Server Definitions
	Handling Periodic Tasks
	Registering a Callback Function
	Limitations

	Operations
	Setting up a server
	Attaching Task to a Server
	Detaching Task from a Server
	Examples

	Directives
	CBS_INITIALIZE - Initialize the CBS library
	CBS_CLEANUP - Cleanup the CBS library
	CBS_CREATE_SERVER - Create a new bandwidth server
	CBS_ATTACH_THREAD - Attach a thread to server
	CBS_DETACH_THREAD - Detach a thread from server
	CBS_DESTROY_SERVER - Destroy a bandwidth server
	CBS_GET_SERVER_ID - Get an ID of a server
	CBS_GET_PARAMETERS - Get scheduling parameters of a server
	CBS_SET_PARAMETERS - Set scheduling parameters
	CBS_GET_EXECUTION_TIME - Get elapsed execution time
	CBS_GET_REMAINING_BUDGET - Get remaining execution time
	CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time

	Directive Status Codes
	Introduction
	Directives
	STATUS_TEXT - Returns the enumeration name for a status code

	Linker Sets
	Introduction
	Background
	Directives
	RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker
	RTEMS_LINKER_SET_END - Designator of the linker set end marker
	RTEMS_LINKER_SET_SIZE - The linker set size in characters
	RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set
	RTEMS_LINKER_ROSET - Defines a read-only linker set
	RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-only linker set item
	RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set
	RTEMS_LINKER_RWSET - Defines a read-write linker set
	RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-write linker set item

	Example Application
	Glossary
	Index

