
RTEMS BSP and Device Driver
Development Guide

Release 4.11.3
©Copyright 2016, RTEMS Project (built 15th February 2018)

CONTENTS

I BSP and Device Driver Development Guide 1

1 Introduction 5

2 Target Dependent Files 7
2.1 CPU Dependent . 8
2.2 Board Dependent . 9
2.3 Peripheral Dependent . 10
2.4 Questions to Ask . 11
2.5 CPU Dependent Executive Files . 12
2.6 CPU Dependent Support Files . 13
2.7 Board Support Package Structure . 14

3 Makefiles 15
3.1 Makefiles Used During The BSP Building Process 16
3.2 Creating a New BSP Make Customization File . 18

4 Linker Script 19
4.1 What is a “linkcmds” file? . 20
4.2 Program Sections . 21
4.3 Image of an Executable . 22
4.4 Example Linker Command Script . 23
4.5 Initialized Data . 26

5 Miscellaneous Support Files 27
5.1 GCC Compiler Specifications File . 28
5.2 README Files . 29
5.3 Times . 30
5.4 Tools Subdirectory . 31
5.5 bsp.h Include File . 32
5.6 tm27.h Include File . 33
5.7 Calling Overhead File . 34
5.8 sbrk() Implementation . 35
5.9 bsp_fatal_extension() - Cleanup the Hardware 36
5.10 Configuration Macros . 37
5.11 set_vector() - Install an Interrupt Vector . 38
5.12 Interrupt Delay Profiling . 39
5.13 Programmable Interrupt Controller API . 40

6 Ada95 Interrupt Support 41

i

6.1 Introduction . 42
6.2 Mapping Interrupts to POSIX Signals . 43
6.3 Example Ada95 Interrupt Program . 44
6.4 Version Requirements . 45

7 Initialization Code 47
7.1 Introduction . 48
7.2 Required Global Variables . 49
7.3 Board Initialization . 50

7.3.1 Start Code - Assembly Language Initialization 50
7.3.2 boot_card() - Boot the Card . 50
7.3.3 bsp_work_area_initialize() - BSP Specific Work Area Initialization 51
7.3.4 bsp_start() - BSP Specific Initialization 51
7.3.5 bsp_predriver_hook() - BSP Specific Predriver Hook 52
7.3.6 Device Driver Initialization . 52
7.3.7 RTEMS Postdriver Callback . 52

7.4 The Interrupt Vector Table . 53
7.4.1 Interrupt Vector Table on the gen68340 BSP 53

7.5 Chip Select Initialization . 54
7.6 Integrated Processor Registers Initialization . 55
7.7 Data Section Recopy . 56
7.8 The RTEMS Configuration Table . 57

8 Console Driver 59
8.1 Introduction . 60
8.2 Termios . 61
8.3 Driver Functioning Modes . 62
8.4 Serial Driver Functioning Overview . 63

8.4.1 Basics . 63
8.4.2 Termios and Polled IO . 64
8.4.3 Termios and Interrupt Driven IO . 64
8.4.4 Initialization . 65
8.4.5 Opening a serial device . 66
8.4.6 Closing a Serial Device . 67
8.4.7 Reading Characters from a Serial Device 67
8.4.8 Writing Characters to a Serial Device . 67
8.4.9 Changing Serial Line Parameters . 67

9 Clock Driver 69
9.1 Introduction . 70
9.2 Clock Driver Shell . 71

9.2.1 Initialization . 71
9.2.1.1 Clock Tick Only Variant . 71
9.2.1.2 Simple Timecounter Variant . 71
9.2.1.3 Timecounter Variant . 72

9.2.2 Install Clock Tick Interrupt Service Routine 72
9.2.3 Support At Tick . 73
9.2.4 System Shutdown Support . 73
9.2.5 Multiple Clock Driver Ticks Per Clock Tick 73
9.2.6 Clock Driver Ticks Counter . 73

10 Timer Driver 75

ii

10.1 Benchmark Timer . 76
10.1.1 benchmark_timer_initialize . 76
10.1.2 Read_timer . 76
10.1.3 benchmark_timer_disable_subtracting_average_overhead 76

10.2 gen68340 UART FIFO Full Mode . 77

11 Real-Time Clock Driver 79
11.1 Introduction . 80
11.2 Initialization . 81
11.3 setRealTimeToRTEMS . 82
11.4 setRealTimeFromRTEMS . 83
11.5 getRealTime . 84
11.6 setRealTime . 85
11.7 checkRealTime . 86

12 ATA Driver 87
12.1 Terms . 88
12.2 Introduction . 89
12.3 Initialization . 90
12.4 ATA Driver Architecture . 91

12.4.1 ATA Driver Main Internal Data Structures 91
12.4.2 Brief ATA Driver Core Overview . 91

13 IDE Controller Driver 93
13.1 Introduction . 94
13.2 Initialization . 95
13.3 Read IDE Controller Register . 96
13.4 Write IDE Controller Register . 97
13.5 Read Data Block Through IDE Controller Data Register 98
13.6 Write Data Block Through IDE Controller Data Register 99

14 Non-Volatile Memory Driver 101
14.1 Major and Minor Numbers . 102
14.2 Non-Volatile Memory Driver Configuration . 103
14.3 Initialize the Non-Volatile Memory Driver . 104
14.4 Disable Read and Write Handlers . 105
14.5 Open a Particular Memory Partition . 106
14.6 Close a Particular Memory Partition . 107
14.7 Read from a Particular Memory Partition . 108
14.8 Write to a Particular Memory Partition . 109
14.9 Erase the Non-Volatile Memory Area . 110

15 Networking Driver 111
15.1 Introduction . 112
15.2 Learn about the network device . 113
15.3 Understand the network scheduling conventions 114
15.4 Network Driver Makefile . 115
15.5 Write the Driver Attach Function . 116
15.6 Write the Driver Start Function. 117
15.7 Write the Driver Initialization Function. 118
15.8 Write the Driver Transmit Task . 119
15.9 Write the Driver Receive Task . 120

iii

15.10Write the Driver Interrupt Handler . 121
15.11Write the Driver IOCTL Function . 122
15.12Write the Driver Statistic-Printing Function . 123

16 Shared Memory Support Driver 125
16.1 Shared Memory Configuration Table . 126
16.2 Primitives . 127

16.2.1 Convert Address . 127
16.2.2 Get Configuration . 127
16.2.3 Locking Primitives . 127

16.2.3.1 Initializing a Shared Lock . 127
16.2.3.2 Acquiring a Shared Lock . 127
16.2.3.3 Releasing a Shared Lock . 128

16.3 Installing the MPCI ISR . 129

17 Frame Buffer Driver 131
17.1 Introduction . 132
17.2 Driver Function Overview . 133

17.2.1 Initialization . 133
17.2.2 Opening the Frame Buffer Device . 133
17.2.3 Closing the Frame Buffer Device . 133
17.2.4 Reading from the Frame Buffer Device 134
17.2.5 Writing to the Frame Buffer Device . 134
17.2.6 Frame Buffer IO Control . 134

18 Analog Driver 137
18.1 Major and Minor Numbers . 138
18.2 Analog Driver Configuration . 139
18.3 Initialize an Analog Board . 140
18.4 Open a Particular Analog . 141
18.5 Close a Particular Analog . 142
18.6 Read from a Particular Analog . 143
18.7 Write to a Particular Analog . 144
18.8 Reset DACs . 145
18.9 Reinitialize DACS . 146
18.10Get Last Written Values . 147

19 Discrete Driver 149
19.1 Major and Minor Numbers . 150
19.2 Discrete I/O Driver Configuration . 151
19.3 Initialize a Discrete I/O Board . 152
19.4 Open a Particular Discrete Bitfield . 153
19.5 Close a Particular Discrete Bitfield . 154
19.6 Read from a Particular Discrete Bitfield . 155
19.7 Write to a Particular Discrete Bitfield . 156
19.8 Disable Discrete Outputs . 157
19.9 Enable Discrete Outputs . 158
19.10Reinitialize Outputs . 159
19.11Get Last Written Values . 160

20 Command and Variable Index 161

iv

Index 163

v

vi

Chapter 0 Section 0.0 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

Part I

BSP and Device Driver Development
Guide

1

Chapter 0 Section 0.0 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

COPYRIGHT (c) 1988 - 2015.
On-Line Applications Research
Corporation (OAR).

The authors have used their best efforts in
preparing this material. These efforts include
the development, research, and testing of the
theories and programs to determine their ef-
fectiveness. No warranty of any kind, ex-
pressed or implied, with regard to the soft-
ware or the material contained in this docu-
ment is provided. No liability arising out of
the application or use of any product described
in this document is assumed. The authors re-
serve the right to revise this material and to
make changes from time to time in the content
hereof without obligation to notify anyone of
such revision or changes.

The RTEMS Project is hosted at http://www.
rtems.org. Any inquiries concerning RTEMS,
its related support components, or its docu-
mentation should be directed to the Commu-
nity Project hosted at http://www.rtems.org.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documenta-
tion

https://docs.rtems.org/

Bug
Reporting

https:
//devel.rtems.org/query

Mailing Lists https://lists.rtems.org/
Git
Repositories

https://git.rtems.org/

3

http://www.rtems.org
http://www.rtems.org
http://www.rtems.org
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 0 Section 0.0

4

CHAPTER

ONE

INTRODUCTION

Before reading this documentation, it is
strongly advised to read the RTEMS Devel-
opment Environment Guide to get acquainted
with the RTEMS directory structure. This doc-
ument describes how to do a RTEMS Board
Support Package, i.e. how to port RTEMS on a
new target board. Discussions are provided for
the following topics:

• RTEMS Board Support Package Organi-
zation

• Makefiles and the Linker Command
Script

• Board Initialization Sequence

• Device Drivers:

– Console Driver

– Clock Driver

– Timer Driver

– Real-Time Clock Driver

– Non-Volatile Memory Driver

– Networking Driver

– Shared Memory Support Driver

– Analog Driver

– Discrete Driver

The original version of this man-
ual was written by Geoffroy Montel
<g_montel@yahoo.com>. When he started
development of the gen68340 BSP, this man-
ual did not exist. He wrote the initial version
of this manual as the result of his experiences.
At that time, this document was viewed inter-
nally as the most important “missing manual”
in the RTEMS documentation set.

The gen68340 BSP is a good example of the
life of an RTEMS BSP. It is based upon a part

not recommended for new designs and none of
the core RTEMS Project team members have
one of these boards. Thus we are unlikely to
perform major updates on this BSP. So as long
as it compiles and links all tests, it will be avail-
able.

The RTEMS Project team members are always
trying to identify common code across BSPs
and refactoring the code into shared routines.
As part of this effort, the we will enhance the
common BSP Framework. Not surprisingly, not
every BSP takes advantage of every feature in
the framework. The gen68340 does not take
advantage of as many features as the ERC32
BSP does. So in many ways, the ERC32 is a
better example BSP at this point. But even the
ERC32 BSP does not include examples of ev-
ery driver template and framework available
to the BSP author. So in this guide we will try
to point out good examples from other BSPs.

Our goal is for you to be able to reuse as much
code as possible and write as little board spe-
cific code as possible.

5

mailto:g_montel@yahoo.com

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 1 Section 1.0

6 Chapter 1. Introduction

CHAPTER

TWO

TARGET DEPENDENT FILES

RTEMS has a multi-layered approach to porta-
bility. This is done to maximize the amount
of software that can be reused. Much of
the RTEMS source code can be reused on all
RTEMS platforms. Other parts of the executive
are specific to hardware in some sense. RTEMS
classifies target dependent code based upon its
dependencies into one of the following cate-
gories.

• CPU dependent

• Board dependent

• Peripheral dependent

7

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 2 Section 2.1

2.1 CPU Dependent

This class of code includes the foundation
routines for the executive proper such as
the context switch and the interrupt subrou-
tine implementations. Sources for the sup-
ported processor families can be found in
cpukit/score/cpu. A good starting point for
a new family of processors is the no_cpu direc-
tory, which holds both prototypes and descrip-
tions of each needed CPU dependent function.

CPU dependent code is further subcategorized
if the implementation is dependent on a par-
ticular CPU model. For example, the MC68000
and MC68020 processors are both members of
the m68k CPU family but there are significant
differences between these CPU models which
RTEMS must take into account.

The source code found in the
cpukit/score/cpu is required to only de-
pend upon the CPU model variations that GCC
distinguishes for the purposes of multilib’ing.
Multilib is the term the GNU community uses
to refer to building a single library source
multiple times with different compiler options
so the binary code generated is compatible.
As an example, from GCC’s perspective, many
PowerPC CPU models are just a PPC603e.
Remember that GCC only cares about the
CPU code itself and need not be aware of any
peripherals. In the embedded community,
we are exposed to thousands of CPU models
which are all based upon only a relative small
number of CPU cores.

Similarly for the SPARC/ERC32 BSP, the
RTEMS_CPU is specified as erc32 which is the
name of the CPU model and BSP for this
SPARC V7 system on chip. But the multilib
variant used is actually v7 which indicates the
ERC32 CPU core is a SPARC V7.

8 Chapter 2. Target Dependent Files

Chapter 2 Section 2.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

2.2 Board Dependent

This class of code provides the most spe-
cific glue between RTEMS and a particu-
lar board. This code is represented by the
Board Support Packages and associated Device
Drivers. Sources for the BSPs included in the
RTEMS distribution are located in the direc-
tory c/src/lib/libbsp. The BSP source di-
rectory is further subdivided based on the CPU
family and BSP.

Some BSPs may support multiple board mod-
els within a single board family. This is nec-
essary when the board supports multiple vari-
ants on a single base board. For example, the
Motorola MVME162 board family has a fairly
large number of variations based upon the par-
ticular CPU model and the peripherals actually
placed on the board.

2.2. Board Dependent 9

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 2 Section 2.3

2.3 Peripheral Dependent

This class of code provides a reusable library
of peripheral device drivers which can be tai-
lored easily to a particular board. The libchip
library is a collection of reusable software ob-
jects that correspond to standard controllers.
Just as the hardware engineer chooses a stan-
dard controller when designing a board, the
goal of this library is to let the software engi-
neer do the same thing.

The source code for the reusable peripheral
driver library may be found in the directory
c/src/lib/libchip. The source code is fur-
ther divided based upon the class of hard-
ware. Example classes include serial com-
munications controllers, real-time clocks, non-
volatile memory, and network controllers.

10 Chapter 2. Target Dependent Files

Chapter 2 Section 2.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

2.4 Questions to Ask

When evaluating what is required to sup-
port RTEMS applications on a particular tar-
get board, the following questions should be
asked:

• Does a BSP for this board exist?

• Does a BSP for a similar board exists?

• Is the board’s CPU supported?

If there is already a BSP for the board, then
things may already be ready to start develop-
ing application software. All that remains is
to verify that the existing BSP provides device
drivers for all the peripherals on the board that
the application will be using. For example, the
application in question may require that the
board’s Ethernet controller be used and the ex-
isting BSP may not support this.

If the BSP does not exist and the board’s
CPU model is supported, then examine the
reusable chip library and existing BSPs for a
close match. Other BSPs and libchip provide
starting points for the development of a new
BSP. It is often possible to copy existing com-
ponents in the reusable chip library or device
drivers from BSPs from different CPU families
as the starting point for a new device driver.
This will help reduce the development effort
required.

If the board’s CPU family is supported but the
particular CPU model on that board is not,
then the RTEMS port to that CPU family will
have to be augmented. After this is done, de-
velopment of the new BSP can proceed.

Otherwise both CPU dependent code and the
BSP will have to be written.

This type of development often requires spe-
cialized skills and there are people in the com-
munity who provide those services. If you need
help in making these modifications to RTEMS
try a search in a search engine with something
like “rtems support”. The RTEMS Project en-
courages users to use support services however
we do not endorse any providers.

2.4. Questions to Ask 11

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 2 Section 2.5

2.5 CPU Dependent Executive Files

The CPU dependent files in the RTEMS exec-
utive source code are found in the following
directory:

1 cpukit/score/cpu/<CPU>

where <CPU> is replaced with the CPU family
name.

Within each CPU dependent directory inside
the executive proper is a file named <CPU>.h
which contains information about each of the
supported CPU models within that family.

12 Chapter 2. Target Dependent Files

Chapter 2 Section 2.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

2.6 CPU Dependent Support Files

The CPU dependent support files contain rou-
tines which aid in the development of applica-
tions using that CPU family. For example, the
support routines may contain standard trap
handlers for alignment or floating point ex-
ceptions or device drivers for peripheral con-
trollers found on the CPU itself. This class of
code may be found in the following directory:

1 c/src/lib/libcpu/<CPU>

CPU model dependent support code is found
in the following directory:

1 c/src/lib/libcpu/<CPU>/<CPU_MODEL>

<CPU_MODEL> may be a specific CPU model
name or a name indicating a CPU core or a set
of related CPU models. The file configure.ac
in each c/src/lib/libcpu/<CPU> directory
contains the logic which enables the appropri-
ate subdirectories for the specific CPU model
your BSP has.

2.6. CPU Dependent Support Files 13

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 2 Section 2.7

2.7 Board Support Package Struc-
ture

The BSPs are all under the c/src/lib/libbsp
directory. Below this directory, there is a subdi-
rectory for each CPU family. Each BSP is found
under the subdirectory for the appropriate pro-
cessor family (arm, powerpc, sparc, etc.). In
addition, there is source code available which
may be shared across all BSPs regardless of the
CPU family or just across BSPs within a single
CPU family. This results in a BSP using the fol-
lowing directories:

1 c/src/lib/libbsp/shared
2 c/src/lib/libbsp/<CPU>/shared
3 c/src/lib/libbsp/<CPU>/<BSP>

Under each BSP specific directory, there is a
collection of subdirectories. For commonly
provided functionality, the BSPs follow a con-
vention on subdirectory naming. The follow-
ing list describes the commonly found subdi-
rectories under each BSP.

• console: is technically the serial driver
for the BSP rather than just a console
driver, it deals with the board UARTs (i.e.
serial devices).

• clock: support for the clock tick - a reg-
ular time basis to the kernel.

• timer: support of timer devices.

• rtc or tod: support for the hardware
real-time clock.

• nvmem: support for non-volatile memory
such as EEPROM or Flash.

• network: the Ethernet driver.

• shmsupp: support of shared memory
driver MPCI layer in a multiprocessor
system,

• include: include files for this BSP.

• gnatsupp: BSP specific support for the
GNU Ada run-time. Each BSP that
wishes to have the possibility to map
faults or exceptions into Ada language
exceptions or hardware interrupts into
Ada interrupt tasks must provide this
support.

There may be other directories in the BSP tree
and the name should be indicative of the func-
tionality of the code within that directory.

The build order of the BSP is determined by
the Makefile structure. This structure is dis-
cussed in more detail in the Chapter 3 - Make-
files (page 15) chapter.

This manual refers to the gen68340 BSP for
numerous concrete examples. You should have
a copy of the gen68340 BSP available while
reading this piece of documentation. This BSP
is located in the following directory:

1 c/src/lib/libbsp/m68k/gen68340

Later in this document, the $BSP340_ROOT
label will be used to refer to this directory.

14 Chapter 2. Target Dependent Files

CHAPTER

THREE

MAKEFILES

This chapter discusses the Makefiles associated
with a BSP. It does not describe the process of
configuring, building, and installing RTEMS.
This chapter will not provide detailed informa-
tion about this process. Nonetheless, it is im-
portant to remember that the general process
consists of four phases as shown here:

• bootstrap

• configure

• build

• install

During the bootstrap phase, you are using the
configure.ac and Makefile.am files as input
to GNU autoconf and automake to generate
a variety of files. This is done by running
the bootstrap script found at the top of the
RTEMS source tree.

During the configure phase, a number of files
are generated. These generated files are tai-
lored for the specific host/target combination
by the configure script. This set of files in-
cludes the Makefiles used to actually compile
and install RTEMS.

During the build phase, the source files are
compiled into object files and libraries are
built.

During the install phase, the libraries, header
files, and other support files are copied to the
BSP specific installation point. After installa-
tion is successfully completed, the files gener-
ated by the configure and build phases may be
removed.

15

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 3 Section 3.1

3.1 Makefiles Used During The
BSP Building Process

RTEMS uses the GNU automake and GNU au-
toconf automatic configuration package. Con-
sequently, there are a number of automatically
generated files in each directory in the RTEMS
source tree. The bootstrap script found in the
top level directory of the RTEMS source tree
is executed to produce the automatically gen-
erated files. That script must be run from a
directory with a configure.ac file in it. The
bootstrap command is usually invoked in one
of the following manners:

• bootstrap to regenerate all files that are
generated by autoconf and automake.

• bootstrap -c to remove all files gener-
ated by autoconf and automake.

• bootstrap -p to regenerate
preinstall.am files.

There is a file named Makefile.am in each di-
rectory of a BSP. This file is used by automake
to produce the file named Makefile.in which
is also found in each directory of a BSP. When
modifying a Makefile.am, you can probably
find examples of anything you need to do in
one of the BSPs.

The configure process specializes the
Makefile.in files at the time that RTEMS
is configured for a specific development
host and target. Makefiles are automatically
generated from the Makefile.in files. It
is necessary for the BSP developer to pro-
vide the Makefile.am files and generate the
Makefile.in files. Most of the time, it is
possible to copy the Makefile.am from another
similar directory and edit it.

The Makefile files generated are processed
when configuring and building RTEMS for a
given BSP.

The BSP developer is responsible for generat-
ing Makefile.am files which properly build all
the files associated with their BSP. Most BSPs
will only have a single Makefile.am which de-
tails the set of source files to build to compose
the BSP support library along with the set of
include files that are to be installed.

This single Makefile.am at the top of the BSP
tree specifies the set of header files to install.
This fragment from the SPARC/ERC32 BSP re-
sults in four header files being installed.

1 include_HEADERS = include/bsp.h
2 include_HEADERS += include/tm27.h
3 include_HEADERS += include/erc32.h
4 include_HEADERS += include/coverhd.h

When adding new include files, you will be
adding to the set of include_HEADERS. When
you finish editing the Makefile.am file, do not
forget to run bootstrap -p to regenerate the
preinstall.am.

The Makefile.am also specifies which source
files to build. By convention, logical compo-
nents within the BSP each assign their source
files to a unique variable. These variables
which define the source files are collected into
a single variable which instructs the GNU au-
totools that we are building libbsp.a. This
fragment from the SPARC/ERC32 BSP shows
how the startup related, miscellaneous support
code, and the console device driver source is
managed in the Makefile.am.

1 startup_SOURCES = ../../sparc/shared/
→˓bspclean.c ../../shared/bsplibc.c \

2 ../../shared/bsppredriverhook.c \
3 ../../shared/bsppost.c ../../sparc/shared/

→˓bspstart.c \
4 ../../shared/bootcard.c ../../shared/sbrk.c␣

→˓startup/setvec.c \
5 startup/spurious.c startup/erc32mec.c ␣

→˓startup/boardinit.S
6 clock_SOURCES = clock/ckinit.c
7 ...
8 noinst_LIBRARIES = libbsp.a
9 libbsp_a_SOURCES = $(startup_SOURCES) ␣

→˓$(console_SOURCES) ...

When adding new files to an existing direc-
tory, do not forget to add the new files to the
list of files to be built in the corresponding
XXX_SOURCES variable in the Makefile.am and
run‘‘bootstrap‘‘.

Some BSPs use code that is built in libcpu. If
you BSP does this, then you will need to make
sure the objects are pulled into your BSP li-
brary. The following from the SPARC/ERC32
BSP pulls in the cache, register window man-
agement and system call support code from

16 Chapter 3. Makefiles

Chapter 3 Section 3.1 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

the directory corresponding to its RTEMS_CPU
model.

1 libbsp_a_LIBADD = ../../../libcpu/@RTEMS_
→˓CPU@/cache.rel \

2 ../../../libcpu/@RTEMS_CPU@/reg_win.rel \
3 ../../../libcpu/@RTEMS_CPU@/syscall.rel

The Makefile.am files are ONLY processed by
bootstrap and the resulting Makefile.in files
are only processed during the configure pro-
cess of a RTEMS build. Therefore, when de-
veloping a BSP and adding a new file to a
Makefile.am, the already generated Makefile
will not automatically include the new ref-
erences unless you configured RTEMS with
the --enable-maintainer-mode option. Other-
wise, the new file will not being be taken into
account!

3.1. Makefiles Used During The BSP Building Process 17

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 3 Section 3.2

3.2 Creating a New BSP Make Cus-
tomization File

When building a BSP or an application using
that BSP, it is necessary to tailor the compila-
tion arguments to account for compiler flags,
use custom linker scripts, include the RTEMS
libraries, etc.. The BSP must be built using this
information. Later, once the BSP is installed
with the toolset, this same information must be
used when building the application. So a BSP
must include a build configuration file. The
configuration file is make/custom/BSP.cfg.

The configuration file is taken into account
when building one’s application using the
RTEMS template Makefiles (make/templates).
These application template Makefiles have
been included with the RTEMS source distri-
bution since the early 1990’s. However there
is a desire in the RTEMS user community to
move all provided examples to GNU autoconf.
They are included in the 4.9 release series and
used for all examples provided with RTEMS.
There is no definite time table for obsoleting
them. You are free to use these but be warned
they have fallen out of favor with many in the
RTEMS community and may disappear in the
future.

The following is a slightly shortened version of
the make customization file for the gen68340
BSP. The original source for this file can be
found in the make/custom directory.

1 # The RTEMS CPU Family and Model
2 RTEMS_CPU=m68k
3 RTEMS_CPU_MODEL=m68340
4 include $(RTEMS_ROOT)/make/custom/default.

→˓cfg
5 # This is the actual bsp directory used ␣

→˓during the build process.
6 RTEMS_BSP_FAMILY=gen68340
7 # This contains the compiler options ␣

→˓necessary to select the CPU model
8 # and (hopefully) optimize for it.
9 CPU_CFLAGS = -mcpu=cpu32

10 # optimize flag: typically -O2
11 CFLAGS_OPTIMIZE_V = -O2 -g -fomit-frame-

→˓pointer

The make customization files have generally
grown simpler and simpler with each RTEMS
release. Beginning in the 4.9 release series,

the rules for linking an RTEMS application are
shared by all BSPs. Only BSPs which need to
perform a transformation from linked ELF file
to a downloadable format have any additional
actions for program link time. In 4.8 and older,
every BSP specified the “make executable” or
make-exe rule and duplicated the same actions.

It is generally easier to copy a make/custom file
from a BSP similar to the one being developed.

18 Chapter 3. Makefiles

CHAPTER

FOUR

LINKER SCRIPT

19

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 4 Section 4.1

4.1 What is a “linkcmds” file?

The linkcmds file is a script which is passed
to the linker at linking time. This file de-
scribes the memory configuration of the board
as needed to link the program. Specifically it
specifies where the code and data for the ap-
plication will reside in memory.

The format of the linker script is defined by
the GNU Loader ld which is included as a
component of the GNU Binary Utilities. If
you are using GNU/Linux, then you probably
have the documentation installed already and
are using these same tools configured for na-
tive use. Please visit the Binutils project http:
//sourceware.org/binutils/ if you need more
information.

20 Chapter 4. Linker Script

http://sourceware.org/binutils/
http://sourceware.org/binutils/

Chapter 4 Section 4.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

4.2 Program Sections

An embedded systems programmer must be
much more aware of the placement of their
executable image in memory than the aver-
age applications programmer. A program des-
tined to be embedded as well as the target sys-
tem have some specific properties that must be
taken into account. Embedded machines often
mean average performances and small mem-
ory usage. It is the memory usage that con-
cerns us when examining the linker command
file.

Two types of memories have to be distin-
guished:

• RAM - volatile offering read and write ac-
cess

• ROM - non-volatile but read only

Even though RAM and ROM can be found in
every personal computer, one generally doesn’t
care about them. In a personal computer, a
program is nearly always stored on disk and
executed in RAM. Things are a bit different for
embedded targets: the target will execute the
program each time it is rebooted or switched
on. The application program is stored in non-
volatile memory such as ROM, PROM, EEP-
ROM, or Flash. On the other hand, data pro-
cessing occurs in RAM.

This leads us to the structure of an embedded
program. In rough terms, an embedded pro-
gram is made of sections. It is the responsi-
bility of the application programmer to place
these sections in the appropriate place in tar-
get memory. To make this clearer, if using the
COFF object file format on the Motorola m68k
family of microprocessors, the following sec-
tions will be present:

• code (.text) section: is the program’s
code and it should not be modified. This
section may be placed in ROM.

• non-initialized data (.bss) section:
holds uninitialized variables of the
program. It can stay in RAM.

• initialized data (.data) section: holds
the initialized program data which may
be modified during the program’s life.

This means they have to be in RAM. On
the other hand, these variables must be
set to predefined values, and those pre-
defined values have to be stored in ROM.

Note: Many programs and support libraries
unknowingly assume that the .bss section
and, possibly, the application heap are initial-
ized to zero at program start. This is not re-
quired by the ISO/ANSI C Standard but is such
a common requirement that most BSPs do this.

That brings us up to the notion of the image of
an executable: it consists of the set of the sec-
tions that together constitute the application.

4.2. Program Sections 21

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 4 Section 4.3

4.3 Image of an Executable

As a program executable has many sections
(note that the user can define their own, and
that compilers define theirs without any no-
tice), one has to specify the placement of each
section as well as the type of memory (RAM
or ROM) the sections will be placed into. For
instance, a program compiled for a Personal
Computer will see all the sections to go to
RAM, while a program destined to be embed-
ded will see some of his sections going into the
ROM.

The connection between a section and where
that section is loaded into memory is made
at link time. One has to let the linker know
where the different sections are to be placed
once they are in memory.

The following example shows a simple layout
of program sections. With some object for-
mats, there are many more sections but the ba-
sic layout is conceptually similar.

.text RAM or ROM

.data RAM

.bss RAM

22 Chapter 4. Linker Script

Chapter 4 Section 4.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

4.4 Example Linker Command
Script

The GNU linker has a command language
to specify the image format. This command
language can be quite complicated but most
of what is required can be learned by care-
ful examination of a well-documented exam-
ple. The following is a heavily commented
version of the linker script used with the
the gen68340 BSP This file can be found at
$BSP340_ROOT/startup/linkcmds.

1 /*
2 * Specify that the output is to be coff-

→˓m68k regardless of what the
3 * native object format is.
4 */
5 OUTPUT_FORMAT(coff-m68k)
6 /*
7 * Set the amount of RAM on the target ␣

→˓board.
8 *
9 * NOTE: The default may be overridden by␣

→˓passing an argument to ld.
10 */
11 RamSize = DEFINED(RamSize) ? RamSize : 4M;
12 /*
13 * Set the amount of RAM to be used for the␣

→˓application heap. Objects
14 * allocated using malloc() come from this␣

→˓area. Having a tight heap
15 * size is somewhat difficult and multiple␣

→˓attempts to squeeze it may
16 * be needed reducing memory usage is ␣

→˓important. If all objects are
17 * allocated from the heap at system ␣

→˓initialization time, this eases
18 * the sizing of the application heap.
19 *
20 * NOTE 1: The default may be overridden by␣

→˓passing an argument to ld.
21 *
22 * NOTE 2: The TCP/IP stack requires ␣

→˓additional memory in the Heap.
23 *
24 * NOTE 3: The GNAT/RTEMS run-time requires␣

→˓additional memory in
25 * the Heap.
26 */
27 HeapSize = DEFINED(HeapSize) ? HeapSize : ␣

→˓0x10000;
28 /*
29 * Set the size of the starting stack used␣

→˓during BSP initialization
30 * until first task switch. After that␣

→˓point, task stacks allocated

31 * by RTEMS are used.
32 *
33 * NOTE: The default may be overridden by␣

→˓passing an argument to ld.
34 */
35 StackSize = DEFINED(StackSize) ? StackSize :

→˓ 0x1000;
36 /*
37 * Starting addresses and length of RAM and␣

→˓ROM.
38 *
39 * The addresses must be valid addresses on␣

→˓the board. The
40 * Chip Selects should be initialized such␣

→˓that the code addresses
41 * are valid.
42 */
43 MEMORY {
44 ram : ORIGIN = 0x10000000, LENGTH = 4M
45 rom : ORIGIN = 0x01000000, LENGTH = 4M
46 }
47 /*
48 * This is for the network driver. See the␣

→˓Networking documentation
49 * for more details.
50 */
51 ETHERNET_ADDRESS =
52 DEFINED(ETHERNET_ADDRESS) ? ETHERNET_

→˓ADDRESS : 0xDEAD12;
53 /*
54 * The following defines the order in which␣

→˓the sections should go.
55 * It also defines a number of variables␣

→˓which can be used by the
56 * application program.
57 *
58 * NOTE: Each variable appears with 1 or 2␣

→˓leading underscores to
59 * ensure that the variable is ␣

→˓accessible from C code with a
60 * single underscore. Some object␣

→˓formats automatically add
61 * a leading underscore to all C␣

→˓global symbols.
62 */
63 SECTIONS {
64 /*
65 * Make the RomBase variable available to␣

→˓the application.
66 */
67 _RamSize = RamSize;
68 __RamSize = RamSize;
69 /*
70 * Boot PROM - Set the RomBase variable to␣

→˓the start of the ROM.
71 */
72 rom : {

4.4. Example Linker Command Script 23

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 4 Section 4.4

73 _RomBase = .;
74 __RomBase = .;
75 } >rom
76 /*
77 * Dynamic RAM - set the RamBase variable to␣

→˓the start of the RAM.
78 */
79 ram : {
80 _RamBase = .;
81 __RamBase = .;
82 } >ram
83 /*
84 * Text (code) goes into ROM
85 */
86 .text : {
87 /*
88 * Create a symbol for each object (.o).
89 */
90 CREATE_OBJECT_SYMBOLS
91 /*
92 * Put all the object files code sections␣

→˓here.
93 */
94 *(.text)
95 . = ALIGN (16); /* go to a 16-byte␣

→˓boundary */
96 /*
97 * C++ constructors and destructors
98 *
99 * NOTE: See the CROSSGCC mailing-list␣

→˓FAQ for
100 * more details about the "\[.....

→˓.]".
101 */
102 __CTOR_LIST__ = .;
103 [......]
104 __DTOR_END__ = .;
105 /*
106 * Declares where the .text section ends.
107 */
108 etext = .;
109 _etext = .;
110 } >rom
111 /*
112 * Exception Handler Frame section
113 */
114 .eh_fram : {
115 . = ALIGN (16);
116 *(.eh_fram)
117 } >ram
118 /*
119 * GCC Exception section
120 */
121 .gcc_exc : {
122 . = ALIGN (16);
123 *(.gcc_exc)
124 } >ram

125 /*
126 * Special variable to let application get␣

→˓to the dual-ported
127 * memory.
128 */
129 dpram : {
130 m340 = .;
131 _m340 = .;
132 . += (8 * 1024);
133 } >ram
134 /*
135 * Initialized Data section goes in RAM
136 */
137 .data : {
138 copy_start = .;
139 *(.data)
140 . = ALIGN (16);
141 _edata = .;
142 copy_end = .;
143 } >ram
144 /*
145 * Uninitialized Data section goes in ROM
146 */
147 .bss : {
148 /*
149 * M68K specific: Reserve some room for␣

→˓the Vector Table
150 * (256 vectors of 4 bytes).
151 */
152 M68Kvec = .;
153 _M68Kvec = .;
154 . += (256 * 4);
155 /*
156 * Start of memory to zero out at ␣

→˓initialization time.
157 */
158 clear_start = .;
159 /*
160 * Put all the object files uninitialized␣

→˓data sections
161 * here.
162 */
163 *(.bss)
164 *(COMMON)
165 . = ALIGN (16);
166 _end = .;
167 /*
168 * Start of the Application Heap
169 */
170 _HeapStart = .;
171 __HeapStart = .;
172 . += HeapSize;
173 /*
174 * The Starting Stack goes after the ␣

→˓Application Heap.
175 * M68K stack grows down so start at high␣

→˓address.

24 Chapter 4. Linker Script

Chapter 4 Section 4.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

176 */
177 . += StackSize;
178 . = ALIGN (16);
179 stack_init = .;
180 clear_end = .;
181 /*
182 * The RTEMS Executive Workspace goes here.

→˓ RTEMS
183 * allocates tasks, stacks, semaphores,␣

→˓etc. from this
184 * memory.
185 */
186 _WorkspaceBase = .;
187 __WorkspaceBase = .;
188 } >ram

4.4. Example Linker Command Script 25

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 4 Section 4.5

4.5 Initialized Data

Now there’s a problem with the initialized
data: the .data section has to be in RAM as
this data may be modified during the program
execution. But how will the values be initial-
ized at boot time?

One approach is to place the entire program
image in RAM and reload the image in its en-
tirety each time the program is run. This is fine
for use in a debug environment where a high-
speed connection is available between the de-
velopment host computer and the target. But
even in this environment, it is cumbersome.

The solution is to place a copy of the initialized
data in a separate area of memory and copy it
into the proper location each time the program
is started. It is common practice to place a copy
of the initialized .data section at the end of the
code (.text) section in ROM when building a
PROM image. The GNU tool objcopy can be
used for this purpose.

The following figure illustrates the steps a
linked program goes through to become a
downloadable image.

.data (RAM) .data (RAM)

.bss (RAM) .bss (RAM)

.text (ROM) .text (ROM) .text
copy of .data (ROM) copy of .data
Step 1 Step 2 Step 3

In Step 1, the program is linked together using
the BSP linker script.

In Step 2, a copy is made of the .data
section and placed after the .text section
so it can be placed in PROM. This step
is done after the linking time. There
is an example of doing this in the file
$RTEMS_ROOT/make/custom/gen68340.cfg:

1 # make a PROM image using objcopy
2 m68k-rtems-objcopy --adjust-section-vma \
3 .data=`m68k-rtems-objdump --section-headers␣

→˓$(basename $@).exe | awk '[...]'` \
4 $(basename $@).exe

Note: The address of the “copy of .data sec-
tion” is created by extracting the last address

in the .text section with an awk script. The
details of how this is done are not relevant.

Step 3 shows the final executable image as it
logically appears in the target’s non-volatile
program memory. The board initialization
code will copy the “”copy of .data section”
(which are stored in ROM) to their reserved
location in RAM.

26 Chapter 4. Linker Script

CHAPTER

FIVE

MISCELLANEOUS SUPPORT FILES

27

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 5 Section 5.1

5.1 GCC Compiler Specifications
File

The file bsp_specs defines the start files and li-
braries that are always used with this BSP. The
format of this file is admittedly cryptic and this
document will make no attempt to explain it
completely. Below is the bsp_specs file from
the PowerPC psim BSP:

1 %rename endfile old_endfile
2 %rename startfile old_startfile
3 %rename link old_link
4 *startfile:
5 %{!qrtems: %(old_startfile)} \
6 %{!nostdlib: %{qrtems: ecrti%O%s rtems_crti

→˓%O%s crtbegin.o%s start.o%s}}
7 *link:
8 %{!qrtems: %(old_link)} %{qrtems: -Qy -dp -

→˓Bstatic -e _start -u __vectors}
9 *endfile:

10 %{!qrtems: %(old_endfile)} %{qrtems: crtend.
→˓o%s ecrtn.o%s}

The first section of this file renames the built-
in definition of some specification variables
so they can be augmented without embedded
their original definition. The subsequent sec-
tions specify what behavior is expected when
the -qrtems option is specified.

The *startfile section specifies that the BSP
specific file start.o will be used instead of
crt0.o. In addition, various EABI support files
(ecrti.o etc.) will be linked in with the exe-
cutable.

The *link section adds some arguments to the
linker when it is invoked by GCC to link an
application for this BSP.

The format of this file is specific to the GNU
Compiler Suite. The argument used to over-
ride and extend the compiler built-in specifi-
cations is available in all recent GCC versions.
The -specs option is present in all egcs dis-
tributions and gcc distributions starting with
version 2.8.0.

28 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

5.2 README Files

Most BSPs provide one or more README files.
Generally, there is a README file at the top of
the BSP source. This file describes the board
and its hardware configuration, provides ven-
dor information, local configuration informa-
tion, information on downloading code to the
board, debugging, etc.. The intent of this file
is to help someone begin to use the BSP faster.

A README file in a BSP subdirectory typically
explains something about the contents of that
subdirectory in greater detail. For example,
it may list the documentation available for a
particular peripheral controller and how to ob-
tain that documentation. It may also explain
some particularly cryptic part of the software
in that directory or provide rationale on the
implementation.

5.2. README Files 29

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 5 Section 5.3

5.3 Times

This file contains the results of the RTEMS
Timing Test Suite. It is in a standard format so
that results from one BSP can be easily com-
pared with those of another target board.

If a BSP supports multiple variants, then there
may be multiple times files. Usually these are
named times.VARIANTn.

30 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

5.4 Tools Subdirectory

Some BSPs provide additional tools that aid
in using the target board. These tools run on
the development host and are built as part of
building the BSP. Most common is a script to
automate running the RTEMS Test Suites on
the BSP. Examples of this include:

• powerpc/psim includes scripts to ease use
of the simulator

• m68k/mvme162 includes a utility to down-
load across the VMEbus into target mem-
ory if the host is a VMEbus board in the
same chasis.

5.4. Tools Subdirectory 31

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 5 Section 5.5

5.5 bsp.h Include File

The file include/bsp.h contains prototypes
and definitions specific to this board. Every
BSP is required to provide a bsp.h. The best
approach to writing a bsp.h is copying an ex-
isting one as a starting point.

Many bsp.h files provide prototypes of vari-
ables defined in the linker script (linkcmds).

32 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

5.6 tm27.h Include File

The tm27 test from the RTEMS Timing Test
Suite is designed to measure the length of time
required to vector to and return from an inter-
rupt handler. This test requires some help from
the BSP to know how to cause and manipu-
late the interrupt source used for this measure-
ment. The following is a list of these:

• MUST_WAIT_FOR_INTERRUPT - modifies be-
havior of tm27.

• Install_tm27_vector - installs the in-
terrupt service routine for the Interrupt
Benchmark Test (tm27).

• Cause_tm27_intr - generates the inter-
rupt source used in the Interrupt Bench-
mark Test (tm27).

• Clear_tm27_intr - clears the interrupt
source used in the Interrupt Benchmark
Test (tm27).

• Lower_tm27_intr - lowers the interrupt
mask so the interrupt source used in
the Interrupt Benchmark Test (tm27) can
generate a nested interrupt.

All members of the Timing Test Suite are
designed to run WITHOUT the Clock Device
Driver installed. This increases the predictabil-
ity of the tests’ execution as well as avoids oc-
cassionally including the overhead of a clock
tick interrupt in the time reported. Because of
this it is sometimes possible to use the clock
tick interrupt source as the source of this test
interrupt. On other architectures, it is possible
to directly force an interrupt to occur.

5.6. tm27.h Include File 33

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 5 Section 5.7

5.7 Calling Overhead File

The file include/coverhd.h contains the over-
head associated with invoking each directive.
This overhead consists of the execution time
required to package the parameters as well as
to execute the “jump to subroutine” and “re-
turn from subroutine” sequence. The intent of
this file is to help separate the calling overhead
from the actual execution time of a directive.
This file is only used by the tests in the RTEMS
Timing Test Suite.

The numbers in this file are obtained by run-
ning the “Timer Overhead”tmoverhd test. The
numbers in this file may be 0 and no over-
head is subtracted from the directive execution
times reported by the Timing Suite.

There is a shared implementation of coverhd.h
which sets all of the overhead constants to 0.
On faster processors, this is usually the best al-
ternative for the BSP as the calling overhead is
extremely small. This file is located at:

1 c/src/lib/libbsp/shared/include/coverhd.h

34 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

5.8 sbrk() Implementation

Although nearly all BSPs give all possible
memory to the C Program Heap at initializa-
tion, it is possible for a BSP to configure the
initial size of the heap small and let it grow on
demand. If the BSP wants to dynamically ex-
tend the heap used by the C Library memory
allocation routines (i.e. malloc family), then
the‘‘sbrk‘‘ routine must be functional. The fol-
lowing is the prototype for this routine:

1 void * sbrk(size_t increment)

The increment amount is based upon
the sbrk_amount parameter passed to the
bsp_libc_init during system initialization.

If your BSP does not want to support dy-
namic heap extension, then you do not have
to do anything special. However, if you
want to support sbrk, you must provide
an implementation of this method and de-
fine CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK in
bsp.h. This informs rtems/confdefs.h to con-
figure the Malloc Family Extensions which sup-
port sbrk.

5.8. sbrk() Implementation 35

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 5 Section 5.9

5.9 bsp_fatal_extension() -
Cleanup the Hardware

The bsp_fatal_extension() is an optional
BSP specific initial extension invoked once
a fatal system state is reached. Most of
the BSPs use the same shared version of
bsp_fatal_extension() that does nothing or
performs a system reset. This implementation
is located in the following file:

1 c/src/lib/libbsp/shared/bspclean.c

The bsp_fatal_extension() routine can be
used to return to a ROM monitor, insure that
interrupt sources are disabled, etc.. This rou-
tine is the last place to ensure a clean shut-
down of the hardware. The fatal source, in-
ternal error indicator, and the fatal code ar-
guments are available to evaluate the fatal
condition. All of the non-fatal shutdown se-
quences ultimately pass their exit status to
rtems_shutdown_executive and this is what is
passed to this routine in case the fatal source
is RTEMS_FATAL_SOURCE_EXIT.

On some BSPs, it prints a message indicat-
ing that the application completed execution
and waits for the user to press a key before
resetting the board. The PowerPC/gen83xx
and PowerPC/gen5200 BSPs do this when they
are built to support the FreeScale evaluation
boards. This is convenient when using the
boards in a development environment and
may be disabled for production use.

36 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.10 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

5.10 Configuration Macros

Each BSP can define macros in bsp.h which al-
ter some of the the default configuration pa-
rameters in rtems/confdefs.h. This section
describes those macros:

• CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK
must be defined if the BSP has proper
support for sbrk. This is discussed in
more detail in the previous section.

• BSP_IDLE_TASK_BODY may be defined to
the entry point of a BSP specific IDLE
thread implementation. This may be
overridden if the application provides its
own IDLE task implementation.

• BSP_IDLE_TASK_STACK_SIZE may be de-
fined to the desired default stack size for
the IDLE task as recommended when us-
ing this BSP.

• BSP_INTERRUPT_STACK_SIZE may be de-
fined to the desired default interrupt
stack size as recommended when us-
ing this BSP. This is sometimes required
when the BSP developer has knowledge
of stack intensive interrupt handlers.

• BSP_ZERO_WORKSPACE_AUTOMATICALLY
is defined when the BSP requires that
RTEMS zero out the RTEMS C Program
Heap at initialization. If the memory is
already zeroed out by a test sequence
or boot ROM, then the boot time can be
reduced by not zeroing memory twice.

• BSP_DEFAULT_UNIFIED_WORK_AREAS is de-
fined when the BSP recommends that the
unified work areas configuration should
always be used. This is desirable when
the BSP is known to always have very lit-
tle RAM and thus saving memory by any
means is desirable.

5.10. Configuration Macros 37

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 5 Section 5.11

5.11 set_vector() - Install an Inter-
rupt Vector

On targets with Simple Vectored Interrupts,
the BSP must provide an implementation of
the set_vector routine. This routine is respon-
sible for installing an interrupt vector. It in-
vokes the support routines necessary to install
an interrupt handler as either a “raw” or an
RTEMS interrupt handler. Raw handlers by-
pass the RTEMS interrupt structure and are re-
sponsible for saving and restoring all their own
registers. Raw handlers are useful for handling
traps, debug vectors, etc.

The set_vector routine is a central place to
perform interrupt controller manipulation and
encapsulate that information. It is usually im-
plemented as follows:

1 rtems_isr_entry set_vector(␣
→˓/* returns old vector */

2 rtems_isr_entry handler, /
→˓* isr routine */

3 rtems_vector_number vector, ␣
→˓/* vector number */

4 int type /
→˓* RTEMS or RAW intr */

5)
6 {
7 if the type is RAW
8 install the raw vector
9 else

10 use rtems_interrupt_catch to install the␣
→˓vector

11 perform any interrupt controller necessary␣
→˓to unmask the interrupt source

12 return the previous handler
13 }

Note: The i386, PowerPC and ARM ports use
a Programmable Interrupt Controller model
which does not require the BSP to implement
set_vector. BSPs for these architectures must
provide a different set of support routines.

38 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.12 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

5.12 Interrupt Delay Profiling

The RTEMS profiling needs support by the
BSP for the interrupt delay times. In case
profiling is enabled via the RTEMS build
configuration option --enable-profiling
(in this case the pre-processor symbol
RTEMS_PROFILING is defined) a BSP may pro-
vide data for the interrupt delay times. The
BSP can feed interrupt delay times with the
_Profiling_Update_max_interrupt_delay()
function (#include
<rtems/score/profiling.h>). For
an example please have a look at
c/src/lib/libbsp/sparc/leon3/clock/ckinit.c.

5.12. Interrupt Delay Profiling 39

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 5 Section 5.13

5.13 Programmable Interrupt Con-
troller API

A BSP can use the PIC API to install Inter-
rupt Service Routines through a set of generic
methods. In order to do so, the header
files libbsp/shared/include/irq-generic.h and
libbsp/shared/include/irq-info.h must be
included by the bsp specific irq.h file present
in the include/ directory. The irq.h acts as a
BSP interrupt support configuration file which
is used to define some important MACROS.
It contains the declarations for any required
global functions like bsp_interrupt_dispatch().
Thus later on, every call to the PIC interface
requires including <bsp/irq.h>

The generic interrupt handler ta-
ble is intitalized by invoking the
bsp_interrupt_initialize() method from
bsp_start() in the bspstart.c file which sets
up this table to store the ISR addresses,
whose size is based on the definition of
macros, BSP_INTERRUPT_VECTOR_MIN and
BSP_INTERRUPT_VECTOR_MAX in include/bsp.h

For the generic handler table to properly func-
tion, some bsp specific code is required, that
should be present in irq/irq.c. The bsp-
specific functions required to be writen by the
BSP developer are :

• bsp_interrupt_facility_initialize()
contains bsp specific interrupt ini-
tialization code(Clear Pending in-
terrupts by modifying registers,
etc.). This method is called from
bsp_interrupt_initialize() internally
while setting up the table.

• bsp_interrupt_handler_default() acts
as a fallback handler when no ISR ad-
dress has been provided corresponding
to a vector in the table.

• bsp_interrupt_dispatch() service
the ISR by handling any bsp specific
code & calling the generic method
bsp_interrupt_handler_dispatch()
which in turn services the interrupt by
running the ISR after looking it up in the
table. It acts as an entry to the interrupt
switchboard, since the bsp branches to

this function at the time of occurrence of
an interrupt.

• bsp_interrupt_vector_enable() en-
ables interrupts and is called in irq-
generic.c while setting up the table.

• bsp_interrupt_vector_disable()
disables interrupts and is called in
irq-generic.c while setting up the table &
during other important parts.

An interrupt handler is installed or removed
with the help of the following functions :

1 rtems_status_code rtems_interrupt_handler_
→˓install(/* returns status code */

2 rtems_vector_number vector, ␣
→˓ /* interrupt vector */

3 const char *info, ␣
→˓ /* custom identification text */

4 rtems_option options, ␣
→˓ /* Type of Interrupt */

5 rtems_interrupt_handler handler, ␣
→˓ /* interrupt handler */

6 void *arg ␣
→˓ /* parameter to be passed

7 ␣
→˓ to handler at the time of

8 ␣
→˓ invocation */

9)
10 rtems_status_code rtems_interrupt_handler_

→˓remove(/* returns status code */
11 rtems_vector_number vector, ␣

→˓ /* interrupt vector */
12 rtems_interrupt_handler handler, ␣

→˓ /* interrupt handler */
13 void *arg ␣

→˓ /* parameter to be passed to␣
→˓handler */

14)

40 Chapter 5. Miscellaneous Support Files

CHAPTER

SIX

ADA95 INTERRUPT SUPPORT

41

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 6 Section 6.1

6.1 Introduction

This chapter describes what is required to en-
able Ada interrupt and error exception han-
dling when using GNAT over RTEMS.

The GNAT Ada95 interrupt support
RTEMS was developed by Jiri Gaisler
<jgais@ws.estec.esa.nl> who also wrote
this chapter.

42 Chapter 6. Ada95 Interrupt Support

mailto:jgais@ws.estec.esa.nl

Chapter 6 Section 6.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

6.2 Mapping Interrupts to POSIX
Signals

In Ada95, interrupts can be attached with the
interrupt_attach pragma. For most systems,
the gnat run-time will use POSIX signal to im-
plement the interrupt handling, mapping one
signal per interrupt. For interrupts to be prop-
agated to the attached Ada handler, the corre-
sponding signal must be raised when the inter-
rupt occurs.

The same mechanism is used to generate Ada
error exceptions. Three error exceptions are
defined: program, constraint and storage er-
ror. These are generated by raising the pre-
defined signals: SIGILL, SIGFPE and SIGSEGV.
These signals should be raised when a spurious
or erroneous trap occurs.

To enable gnat interrupt and error exception
support for a particular BSP, the following has
to be done:

• Write an interrupt/trap handler that will
raise the corresponding signal depending
on the interrupt/trap number.

• Install the interrupt handler for all inter-
rupts/traps that will be handled by gnat
(including spurious).

• At startup, gnat calls
__gnat_install_handler(). The BSP
must provide this function which installs
the interrupt/trap handlers.

Which CPU-interrupt will generate which sig-
nal is implementation defined. There are 32
POSIX signals (1 - 32), and all except the three
error signals (SIGILL, SIGFPE and SIGSEGV)
can be used. I would suggest to use the upper
16 (17 - 32) which do not have an assigned
POSIX name.

Note that the pragma interrupt_attach will
only bind a signal to a particular Ada handler
- it will not unmask the interrupt or do any
other things to enable it. This have to be done
separately, typically by writing various device
register.

6.2. Mapping Interrupts to POSIX Signals 43

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 6 Section 6.3

6.3 Example Ada95 Interrupt Pro-
gram

An example program (irq_test) is included in
the Ada examples package to show how in-
terrupts can be handled in Ada95. Note that
generation of the test interrupt (irqforce.c)
is BSP specific and must be edited.

Note: The irq_test example was written for
the SPARC/ERC32 BSP.

44 Chapter 6. Ada95 Interrupt Support

Chapter 6 Section 6.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

6.4 Version Requirements

With RTEMS 4.0, a patch was required to psig-
nal.c in RTEMS sources (to correct a bug as-
sociated to the default action of signals 15-
32). The SPARC/ERC32 RTEMS BSP includes
the‘‘gnatsupp‘‘ subdirectory that can be used as
an example for other BSPs.

With GNAT 3.11p, a patch is required for
a-init.c to invoke the BSP specific routine
that installs the exception handlers.

6.4. Version Requirements 45

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 6 Section 6.4

46 Chapter 6. Ada95 Interrupt Support

CHAPTER

SEVEN

INITIALIZATION CODE

47

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 7 Section 7.1

7.1 Introduction

The initialization code is the first piece of code
executed when there’s a reset/reboot. Its pur-
pose is to initialize the board for the applica-
tion. This chapter contains a narrative descrip-
tion of the initialization process followed by
a description of each of the files and routines
commonly found in the BSP related to initial-
ization. The remainder of this chapter covers
special issues which require attention such as
interrupt vector table and chip select initializa-
tion.

Most of the examples in this chapter
will be based on the SPARC/ERC32 and
m68k/gen68340 BSP initialization code. Like
most BSPs, the initialization for these BSP is
divided into two subdirectories under the BSP
source directory. The BSP source code for
these BSPs is in the following directories:

1 c/src/lib/libbsp/m68k/gen68340
2 c/src/lib/libbsp/sparc/erc32

Both BSPs contain startup code written in as-
sembly language and C. The gen68340 BSP
has its early initialization start code in the
start340 subdirectory and its C startup code
in the startup directory. In the start340
directory are two source files. The file
startfor340only.s is the simpler of these files
as it only has initialization code for a MC68340
board. The file start340.s contains initializa-
tion for a 68349 based board as well.

Similarly, the ERC32 BSP has startup code
written in assembly language and C. However,
this BSP shares this code with other SPARC
BSPs. Thus the Makefile.am explicitly refer-
ences the following files for this functionality.

1 ../../sparc/shared/start.S

Note: In most BSPs, the directory named
start340 in the gen68340 BSP would be sim-
ply named start or start followed by a BSP
designation.

48 Chapter 7. Initialization Code

Chapter 7 Section 7.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

7.2 Required Global Variables

Although not strictly part of initialization,
there are a few global variables assumed to
exist by reusable device drivers. These global
variables should only defined by the BSP when
using one of these device drivers.

The BSP author probably should be aware
of the Configuration Table structure gener-
ated by <rtems/confdefs.h> during debug but
should not explicitly reference it in the source
code. There are helper routines provided by
RTEMS to access individual fields.

In older RTEMS versions, the BSP included a
number of required global variables. We have
made every attempt to eliminate these in the
interest of simplicity.

7.2. Required Global Variables 49

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 7 Section 7.3

7.3 Board Initialization

This section describes the steps an application
goes through from the time the first BSP code
is executed until the first application task exe-
cutes.

The initialization flows from assembly lan-
guage start code to the shared bootcard.c
framework then through the C Library, RTEMS,
device driver initialization phases, and the
context switch to the first application task. Af-
ter this, the application executes until it calls
exit, rtems_shutdown_executive, or some
other normal termination initiating routine
and a fatal system state is reached. The op-
tional bsp_fatal_extension initial extension
can perform BSP specific system termination.

The routines invoked during this will be dis-
cussed and their location in the RTEMS source
tree pointed out as we discuss each.

7.3.1 Start Code - Assembly Language Ini-
tialization

The assembly language code in the directory
start is the first part of the application to ex-
ecute. It is responsible for initializing the pro-
cessor and board enough to execute the rest of
the BSP. This includes:

• initializing the stack

• zeroing out the uninitialized data section
.bss

• disabling external interrupts

• copy the initialized data from ROM to
RAM

The general rule of thumb is that the start code
in assembly should do the minimum necessary
to allow C code to execute to complete the ini-
tialization sequence.

The initial assembly language start code com-
pletes its execution by invoking the shared rou-
tine boot_card().

The label (symbolic name) associated with the
starting address of the program is typically
called start. The start object file is the first
object file linked into the program image so it

is ensured that the start code is at offset 0 in
the .text section. It is the responsibility of the
linker script in conjunction with the compiler
specifications file to put the start code in the
correct location in the application image.

7.3.2 boot_card() - Boot the Card

The boot_card() is the first C code invoked.
This file is the core component in the RTEMS
BSP Initialization Framework and provides the
proper sequencing of initialization steps for the
BSP, RTEMS and device drivers. All BSPs use
the same shared version of boot_card() which
is located in the following file:

1 c/src/lib/libbsp/shared/bootcard.c

The boot_card() routine performs the follow-
ing functions:

• It disables processor interrupts.

• It sets the command line argument vari-
ables for later use by the application.

• It invokes the BSP specific routine
bsp_work_area_initialize() which
is supposed to initialize the RTEMS
Workspace and the C Program Heap.
Usually the default implementation in
c/src/lib/libbsp/shared/bspgetworkarea.c
should be sufficient. Cus-
tom implementations can use
bsp_work_area_initialize_default()
or bsp_work_area_initialize_with_table()
available as inline functions
from‘‘#include <bsp/bootcard.h>‘‘.

• It invokes the BSP specific routine
bsp_start() which is written in C and
thus able to perform more advanced ini-
tialization. Often MMU, bus and inter-
rupt controller initialization occurs here.
Since the RTEMS Workspace and the C
Program Heap was already initialized by
bsp_work_area_initialize(), this rou-
tine may use malloc(), etc.

• It invokes the RTEMS directive
rtems_initialize_data_structures()
to initialize the RTEMS executive to a
state where objects can be created but
tasking is not enabled.

50 Chapter 7. Initialization Code

Chapter 7 Section 7.3 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

• It invokes the BSP specific rou-
tine bsp_libc_init() to ini-
tialize the C Library. Usually
the default implementation in
c/src/lib/libbsp/shared/bsplibc.c
should be sufficient.

• It invokes the RTEMS directive
rtems_initialize_before_drivers()
to initialize the MPCI Server thread
in a multiprocessor configuration and
execute API specific extensions.

• It invokes the BSP specific routine
bsp_predriver_hook. For most BSPs,
the implementation of this routine does
nothing.

• It invokes the RTEMS directive
rtems_initialize_device_drivers() to
initialize the statically configured set of
device drivers in the order they were
specified in the Configuration Table.

• It invokes the BSP specific routine
bsp_postdriver_hook. For most BSPs,
the implementation of this routine does
nothing. However, some BSPs use this
hook and perform some initialization
which must be done at this point in the
initialization sequence. This is the last
opportunity for the BSP to insert BSP
specific code into the initialization se-
quence.

• It invokes the RTEMS directive
rtems_initialize_start_multitasking()
which initiates multitasking and per-
forms a context switch to the first
user application task and may en-
able interrupts as a side-effect of that
context switch. The context switch
saves the executing context. The
application runs now. The directive
rtems_shutdown_executive() will re-
turn to the saved context. The exit()
function will use this directive. After
a return to the saved context a fatal
system state is reached. The fatal
source is RTEMS_FATAL_SOURCE_EXIT with
a fatal code set to the value passed
to rtems_shutdown_executive(). The
enabling of interrupts during the first
context switch is often the source for

fatal errors during BSP development
because the BSP did not clear and/or
disable all interrupt sources and a spu-
rious interrupt will occur. When in the
context of the first task but before its
body has been entered, any C++ Global
Constructors will be invoked.

That’s it. We just went through the entire se-
quence.

7.3.3 bsp_work_area_initialize() - BSP
Specific Work Area Initialization

This is the first BSP specific C routine to exe-
cute during system initialization. It must ini-
tialize the support for allocating memory from
the C Program Heap and RTEMS Workspace
commonly referred to as the work areas.
Many BSPs place the work areas at the end of
RAM although this is certainly not a require-
ment. Usually the default implementation
in:file:c/src/lib/libbsp/shared/bspgetworkarea.c
should be sufficient. Cus-
tom implementations can use
bsp_work_area_initialize_default()
or‘‘bsp_work_area_initialize_with_table()‘‘
available as inline functions from #include
<bsp/bootcard.h>.

7.3.4 bsp_start() - BSP Specific Initializa-
tion

This is the second BSP specific C routine to ex-
ecute during system initialization. It is called
right after bsp_work_area_initialize(). The
bsp_start() routine often performs required
fundamental hardware initialization such as
setting bus controller registers that do not
have a direct impact on whether or not C
code can execute. The interrupt controllers
are usually initialized here. The source code
for this routine is usually found in the file
c/src/lib/libbsp/$CPU/$BSP/startup/bspstart.c.
It is not allowed to create any operating system
objects, e.g. RTEMS semaphores.

After completing execution, this routine re-
turns to the boot_card() routine. In case of
errors, the initialization should be terminated
via bsp_fatal().

7.3. Board Initialization 51

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 7 Section 7.3

7.3.5 bsp_predriver_hook() - BSP Specific
Predriver Hook

The bsp_predriver_hook() method is the BSP
specific routine that is invoked immediately
before the the device drivers are initialized.
RTEMS initialization is complete but interrupts
and tasking are disabled.

The BSP may use the shared version of this
routine which is empty. Most BSPs do not pro-
vide a specific implementation of this callback.

7.3.6 Device Driver Initialization

At this point in the initialization sequence,
the initialization routines for all of the device
drivers specified in the Device Driver Table are
invoked. The initialization routines are in-
voked in the order they appear in the Device
Driver Table.

The Driver Address Table is part of the RTEMS
Configuration Table. It defines device drivers
entry points (initialization, open, close, read,
write, and control). For more information
about this table, please refer to the Configur-
ing a System chapter in the RTEMS Application
C User’s Guide.

The RTEMS initialization procedure calls the
initialization function for every driver defined
in the RTEMS Configuration Table (this allows
one to include only the drivers needed by the
application).

All these primitives have a major and a minor
number as arguments:

• the major number refers to the driver
type,

• the minor number is used to control two
peripherals with the same driver (for in-
stance, we define only one major number
for the serial driver, but two minor num-
bers for channel A and B if there are two
channels in the UART).

7.3.7 RTEMS Postdriver Callback

The bsp_postdriver_hook() BSP specific rou-
tine is invoked immediately after the the de-

vice drivers and MPCI are initialized. Inter-
rupts and tasking are disabled.

Most BSPs use the shared implementation of
this routine which is responsible for opening
the device /dev/console for standard input,
output and error if the application has config-
ured the Console Device Driver. This file is lo-
cated at:

1 c/src/lib/libbsp/shared/bsppost.c

52 Chapter 7. Initialization Code

Chapter 7 Section 7.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

7.4 The Interrupt Vector Table

The Interrupt Vector Table is called different
things on different processor families but the
basic functionality is the same. Each entry in
the Table corresponds to the handler routine
for a particular interrupt source. When an in-
terrupt from that source occurs, the specified
handler routine is invoked. Some context in-
formation is saved by the processor automati-
cally when this happens. RTEMS saves enough
context information so that an interrupt ser-
vice routine can be implemented in a high level
language.

On some processors, the Interrupt Vector Table
is at a fixed address. If this address is in RAM,
then usually the BSP only has to initialize it to
contain pointers to default handlers. If the ta-
ble is in ROM, then the application developer
will have to take special steps to fill in the ta-
ble.

If the base address of the Interrupt Vector Ta-
ble can be dynamically changed to an arbitrary
address, then the RTEMS port to that processor
family will usually allocate its own table and
install it. For example, on some members of
the Motorola MC68xxx family, the Vector Base
Register (vbr) contains this base address.

7.4.1 Interrupt Vector Table on the
gen68340 BSP

The gen68340 BSP provides a de-
fault Interrupt Vector Table in the file
$BSP_ROOT/start340/start340.s. After the
entry label is the definition of space reserved
for the table of interrupts vectors. This space
is assigned the symbolic name of __uhoh in the
gen68340 BSP.

At __uhoh label is the default interrupt han-
dler routine. This routine is only called
when an unexpected interrupts is raised.
One can add their own routine there (in
that case there’s a call to a routine -
$BSP_ROOT/startup/dumpanic.c - that prints
which address caused the interrupt and the
contents of the registers, stack, etc.), but this
should not return.

7.4. The Interrupt Vector Table 53

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 7 Section 7.5

7.5 Chip Select Initialization

When the microprocessor accesses a mem-
ory area, address decoding is handled by an
address decoder, so that the microprocessor
knows which memory chip(s) to access. The
following figure illustrates this:

1 +-------------------+
2 ------------| |
3 ------------| |------------
4 ------------| Address |------------
5 ------------| Decoder |------------
6 ------------| |------------
7 ------------| |
8 +-------------------+
9 CPU Bus Chip Select

The Chip Select registers must be programmed
such that they match the linkcmds settings. In
the gen68340 BSP, ROM and RAM addresses
can be found in both the linkcmds and ini-
tialization code, but this is not a great way to
do this. It is better to define addresses in the
linker script.

54 Chapter 7. Initialization Code

Chapter 7 Section 7.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

7.6 Integrated Processor Registers
Initialization

The CPUs used in many embedded systems are
highly complex devices with multiple periph-
erals on the CPU itself. For these devices, there
are always some specific integrated processor
registers that must be initialized. Refer to the
processors’ manuals for details on these regis-
ters and be VERY careful programming them.

7.6. Integrated Processor Registers Initialization 55

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 7 Section 7.7

7.7 Data Section Recopy

The next initialization part can be found
in $BSP340_ROOT/start340/init68340.c.
First the Interrupt Vector Table is copied
into RAM, then the data section recopy is
initiated (_CopyDataClearBSSAndStart in
$BSP340_ROOT/start340/startfor340only.s).

This code performs the following actions:

• copies the .data section from ROM to its
location reserved in RAM (see Chapter 4
Section 5 - Initialized Data (page 26) for
more details about this copy),

• clear .bss section (all the non-initialized
data will take value 0).

56 Chapter 7. Initialization Code

Chapter 7 Section 7.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

7.8 The RTEMS Configuration Ta-
ble

The RTEMS configuration table contains the
maximum number of objects RTEMS can han-
dle during the application (e.g. maximum
number of tasks, semaphores, etc.). It’s used
to allocate the size for the RTEMS inner data
structures.

The RTEMS configuration table is application
dependent, which means that one has to pro-
vide one per application. It is usually defined
by defining macros and including the header
file <rtems/confdefs.h>. In simple applica-
tions such as the tests provided with RTEMS, it
is commonly found in the main module of the
application. For more complex applications, it
may be in a file by itself.

The header file <rtems/confdefs.h> defines a
constant table named Configuration. With
RTEMS 4.8 and older, it was accepted prac-
tice for the BSP to copy this table into a
modifiable copy named BSP_Configuration.
This copy of the table was modified to de-
fine the base address of the RTEMS Execu-
tive Workspace as well as to reflect any BSP
and device driver requirements not automati-
cally handled by the application. In 4.9 and
newer, we have eliminated the BSP copies of
the configuration tables and are making efforts
to make the configuration information gen-
erated by <rtems/confdefs.h> constant and
read only.

For more information on the RTEMS Configu-
ration Table, refer to the RTEMS Application C
User’s Guide.

7.8. The RTEMS Configuration Table 57

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 7 Section 7.8

58 Chapter 7. Initialization Code

CHAPTER

EIGHT

CONSOLE DRIVER

59

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 8 Section 8.1

8.1 Introduction

This chapter describes the operation of a con-
sole driver using the RTEMS POSIX Termios
support. Traditionally RTEMS has referred
to all serial device drivers as console device
drivers. A console driver can be used to do
raw data processing in addition to the “nor-
mal” standard input and output device func-
tions required of a console.

The serial driver may be called as the conse-
quence of a C Library call such as printf or
scanf or directly via the‘‘read‘‘ or write system
calls. There are two main functioning modes:

• console: formatted input/output, with
special characters (end of line, tabula-
tions, etc.) recognition and processing,

• raw: permits raw data processing.

One may think that two serial drivers are
needed to handle these two types of data, but
Termios permits having only one driver.

60 Chapter 8. Console Driver

Chapter 8 Section 8.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

8.2 Termios

Termios is a standard for terminal man-
agement, included in the POSIX 1003.1b
standard. As part of the POSIX and
Open Group Single UNIX Specification,
is commonly provided on UNIX imple-
mentations. The Open Group has the
termios portion of the POSIX standard on-
line at http://opengroup.org/onlinepubs/
007908775/xbd/termios.html. The require-
ments for the <termios.h> file are also
provided and are at http://opengroup.org/
onlinepubs/007908775/xsh/termios.h.html.

Having RTEMS support for Termios is benefi-
cial because:

• from the user’s side because it provides
standard primitive operations to access
the terminal and change configuration
settings. These operations are the same
under UNIX and RTEMS.

• from the BSP developer’s side because
it frees the developer from dealing with
buffer states and mutual exclusions on
them. Early RTEMS console device
drivers also did their own special char-
acter processing.

• it is part of an internationally recognized
standard.

• it makes porting code from other envi-
ronments easier.

Termios support includes:

• raw and console handling,

• blocking or non-blocking characters re-
ceive, with or without Timeout.

At this time, RTEMS documentation does
not include a thorough discussion of the
Termios functionality. For more infor-
mation on Termios, type man termios
on a Unix box or point a web browser
athttp://www.freebsd.org/cgi/man.cgi.

8.2. Termios 61

http://opengroup.org/onlinepubs/007908775/xbd/termios.html
http://opengroup.org/onlinepubs/007908775/xbd/termios.html
http://opengroup.org/onlinepubs/007908775/xsh/termios.h.html
http://opengroup.org/onlinepubs/007908775/xsh/termios.h.html

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 8 Section 8.3

8.3 Driver Functioning Modes

There are generally three main functioning
modes for an UART (Universal Asynchronous
Receiver-Transmitter, i.e. the serial chip):

• polled mode

• interrupt driven mode

• task driven mode

In polled mode, the processor blocks on send-
ing/receiving characters. This mode is not the
most efficient way to utilize the UART. But
polled mode is usually necessary when one
wants to print an error message in the event
of a fatal error such as a fatal error in the
BSP. This is also the simplest mode to program.
Polled mode is generally preferred if the serial
port is to be used primarily as a debug console.
In a simple polled driver, the software will con-
tinuously check the status of the UART when it
is reading or writing to the UART. Termios im-
proves on this by delaying the caller for 1 clock
tick between successive checks of the UART on
a read operation.

In interrupt driven mode, the processor does
not block on sending/receiving characters.
Data is buffered between the interrupt service
routine and application code. Two buffers are
used to insulate the application from the rela-
tive slowness of the serial device. One of the
buffers is used for incoming characters, while
the other is used for outgoing characters.

An interrupt is raised when a character is re-
ceived by the UART. The interrupt subroutine
places the incoming character at the end of the
input buffer. When an application asks for in-
put, the characters at the front of the buffer are
returned.

When the application prints to the serial de-
vice, the outgoing characters are placed at the
end of the output buffer. The driver will place
one or more characters in the UART (the ex-
act number depends on the UART) An inter-
rupt will be raised when all the characters have
been transmitted. The interrupt service rou-
tine has to send the characters remaining in
the output buffer the same way. When the
transmitting side of the UART is idle, it is typi-

cally necessary to prime the transmitter before
the first interrupt will occur.

The task driven mode is similar to interrupt
driven mode, but the actual data processing
is done in dedicated tasks instead of interrupt
routines.

62 Chapter 8. Console Driver

Chapter 8 Section 8.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

8.4 Serial Driver Functioning
Overview

The following Figure shows how a Termios
driven serial driver works: Figure not included
in ASCII version

The following list describes the basic flow.

• the application programmer uses stan-
dard C library call (printf, scanf, read,
write, etc.),

• C library (ctx.g. RedHat (formerly
Cygnus) Newlib) calls the RTEMS system
call interface. This code can be found in
the:file:cpukit/libcsupport/src directory.

• Glue code calls the serial driver entry
routines.

8.4.1 Basics

The low-level driver API changed between
RTEMS 4.10 and RTEMS 4.11. The legacy call-
back API is still supported, but its use is dis-
couraged. The following functions are depre-
cated:

• rtems_termios_open() - use
rtems_termios_device_open()
in combination with
rtems_termios_device_install()
instead.

• rtems_termios_close() - use
rtems_termios_device_close() in-
stead.

This manual describes the new API. A new con-
sole driver should consist of three parts.

• The basic console driver functions using
the Termios support. Add this the BSPs
Makefile.am:

1 [...]
2 libbsp_a_SOURCES += ../../shared/console-

→˓termios.c
3 [...]

• A general serial module spe-
cific low-level driver providing
the handler table for the Termios

rtems_termios_device_install() func-
tion. This low-level driver could be used
for more than one BSP.

• A BSP specific initialization routine
console_initialize(), that calls
rtems_termios_device_install() pro-
viding a low-level driver context for each
installed device.

You need to provide a device handler structure
for the Termios device interface. The func-
tions are described later in this chapter. The
first open and set attributes handler return a
boolean status to indicate success (true) or fail-
ure (false). The polled read function returns
an unsigned character in case one is available
or minus one otherwise.

If you want to use polled IO it should
look like the following. Termios must be
told the addresses of the handler that are
to be used for simple character IO, i.e.
pointers to the my_driver_poll_read() and
my_driver_poll_write() functions described
later in Termios and Polled IO (page 64).

1 const rtems_termios_handler my_driver_
→˓handler_polled = {

2 .first_open = my_driver_first_open,
3 .last_close = my_driver_last_close,
4 .poll_read = my_driver_poll_read,
5 .write = my_driver_poll_write,
6 .set_attributes = my_driver_set_attributes,
7 .stop_remote_tx = NULL,
8 .start_remote_tx = NULL,
9 .mode = TERMIOS_POLLED

10 }

For an interrupt driven implementation you
need the following. The driver functioning is
quite different in this mode. There is no device
driver read handler to be passed to Termios.
Indeed a console_read() call returns the con-
tents of Termios input buffer. This buffer is
filled in the driver interrupt subroutine, see
also Termios and Interrupt Driven IO (page 64).
The driver is responsible for providing a
pointer to the‘‘my_driver_interrupt_write()‘‘
function.

1 const rtems_termios_handler my_driver_
→˓handler_interrupt = {

2 .first_open = my_driver_first_open,
3 .last_close = my_driver_last_close,

8.4. Serial Driver Functioning Overview 63

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 8 Section 8.4

4 .poll_read = NULL,
5 .write = my_driver_interrupt_write,
6 .set_attributes = my_driver_set_attributes,
7 .stopRemoteTx = NULL,
8 .stop_remote_tx = NULL,
9 .start_remote_tx = NULL,

10 .mode = TERMIOS_IRQ_DRIVEN
11 };

You can also provide hander for remote trans-
mission control. This is not covered in this
manual, so they are set to NULL in the above
examples.

The low-level driver should provide a
data structure for its device context.
The initialization routine must provide
a context for each installed device via
rtems_termios_device_install(). For sim-
plicity of the console initialization example
the device name is also present. Here is an
example header file.

1 #ifndef MY_DRIVER_H
2 #define MY_DRIVER_H
3

4 #include <rtems/termiostypes.h>
5 #include <some-chip-header.h>
6

7 /* Low-level driver specific data structure␣
→˓*/

8 typedef struct {
9 rtems_termios_device_context base;

10 const char *device_name;
11 volatile module_register_block *regs;
12 /* More stuff */
13 } my_driver_context;
14

15 extern const rtems_termios_handler my_
→˓driver_handler_polled;

16 extern const rtems_termios_handler my_
→˓driver_handler_interrupt;

17

18 #endif /* MY_DRIVER_H */

8.4.2 Termios and Polled IO

The following handler are provided by the low-
level driver and invoked by Termios for simple
character IO.

The my_driver_poll_write() routine is re-
sponsible for writing n characters from buf to
the serial device specified by tty.

1 static void my_driver_poll_write(
2 rtems_termios_device_context *base,
3 const char *buf,
4 size_t n
5)
6 {
7 my_driver_context *ctx = (my_driver_

→˓context *) base;
8 size_t i;
9 /* Write */

10 for (i = 0; i < n; ++i) {
11 my_driver_write_char(ctx, buf[i]);
12 }
13 }

The my_driver_poll_read routine is responsi-
ble for reading a single character from the se-
rial device specified by tty. If no character is
available, then the routine should return mi-
nus one.

1 static int my_driver_poll_read(rtems_
→˓termios_device_context *base)

2 {
3 my_driver_context *ctx = (my_driver_

→˓context *) base;
4 /* Check if a character is available */
5 if (my_driver_can_read_char(ctx)) {
6 /* Return the character */
7 return my_driver_read_char(ctx);
8 } else {
9 /* Return an error status */

10 return -1;
11 }
12 }

8.4.3 Termios and Interrupt Driven IO

The UART generally generates interrupts when
it is ready to accept or to emit a number of
characters. In this mode, the interrupt subrou-
tine is the core of the driver.

The my_driver_interrupt_handler() is re-
sponsible for processing asynchronous inter-
rupts from the UART. There may be multiple
interrupt handlers for a single UART. Some
UARTs can generate a unique interrupt vector
for each interrupt source such as a character
has been received or the transmitter is ready
for another character.

In the simplest case, the
my_driver_interrupt_handler() will have

64 Chapter 8. Console Driver

Chapter 8 Section 8.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

to check the status of the UART and de-
termine what caused the interrupt. The
following describes the operation of an
my_driver_interrupt_handler which has to
do this:

1 static void my_driver_interrupt_handler(
2 rtems_vector_number vector,
3 void *arg
4)
5 {
6 rtems_termios_tty *tty = arg;
7 my_driver_context *ctx = rtems_termios_get_

→˓device_context(tty);
8 char buf[N];
9 size_t n;

10

11 /*
12 * Check if we have received something. ␣

→˓The function reads the
13 * received characters from the device and␣

→˓stores them in the
14 * buffer. It returns the number of read␣

→˓characters.
15 */
16 n = my_driver_read_received_chars(ctx, buf,

→˓ N);
17 if (n > 0) {
18 /* Hand the data over to the Termios␣

→˓infrastructure */
19 rtems_termios_enqueue_raw_characters(tty,

→˓ buf, n);
20 }
21

22 /*
23 * Check if we have something transmitted.

→˓ The functions returns
24 * the number of transmitted characters␣

→˓since the last write to the
25 * device.
26 */
27 n = my_driver_transmitted_chars(ctx);
28 if (n > 0) {
29 /*
30 * Notify Termios that we have ␣

→˓transmitted some characters. It
31 * will call now the interrupt write␣

→˓function if more characters
32 * are ready for transmission.
33 */
34 rtems_termios_dequeue_characters(tty, n);
35 }
36 }

The my_driver_interrupt_write() function is
responsible for telling the device that the n
characters at buf are to be transmitted. It the

value n is zero to indicate that no more charac-
ters are to send. The driver can disable the
transmit interrupts now. This routine is in-
voked either from task context with disabled
interrupts to start a new transmission process
with exactly one character in case of an idle
output state or from the interrupt handler to
refill the transmitter. If the routine is invoked
to start the transmit process the output state
will become busy and Termios starts to fill the
output buffer. If the transmit interrupt arises
before Termios was able to fill the transmit
buffer you will end up with one interrupt per
character.

1 static void my_driver_interrupt_write(
2 rtems_termios_device_context *base,
3 const char *buf,
4 size_t n
5)
6 {
7 my_driver_context *ctx = (my_driver_

→˓context *) base;
8

9 /*
10 * Tell the device to transmit some ␣

→˓characters from buf (less than
11 * or equal to n). When the device is␣

→˓finished it should raise an
12 * interrupt. The interrupt handler will␣

→˓notify Termios that these
13 * characters have been transmitted and␣

→˓this may trigger this write
14 * function again. You may have to store␣

→˓the number of outstanding
15 * characters in the device data structure.
16 */
17 /*
18 * Termios will set n to zero to indicate␣

→˓that the transmitter is
19 * now inactive. The output buffer is␣

→˓empty in this case. The
20 * driver may disable the transmit ␣

→˓interrupts now.
21 */
22 }

8.4.4 Initialization

The BSP specific driver initialization is called
once during the RTEMS initialization process.

The console_initialize() function may look
like this:

8.4. Serial Driver Functioning Overview 65

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 8 Section 8.4

1 #include <my-driver.h>
2 #include <rtems/console.h>
3 #include <bsp.h>
4 #include <bsp/fatal.h>
5

6 static my_driver_context driver_context_
→˓table[M] = { /* Some values */ };

7

8 rtems_device_driver console_initialize(
9 rtems_device_major_number major,

10 rtems_device_minor_number minor,
11 void *arg
12)
13 {
14 rtems_status_code sc;
15 #ifdef SOME_BSP_USE_INTERRUPTS
16 const rtems_termios_handler *handler = &

→˓my_driver_handler_interrupt;
17 #else
18 const rtems_termios_handler *handler = &

→˓my_driver_handler_polled;
19 #endif
20

21 /*
22 * Initialize the Termios infrastructure.␣

→˓ If Termios has already
23 * been initialized by another device ␣

→˓driver, then this call will
24 * have no effect.
25 */
26 rtems_termios_initialize();
27

28 /* Initialize each device */
29 for (
30 minor = 0;
31 minor < RTEMS_ARRAY_SIZE(driver_context_

→˓table);
32 ++minor
33) {
34 my_driver_context *ctx = &driver_context_

→˓table[minor];
35

36 /*
37 * Install this device in the file system␣

→˓and Termios. In order
38 * to use the console (i.e. being able␣

→˓to do printf, scanf etc.
39 * on stdin, stdout and stderr), one␣

→˓device must be registered as
40 * "/dev/console" (CONSOLE_DEVICE_NAME).
41 */
42 sc = rtems_termios_device_install(
43 ctx->device_name,
44 major,
45 minor,
46 handler,
47 NULL,

48 ctx
49);
50 if (sc != RTEMS_SUCCESSFUL) {
51 bsp_fatal(SOME_BSP_FATAL_CONSOLE_

→˓DEVICE_INSTALL);
52 }
53 }
54

55 return RTEMS_SUCCESSFUL;
56 }

8.4.5 Opening a serial device

The console_open() function provided by
console-termios.c is called whenever a se-
rial device is opened. The device registered
as "/dev/console" (CONSOLE_DEVICE_NAME) is
opened automatically during RTEMS initializa-
tion. For instance, if UART channel 2 is reg-
istered as "/dev/tty1", the console_open()
entry point will be called as the result of an
fopen("/dev/tty1",mode) in the application.

During the first open of the device Termios will
call the my_driver_first_open() handler.

1 static bool my_driver_first_open(
2 rtems_termios_tty *tty,
3 rtems_termios_device_context *base,
4 struct termios *term,
5 rtems_libio_open_close_args_t *args
6)
7 {
8 my_driver_context *ctx = (my_driver_

→˓context *) base;
9 rtems_status_code sc;

10 bool ok;
11

12 /*
13 * You may add some initialization code␣

→˓here.
14 */
15

16 /*
17 * Sets the initial baud rate. This should␣

→˓be set to the value of
18 * the boot loader. This function accepts␣

→˓only exact Termios baud
19 * values.
20 */
21 sc = rtems_termios_set_initial_baud(tty,␣

→˓MY_DRIVER_BAUD_RATE);
22 if (sc != RTEMS_SUCCESSFUL) {
23 /* Not a valid Termios baud */
24 }

66 Chapter 8. Console Driver

Chapter 8 Section 8.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

25

26 /*
27 * Alternatively you can set the best baud.
28 */
29 rtems_termios_set_best_baud(term, MY_

→˓DRIVER_BAUD_RATE);
30

31 /*
32 * To propagate the initial Termios ␣

→˓attributes to the device use
33 * this.
34 */
35 ok = my_driver_set_attributes(base, term);
36 if (!ok) {
37 /* This is bad */
38 }
39

40 /*
41 * Return true to indicate a successful␣

→˓set attributes, and false
42 * otherwise.
43 */
44 return true;
45 }

8.4.6 Closing a Serial Device

The console_close() provided by
console-termios.c is invoked when the
serial device is to be closed. This entry point
corresponds to the device driver close entry
point.

Termios will call the my_driver_last_close()
handler if the last close happens on the device.

1 static void my_driver_last_close(
2 rtems_termios_tty *tty,
3 rtems_termios_device_context *base,
4 rtems_libio_open_close_args_t *args
5)
6 {
7 my_driver_context *ctx = (my_driver_

→˓context *) base;
8

9 /*
10 * The driver may do some cleanup here.
11 */
12 }

8.4.7 Reading Characters from a Serial
Device

The console_read() provided by
console-termios.c is invoked when the
serial device is to be read from. This entry
point corresponds to the device driver read
entry point.

8.4.8 Writing Characters to a Serial Device

The console_write() provided by
console-termios.c is invoked when the
serial device is to be written to. This entry
point corresponds to the device driver write
entry point.

8.4.9 Changing Serial Line Parameters

The console_control() provided by
console-termios.c is invoked when the
line parameters for a particular serial device
are to be changed. This entry point corre-
sponds to the device driver IO control entry
point.

The application writer is able to control the se-
rial line configuration with Termios calls (such
as the ioctl() command, see the Termios doc-
umentation for more details). If the driver
is to support dynamic configuration, then
it must have the console_control() piece
of code. Basically ioctl() commands call
console_control() with the serial line config-
uration in a Termios defined data structure.

The driver is responsible for reinitial-
izing the device with the correct set-
tings. For this purpose Termios calls the
my_driver_set_attributes() handler.

1 static bool my_driver_set_attributes(
2 rtems_termios_device_context *base,
3 const struct termios *term
4)
5 {
6 my_driver_context *ctx = (my_driver_

→˓context *) base;
7

8 /*
9 * Inspect the termios data structure and␣

→˓configure the device

8.4. Serial Driver Functioning Overview 67

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 8 Section 8.4

10 * appropriately. The driver should only␣
→˓be concerned with the

11 * parts of the structure that specify␣
→˓hardware setting for the

12 * communications channel such as baud,␣
→˓character size, etc.

13 */
14 /*
15 * Return true to indicate a successful␣

→˓set attributes, and false
16 * otherwise.
17 */
18 return true;
19 }

68 Chapter 8. Console Driver

CHAPTER

NINE

CLOCK DRIVER

69

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 9 Section 9.1

9.1 Introduction

The purpose of the clock driver is to provide
two services for the operating system.

• A steady time basis to the kernel, so that
the RTEMS primitives that need a clock
tick work properly. See the Clock Man-
ager chapter of the RTEMS Application C
User’s Guide for more details.

• An optional time counter to generate
timestamps of the uptime and wall clock
time.

The clock driver is usually located in the clock
directory of the BSP. Clock drivers should
use the Clock Driver Shell available via the
clockdrv_shell.h include file.

70 Chapter 9. Clock Driver

Chapter 9 Section 9.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

9.2 Clock Driver Shell

The Clock Driver Shell include file de-
fines the clock driver functions declared
in #include <rtems/clockdrv.h> which
are used by RTEMS configuration file
#include <rtems/confdefs.h>. In case
the application configuration defines #define
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER,
then the clock driver is registered and should
provide its services to the operating system. A
hardware specific clock driver must provide
some functions, defines and macros for the
Clock Driver Shell which are explained here
step by step. A clock driver file looks in
general like this.

1 /*
2 * A section with functions, defines and ␣

→˓macros to provide hardware specific
3 * functions for the Clock Driver Shell.
4 */
5 #include "../../../shared/clockdrv_shell.h"

9.2.1 Initialization

Depending on the hardware capabilities one
out of three clock driver variants must be se-
lected.

• The most basic clock driver provides
only a periodic interrupt service rou-
tine which calls rtems_clock_tick().
The interval is determined by the ap-
plication configuration via #define
CONFIGURE_MICROSECONDS_PER_TICK
and can be obtained via
rtems_configuration_get_microseconds_per_tick().
The timestamp resolution is limited to
the clock tick interval.

• In case the hardware lacks support for
a free running counter, then the module
used for the clock tick may provide sup-
port for timestamps with a resolution be-
low the clock tick interval. For this so
called simple timecounters can be used.

• The desired variant uses a free running
counter to provide accurate timestamps.
This variant is mandatory on SMP con-
figurations.

9.2.1.1 Clock Tick Only Variant

1 static void some_support_initialize_
→˓hardware(void)

2 {
3 /* Initialize hardware */
4 }
5

6 #define Clock_driver_support_initialize_
→˓hardware() \

7 some_support_initialize_hardware()
8

9 /* Indicate that this clock driver lacks a␣
→˓proper timecounter in hardware */

10

11 #define CLOCK_DRIVER_USE_DUMMY_TIMECOUNTER
12

13 #include "../../../shared/clockdrv_shell.h"

9.2.1.2 Simple Timecounter Variant

1 #include <rtems/timecounter.h>
2

3 static rtems_timecounter_simple some_tc;
4

5 static uint32_t some_tc_get(rtems_
→˓timecounter_simple *tc)

6 {
7 return some.counter;
8 }
9

10 static bool some_tc_is_pending(rtems_
→˓timecounter_simple *tc)

11 {
12 return some.is_pending;
13 }
14

15 static uint32_t some_tc_get_timecount(␣
→˓struct timecounter *tc)

16 {
17 return rtems_timecounter_simple_

→˓downcounter_get(
18 tc,
19 some_tc_get,
20 some_tc_is_pending
21);
22 }
23

24 static void some_tc_tick(void)
25 {
26 rtems_timecounter_simple_downcounter_

→˓tick(&some_tc, some_tc_get);
27 }
28

29 static void some_support_initialize_
→˓hardware(void)

9.2. Clock Driver Shell 71

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 9 Section 9.2

30 {
31 uint32_t frequency = 123456;
32 uint64_t us_per_tick = rtems_configuration_

→˓get_microseconds_per_tick();
33 uint32_t timecounter_ticks_per_clock_tick␣

→˓=
34 (frequency * us_

→˓per_tick) / 1000000;
35

36 /* Initialize hardware */
37 rtems_timecounter_simple_install(
38 &some_tc,
39 frequency,
40 timecounter_ticks_per_clock_tick,
41 some_tc_get_timecount
42);
43 }
44

45 #define Clock_driver_support_initialize_
→˓hardware() \

46 some_support_initialize_hardware()
47 #define Clock_driver_timecounter_tick() \
48 some_tc_tick()
49

50 #include "../../../shared/clockdrv_shell.h"

9.2.1.3 Timecounter Variant

This variant is preferred since it is the
most efficient and yields the most accurate
timestamps. It is also mandatory on SMP
configurations to obtain valid timestamps.
The hardware must provide a periodic in-
terrupt to service the clock tick and a free
running counter for the timecounter. The
free running counter must have a power of
two period. The tc_counter_mask must be
initialized to the free running counter period
minus one, e.g. for a 32-bit counter this is
0xffffffff. The tc_get_timecount function
must return the current counter value (the
counter values must increase, so if the counter
counts down, a conversion is necessary). Use
RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER
for the tc_quality. Set tc_frequency
to the frequency of the free running
counter in Hz. All other fields of the
struct timecounter must be zero initial-
ized. Install the initialized timecounter via
rtems_timecounter_install().

1 #include <rtems/timecounter.h>
2

3 static struct timecounter some_tc;
4

5 static uint32_t some_tc_get_timecount(␣
→˓struct timecounter *tc)

6 {
7 some.free_running_counter;
8 }
9

10 static void some_support_initialize_
→˓hardware(void)

11 {
12 uint64_t us_per_tick = rtems_configuration_

→˓get_microseconds_per_tick();
13 uint32_t frequency = 123456;
14

15 /*
16 * The multiplication must be done in 64-

→˓bit arithmetic to avoid an integer
17 * overflow on targets with a high enough␣

→˓counter frequency.
18 */
19 uint32_t interval = (uint32_t) ((␣

→˓frequency * us_per_tick) / 1000000);
20

21 /*
22 * Initialize hardware and set up a ␣

→˓periodic interrupt for the configuration
23 * based interval.
24 */
25 some_tc.tc_get_timecount = some_tc_get_

→˓timecount;
26 some_tc.tc_counter_mask = 0xffffffff;
27 some_tc.tc_frequency = frequency;
28 some_tc.tc_quality = RTEMS_TIMECOUNTER_

→˓QUALITY_CLOCK_DRIVER;
29 rtems_timecounter_install(&some_tc);
30 }
31

32 #define Clock_driver_support_initialize_
→˓hardware() \

33 some_support_initialize_hardware()
34

35 #include "../../../shared/clockdrv_shell.h"

9.2.2 Install Clock Tick Interrupt Service
Routine

The clock driver must provide a function to in-
stall the clock tick interrupt service routine via
Clock_driver_support_install_isr().

1 #include <bsp/irq.h>
2 #include <bsp/fatal.h>
3

4 static void some_support_install_isr(rtems_
→˓interrupt_handler isr)

72 Chapter 9. Clock Driver

Chapter 9 Section 9.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

5 {
6 rtems_status_code sc;
7 sc = rtems_interrupt_handler_install(
8 SOME_IRQ,
9 "Clock",

10 RTEMS_INTERRUPT_UNIQUE,
11 isr,
12 NULL
13);
14 if (sc != RTEMS_SUCCESSFUL) {
15 bsp_fatal(SOME_FATAL_IRQ_INSTALL);
16 }
17 }
18

19 #define Clock_driver_support_install_isr(␣
→˓isr, old) \

20 some_support_install_isr(isr)
21

22 #include "../../../shared/clockdrv_shell.h"

9.2.3 Support At Tick

The hardware specific support at tick is speci-
fied by Clock_driver_support_at_tick().

1 static void some_support_at_tick(void)
2 {
3 /* Clear interrupt */
4 }
5

6 #define Clock_driver_support_at_tick() \
7 some_support_at_tick()
8

9 #include "../../../shared/clockdrv_shell.h"

9.2.4 System Shutdown Support

The Clock Driver Shell provides the rou-
tine Clock_exit() that is scheduled to
be run during system shutdown via the
atexit() routine. The hardware spe-
cific shutdown support is specified by
Clock_driver_support_shutdown_hardware()
which is used by Clock_exit(). It should
disable the clock tick source if it was enabled.
This can be used to prevent clock ticks after
the system is shutdown.

1 static void some_support_shutdown_hardware(␣
→˓void)

2 {
3 /* Shutdown hardware */

4 }
5

6 #define Clock_driver_support_shutdown_
→˓hardware() \

7 some_support_shutdown_hardware()
8

9 #include "../../../shared/clockdrv_shell.h"

9.2.5 Multiple Clock Driver Ticks Per
Clock Tick

In case the hardware needs more than one
clock driver tick per clock tick (e.g. due
to a limited range of the hardware timer),
then this can be specified with the optional
#define CLOCK_DRIVER_ISRS_PER_TICK and
#define CLOCK_DRIVER_ISRS_PER_TICK_VALUE
defines. This is currently used only for x86 and
it hopefully remains that way.

1 /* Enable multiple clock driver ticks per␣
→˓clock tick */

2 #define CLOCK_DRIVER_ISRS_PER_TICK 1
3

4 /* Specifiy the clock driver ticks per clock␣
→˓tick value */

5 #define CLOCK_DRIVER_ISRS_PER_TICK_VALUE 123
6

7 #include "../../../shared/clockdrv_shell.h"

9.2.6 Clock Driver Ticks Counter

The Clock Driver Shell provide a global variable
that is simply a count of the number of clock
driver interrupt service routines that have oc-
curred. This information is valuable when de-
bugging a system. This variable is declared as
follows:

1 volatile uint32_t Clock_driver_ticks;

9.2. Clock Driver Shell 73

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 9 Section 9.2

74 Chapter 9. Clock Driver

CHAPTER

TEN

TIMER DRIVER

The timer driver is primarily used by the
RTEMS Timing Tests. This driver provides as
accurate a benchmark timer as possible. It typ-
ically reports its time in microseconds, CPU
cycles, or bus cycles. This information can
be very useful for determining precisely what
pieces of code require optimization and to
measure the impact of specific minor changes.

The gen68340 BSP also uses the Timer Driver
to support a high performance mode of the on-
CPU UART.

75

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 10 Section 10.1

10.1 Benchmark Timer

The RTEMS Timing Test Suite requires a
benchmark timer. The RTEMS Timing Test
Suite is very helpful for determining the per-
formance of target hardware and comparing
its performance to that of other RTEMS tar-
gets.

This section describes the routines which are
assumed to exist by the RTEMS Timing Test
Suite. The names used are EXACTLY what is
used in the RTEMS Timing Test Suite so follow
the naming convention.

10.1.1 benchmark_timer_initialize

Initialize the timer source.

1 void benchmark_timer_initialize(void)
2 {
3 initialize the benchmark timer
4 }

10.1.2 Read_timer

The benchmark_timer_read routine returns the
number of benchmark time units (typically mi-
croseconds) that have elapsed since the last
call to benchmark_timer_initialize.

1 benchmark_timer_t benchmark_timer_read(void)
2 {
3 stop time = read the hardware timer
4 if the subtract overhead feature is enabled
5 subtract overhead from stop time
6 return the stop time
7 }

Many implementations of this routine subtract
the overhead required to initialize and read
the benchmark timer. This makes the times re-
ported more accurate.

Some implementations report 0 if the harware
timer value change is sufficiently small. This is
intended to indicate that the execution time is
below the resolution of the timer.

10.1.3 benchmark_timer_disable_subtracting_average_overhead

This routine is invoked by the “Check Timer”
(tmck) test in the RTEMS Timing Test Suite. It
makes the benchmark_timer_read routine NOT
subtract the overhead required to initialize and
read the benchmark timer. This is used by the
tmoverhd test to determine the overhead re-
quired to initialize and read the timer.

1 void benchmark_timer_disable_subtracting_
→˓average_overhead(bool find_flag)

2 {
3 disable the subtract overhead feature
4 }

The benchmark_timer_find_average_overhead
variable is used to indicate the state of the
“subtract overhead feature”.

76 Chapter 10. Timer Driver

Chapter 10 Section 10.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

10.2 gen68340 UART FIFO Full
Mode

The gen68340 BSP is an example of the use
of the timer to support the UART input FIFO
full mode (FIFO means First In First Out and
roughly means buffer). This mode consists in
the UART raising an interrupt when n charac-
ters have been received (n is the UART’s FIFO
length). It results in a lower interrupt process-
ing time, but the problem is that a scanf prim-
itive will block on a receipt of less than n char-
acters. The solution is to set a timer that will
check whether there are some characters wait-
ing in the UART’s input FIFO. The delay time
has to be set carefully otherwise high rates will
be broken:

• if no character was received last time the
interrupt subroutine was entered, set a
long delay,

• otherwise set the delay to the delay
needed for n characters receipt.

10.2. gen68340 UART FIFO Full Mode 77

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 10 Section 10.2

78 Chapter 10. Timer Driver

CHAPTER

ELEVEN

REAL-TIME CLOCK DRIVER

79

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 11 Section 11.1

11.1 Introduction

The Real-Time Clock (RTC) driver is responsi-
ble for providing an interface to an RTC device.
The capabilities provided by this driver are:

• Set the RTC TOD to RTEMS TOD

• Set the RTEMS TOD to the RTC TOD

• Get the RTC TOD

• Set the RTC TOD to the Specified TOD

• Get the Difference Between the RTEMS
and RTC TOD

Note: In this chapter, the abbreviation TOD is
used for Time of Day.

The reference implementation for a
real-time clock driver can be found in
c/src/lib/libbsp/shared/tod.c. This driver
is based on the libchip concept and can be
easily configured to work with any of the RTC
chips supported by the RTC chip drivers in the
directory c/src/lib/lib/libchip/rtc. There
is a README file in this directory for each
supported RTC chip. Each of these README
explains how to configure the shared libchip
implementation of the RTC driver for that
particular RTC chip.

The DY-4 DMV177 BSP used the shared libchip
implementation of the RTC driver. There were
no DMV177 specific configuration routines. A
BSP could use configuration routines to dy-
namically determine what type of real-time
clock is on a particular board. This would
be useful for a BSP supporting multiple board
models. The relevant ports of the DMV177’s
RTC_Table configuration table is below:

1 #include <bsp.h>
2 #include <libchip/rtc.h>
3 #include <libchip/icm7170.h>
4

5 bool dmv177_icm7170_probe(int minor);
6

7 rtc_tbl RTC_Table[] = {
8 { "/dev/rtc0", /* ␣

→˓sDeviceName */
9 RTC_ICM7170, /* deviceType␣

→˓*/

10 &icm7170_fns, /* pDeviceFns␣
→˓*/

11 dmv177_icm7170_probe, /* ␣
→˓deviceProbe */

12 (void *) ICM7170_AT_1_MHZ, /* ␣
→˓pDeviceParams */

13 DMV170_RTC_ADDRESS, /* ␣
→˓ulCtrlPort1 */

14 0, /* ulDataPort␣
→˓*/

15 icm7170_get_register_8, /* ␣
→˓getRegister */

16 icm7170_set_register_8, /* ␣
→˓setRegister */

17 }
18 };
19 unsigned long RTC_Count = (sizeof(RTC_Table)/

→˓sizeof(rtc_tbl));
20 rtems_device_minor_number RTC_Minor;
21

22 bool dmv177_icm7170_probe(int minor)
23 {
24 volatile unsigned16 *card_resource_reg;
25 card_resource_reg = (volatile unsigned16␣

→˓*) DMV170_CARD_RESORCE_REG;
26 if ((*card_resource_reg & DMV170_RTC_INST_

→˓MASK) == DMV170_RTC_INSTALLED)
27 return TRUE;
28 return FALSE;
29 }

80 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

11.2 Initialization

The rtc_initialize routine is responsible for
initializing the RTC chip so it can be used. The
shared libchip implementation of this driver
supports multiple RTCs and bases its initial-
ization order on the order the chips are de-
fined in the RTC_Table. Each chip defined in
the table may or may not be present on this
particular board. It is the responsibility of the
deviceProbe to indicate the presence of a par-
ticular RTC chip. The first RTC found to be
present is considered the preferred RTC.

In the shared libchip based implementation
of the driver, the following actions are per-
formed:

1 rtems_device_driver rtc_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor_arg,
4 void *arg
5)
6 {
7 for each RTC configured in RTC_Table
8 if the deviceProbe for this RTC indicates␣

→˓it is present
9 set RTC_Minor to this device

10 set RTC_Present to TRUE
11 break out of this loop
12

13 if RTC_Present is not TRUE
14 return RTEMS_INVALID_NUMBER to indicate␣

→˓that no RTC is present
15

16 register this minor number as the "/dev/
→˓rtc"

17

18 perform the deviceInitialize routine for␣
→˓the preferred RTC chip

19

20 for RTCs past this one in the RTC_Table
21 if the deviceProbe for this RTC ␣

→˓indicates it is present
22 perform the deviceInitialize routine␣

→˓for this RTC chip
23 register the configured name for␣

→˓this RTC
24 }

The deviceProbe routine returns TRUE if
the device configured by this entry in the
RTC_Table is present. This configuration
scheme allows one to support multiple ver-
sions of the same board with a single BSP. For

example, if the first generation of a board had
Vendor A’s RTC chip and the second genera-
tion had Vendor B’s RTC chip, RTC_Table could
contain information for both. The deviceProbe
configured for Vendor A’s RTC chip would need
to return TRUE if the board was a first gener-
ation one. The deviceProbe routines are very
board dependent and must be provided by the
BSP.

11.2. Initialization 81

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 11 Section 11.3

11.3 setRealTimeToRTEMS

The setRealTimeToRTEMS routine sets the cur-
rent RTEMS TOD to that of the preferred RTC.

1 void setRealTimeToRTEMS(void)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceGetTime routine for the␣
→˓preferred RTC

7 set the RTEMS TOD using rtems_clock_set
8 }

82 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

11.4 setRealTimeFromRTEMS

The setRealTimeFromRTEMS routine sets the
preferred RTC TOD to the current RTEMS
TOD.

1 void setRealTimeFromRTEMS(void)
2 {
3 if no RTCs are present
4 return
5

6 obtain the RTEMS TOD using rtems_clock_get
7 invoke the deviceSetTime routine for the␣

→˓preferred RTC
8 }

11.4. setRealTimeFromRTEMS 83

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 11 Section 11.5

11.5 getRealTime

The getRealTime returns the preferred RTC
TOD to the caller.

1 void getRealTime(rtems_time_of_day *tod)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceGetTime routine for the␣
→˓preferred RTC

7 }

84 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

11.6 setRealTime

The setRealTime routine sets the preferred
RTC TOD to the TOD specified by the caller.

1 void setRealTime(rtems_time_of_day *tod)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceSetTime routine for the␣
→˓preferred RTC

7 }

11.6. setRealTime 85

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 11 Section 11.7

11.7 checkRealTime

The checkRealTime routine returns the num-
ber of seconds difference between the RTC
TOD and the current RTEMS TOD.

1 int checkRealTime(void)
2 {
3 if no RTCs are present
4 return -1
5

6 obtain the RTEMS TOD using rtems_clock_get
7 get the TOD from the preferred RTC using␣

→˓the deviceGetTime routine
8 convert the RTEMS TOD to seconds
9 convert the RTC TOD to seconds

10

11 return the RTEMS TOD in seconds - RTC TOD␣
→˓in seconds

12 }

86 Chapter 11. Real-Time Clock Driver

CHAPTER

TWELVE

ATA DRIVER

87

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 12 Section 12.1

12.1 Terms

ATA device - physical device attached to an IDE
controller

88 Chapter 12. ATA Driver

Chapter 12 Section 12.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

12.2 Introduction

ATA driver provides generic interface to an
ATA device. ATA driver is hardware inde-
pendent implementation of ATA standard de-
fined in working draft “AT Attachment Inter-
face with Extensions (ATA-2)” X3T10/0948D
revision 4c, March 18, 1996. ATA Driver based
on IDE Controller Driver and may be used for
computer systems with single IDE controller
and with multiple as well. Although cur-
rent implementation has several restrictions
detailed below ATA driver architecture allows
easily extend the driver. Current restrictions
are:

• Only mandatory (see draft p.29) and
two optional (READ/WRITE MULTIPLE)
commands are implemented

• Only PIO mode is supported but both
poll and interrupt driven

The reference implementation for ATA driver
can be found in cpukit/libblock/src/ata.c.

12.2. Introduction 89

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 12 Section 12.3

12.3 Initialization

The ata_initialize routine is responsible for
ATA driver initialization. The main goal of the
initialization is to detect and register in the sys-
tem all ATA devices attached to IDE controllers
successfully initialized by the IDE Controller
driver.

In the implementation of the driver, the follow-
ing actions are performed:

1 rtems_device_driver ata_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 initialize internal ATA driver data ␣

→˓structure
8

9 for each IDE controller successfully ␣
→˓initialized by the IDE Controller driver

10 if the controller is interrupt driven
11 set up interrupt handler
12

13 obtain information about ATA devices ␣
→˓attached to the controller

14 with help of EXECUTE DEVICE DIAGNOSTIC␣
→˓command

15

16 for each ATA device detected on the ␣
→˓controller

17 obtain device parameters with help of␣
→˓DEVICE IDENTIFY command

18

19 register new ATA device as new block␣
→˓device in the system

20 }

Special processing of ATA commands is re-
quired because of absence of multitasking en-
vironment during the driver initialization.

Detected ATA devices are registered in the sys-
tem as physical block devices (see libblock li-
brary description). Device names are formed
based on IDE controller minor number device
is attached to and device number on the con-
troller (0 - Master, 1 - Slave). In current imple-
mentation 64 minor numbers are reserved for
each ATA device which allows to support up to
63 logical partitions per device.

con-
troller
minor

device
number

device
name

ata
device
minor

0 0 hda 0
0 1 hdb 64
1 0 hdc 128
1 1 hdd 172
...

90 Chapter 12. ATA Driver

Chapter 12 Section 12.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

12.4 ATA Driver Architecture

12.4.1 ATA Driver Main Internal Data
Structures

ATA driver works with ATA requests. ATA re-
quest is described by the following structure:

1 /* ATA request */
2 typedef struct ata_req_s {
3 Chain_Node link; /* link in␣

→˓requests chain */
4 char type; /* request type␣

→˓*/
5 ata_registers_t regs; /* ATA command */
6 uint32_t cnt; /* Number of␣

→˓sectors to be exchanged */
7 uint32_t cbuf; /* number of␣

→˓current buffer from breq in use */
8 uint32_t pos; /* current␣

→˓position in 'cbuf' */
9 blkdev_request *breq; /* blkdev_request␣

→˓which corresponds to the ata request */
10 rtems_id sema; /* semaphore␣

→˓which is used if synchronous
11 * processing of␣

→˓the ata request is required */
12 rtems_status_code status; /* status of ata␣

→˓request processing */
13 int error; /* error code */
14 } ata_req_t;

ATA driver supports separate ATA requests
queues for each IDE controller (one queue per
controller). The following structure contains
information about controller’s queue and de-
vices attached to the controller:

1 /*
2 * This structure describes controller state,

→˓ devices configuration on the
3 * controller and chain of ATA requests to␣

→˓the controller.
4 */
5 typedef struct ata_ide_ctrl_s {
6 bool present; /* controller␣

→˓state */
7 ata_dev_t device[2]; /* ata devices␣

→˓description */
8 Chain_Control reqs; /* requests chain␣

→˓*/
9 } ata_ide_ctrl_t;

Driver uses array of the structures indexed by
the controllers minor number.

The following structure allows to map an ATA
device to the pair (IDE controller minor num-
ber device is attached to, device number on the
controller):

1 /*
2 * Mapping of RTEMS ATA devices to the ␣

→˓following pairs:
3 * (IDE controller number served the device,

→˓ device number on the controller)
4 */
5 typedef struct ata_ide_dev_s {
6 int ctrl_minor;/* minor number of IDE ␣

→˓controller serves RTEMS ATA device */
7 int device; /* device number on IDE␣

→˓controller (0 or 1) */
8 } ata_ide_dev_t;

Driver uses array of the structures indexed by
the ATA devices minor number.

ATA driver defines the following internal
events:

1 /* ATA driver events */
2 typedef enum ata_msg_type_s {
3 ATA_MSG_GEN_EVT = 1, /* general event␣

→˓*/
4 ATA_MSG_SUCCESS_EVT, /* success event␣

→˓*/
5 ATA_MSG_ERROR_EVT, /* error event */
6 ATA_MSG_PROCESS_NEXT_EVT /* process next␣

→˓ata request event */
7 } ata_msg_type_t;

12.4.2 Brief ATA Driver Core Overview

All ATA driver functionality is available via
ATA driver ioctl. Current implementation sup-
ports only two ioctls: BLKIO_REQUEST and
ATAIO_SET_MULTIPLE_MODE. Each ATA driver
ioctl() call generates an ATA request which is
appended to the appropriate controller queue
depending on ATA device the request belongs
to. If appended request is single request in the
controller’s queue then ATA driver event is gen-
erated.

ATA driver task which manages queue of ATA
driver events is core of ATA driver. In current
driver version queue of ATA driver events im-
plemented as RTEMS message queue. Each
message contains event type, IDE controller
minor number on which event happened and

12.4. ATA Driver Architecture 91

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 12 Section 12.4

error if an error occurred. Events may be gen-
erated either by ATA driver ioctl call or by ATA
driver task itself. Each time ATA driver task re-
ceives an event it gets controller minor num-
ber from event, takes first ATA request from
controller queue and processes it depending
on request and event types. An ATA request
processing may also includes sending of sev-
eral events. If ATA request processing is fin-
ished the ATA request is removed from the con-
troller queue. Note, that in current implemen-
tation maximum one event per controller may
be queued at any moment of the time.

(This part seems not very clear, hope I rewrite
it soon)

92 Chapter 12. ATA Driver

CHAPTER

THIRTEEN

IDE CONTROLLER DRIVER

93

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 13 Section 13.1

13.1 Introduction

The IDE Controller driver is responsible for
providing an interface to an IDE Controller.
The capabilities provided by this driver are:

• Read IDE Controller register

• Write IDE Controller register

• Read data block through IDE Controller
Data Register

• Write data block through IDE Controller
Data Register

The reference implementation for an
IDE Controller driver can be found in
$RTEMS_SRC_ROOT/c/src/libchip/ide. This
driver is based on the libchip concept
and allows to work with any of the IDE
Controller chips simply by appropriate
configuration of BSP. Drivers for a par-
ticular IDE Controller chips locate in the
following directories: drivers for well-
known IDE Controller chips locate into
$RTEMS_SRC_ROOT/c/src/libchip/ide,
drivers for IDE Controller chips
integrated with CPU locate into
$RTEMS_SRC_ROOT/c/src/lib/libcpu/myCPU
and drivers for custom IDE Con-
troller chips (for example, im-
plemented on FPGA) locate into
$RTEMS_SRC_ROOT/c/src/lib/libbsp/myBSP.
There is a README file in these directories for
each supported IDE Controller chip. Each of
these README explains how to configure a
BSP for that particular IDE Controller chip.

94 Chapter 13. IDE Controller Driver

Chapter 13 Section 13.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

13.2 Initialization

IDE Controller chips used by a BSP are stat-
ically configured into IDE_Controller_Table.
The ide_controller_initialize routine is re-
sponsible for initialization of all configured
IDE controller chips. Initialization order of the
chips based on the order the chips are defined
in the IDE_Controller_Table.

The following actions are performed by the
IDE Controller driver initialization routine:

1 rtems_device_driver ide_controller_
→˓initialize(

2 rtems_device_major_number major,
3 rtems_device_minor_number minor_arg,
4 void *arg
5)
6 {
7 for each IDE Controller chip configured in␣

→˓IDE_Controller_Table
8 if (BSP dependent probe(if exists) AND␣

→˓device probe for this IDE chip
9 indicates it is present)

10 perform initialization of the ␣
→˓particular chip

11 register device with configured name␣
→˓for this chip

12 }

13.2. Initialization 95

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 13 Section 13.3

13.3 Read IDE Controller Register

The ide_controller_read_register routine
reads the content of the IDE Controller chip
register. IDE Controller chip is selected via the
minor number. This routine is not allowed to
be called from an application.

1 void ide_controller_read_register(
2 rtems_device_minor_number minor,
3 unsigned32 reg,
4 unsigned32 *value
5)
6 {
7 get IDE Controller chip configuration ␣

→˓information from
8 IDE_Controller_Table by minor number
9

10 invoke read register routine for the chip
11 }

96 Chapter 13. IDE Controller Driver

Chapter 13 Section 13.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

13.4 Write IDE Controller Register

The ide_controller_write_register routine
writes IDE Controller chip register with spec-
ified value. IDE Controller chip is selected via
the minor number. This routine is not allowed
to be called from an application.

1 void ide_controller_write_register(
2 rtems_device_minor_number minor,
3 unsigned32 reg,
4 unsigned32 value
5)
6 {
7 get IDE Controller chip configuration ␣

→˓information from
8 IDE_Controller_Table by minor number
9

10 invoke write register routine for the chip
11 }

13.4. Write IDE Controller Register 97

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 13 Section 13.5

13.5 Read Data Block Through IDE
Controller Data Register

The ide_controller_read_data_block pro-
vides multiple consequent read of the IDE Con-
troller Data Register. IDE Controller chip is se-
lected via the minor number. The same func-
tionality may be achieved via separate mul-
tiple calls of ide_controller_read_register
routine but ide_controller_read_data_block
allows to escape functions call overhead. This
routine is not allowed to be called from an ap-
plication.

1 void ide_controller_read_data_block(
2 rtems_device_minor_number minor,
3 unsigned16 block_size,
4 blkdev_sg_buffer *bufs,
5 uint32_t *cbuf,
6 uint32_t *pos
7)
8 {
9 get IDE Controller chip configuration ␣

→˓information from
10 IDE_Controller_Table by minor number
11

12 invoke read data block routine for the chip
13 }

98 Chapter 13. IDE Controller Driver

Chapter 13 Section 13.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

13.6 Write Data Block Through
IDE Controller Data Register

The ide_controller_write_data_block pro-
vides multiple consequent write into the IDE
Controller Data Register. IDE Controller chip is
selected via the minor number. The same func-
tionality may be achieved via separate multiple
calls of ide_controller_write_register rou-
tine but ide_controller_write_data_block
allows to escape functions call overhead. This
routine is not allowed to be called from an ap-
plication.

1 void ide_controller_write_data_block(
2 rtems_device_minor_number minor,
3 unsigned16 block_size,
4 blkdev_sg_buffer *bufs,
5 uint32_t *cbuf,
6 uint32_t *pos
7)
8 {
9 get IDE Controller chip configuration ␣

→˓information from
10 IDE_Controller_Table by minor number
11

12 invoke write data block routine for the␣
→˓chip

13 }

13.6. Write Data Block Through IDE Controller Data Register 99

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 13 Section 13.6

100 Chapter 13. IDE Controller Driver

CHAPTER

FOURTEEN

NON-VOLATILE MEMORY DRIVER

The Non-Volatile driver is responsible for pro-
viding an interface to various types of non-
volatile memory. These types of memory in-
clude, but are not limited to, Flash, EEPROM,
and battery backed RAM. The capabilities pro-
vided by this class of device driver are:

• Initialize the Non-Volatile Memory
Driver

• Optional Disable Read and Write Han-
dlers

• Open a Particular Memory Partition

• Close a Particular Memory Partition

• Read from a Particular Memory Partition

• Write to a Particular Memory Partition

• Erase the Non-Volatile Memory Area

There is currently only one non-volatile de-
vice driver included in the RTEMS source tree.
The information provided in this chapter is
based on drivers developed for applications us-
ing RTEMS. It is hoped that this driver model
information can form the basis for a standard
non-volatile memory driver model that can be
supported in future RTEMS distribution.

101

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 14 Section 14.1

14.1 Major and Minor Numbers

The major number of a device driver is its in-
dex in the RTEMS Device Address Table.

A minor number is associated with each device
instance managed by a particular device driver.
An RTEMS minor number is an unsigned32 en-
tity. Convention calls dividing the bits in the
minor number down into categories that spec-
ify an area of non-volatile memory and a par-
tition with that area. This results in categories
like the following:

• area - indicates a block of non-volatile
memory

• partition - indicates a particular ad-
dress range with an area

From the above, it should be clear that a sin-
gle device driver can support multiple types of
non-volatile memory in a single system. The
minor number is used to distinguish the types
of memory and blocks of memory used for dif-
ferent purposes.

102 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

14.2 Non-Volatile Memory Driver
Configuration

There is not a standard non-volatile driver con-
figuration table but some fields are common
across different drivers. The non-volatile mem-
ory driver configuration table is typically an
array of structures with each structure con-
taining the information for a particular area of
non-volatile memory. The following is a list of
the type of information normally required to
configure each area of non-volatile memory.

memory_type
is the type of memory device in this area.
Choices are battery backed RAM, EEPROM,
Flash, or an optional user-supplied type. If
the user-supplied type is configured, then
the user is responsible for providing a set of
routines to program the memory.

memory
is the base address of this memory area.

attributes
is a pointer to a memory type specific at-
tribute block. Some of the fields commonly
contained in this memory type specific at-
tribute structure area:

use_protection_algorithm
is set to TRUE to indicate that the pro-
tection (i.e. locking) algorithm should be
used for this area of non-volatile memory.
A particular type of non-volatile memory
may not have a protection algorithm.

access
is an enumerated type to indicate the or-
ganization of the memory devices in this
memory area. The following is a list of
the access types supported by the current
driver implementation:

• simple unsigned8

• simple unsigned16

• simple unsigned32

• simple unsigned64

• single unsigned8 at offset 0 in an un-
signed16

• single unsigned8 at offset 1 in an un-
signed16

• single unsigned8 at offset 0 in an un-
signed32

• single unsigned8 at offset 1 in an un-
signed32

• single unsigned8 at offset 2 in an un-
signed32

• single unsigned8 at offset 3 in an un-
signed32

depth
is the depth of the progamming FIFO on
this particular chip. Some chips, par-
ticularly EEPROMs, have the same pro-
gramming algorithm but vary in the depth
of the amount of data that can be pro-
grammed in a single block.

number_of_partitions
is the number of logical partitions within this
area.

Partitions
is the address of the table that contains an
entry to describe each partition in this area.
Fields within each element of this table are
defined as follows:

offset
is the offset of this partition from the base
address of this area.

length
is the length of this partition.

By dividing an area of memory into multiple
partitions, it is possible to easily divide the
non-volatile memory for different purposes.

14.2. Non-Volatile Memory Driver Configuration 103

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 14 Section 14.3

14.3 Initialize the Non-Volatile
Memory Driver

At system initialization, the non-volatile mem-
ory driver’s initialization entry point will be in-
voked. As part of initialization, the driver will
perform whatever initializatin is required on
each non-volatile memory area.

The discrete I/O driver may register device
names for memory partitions of particular in-
terest to the system. Normally this will be re-
stricted to the device “/dev/nv_memory” to in-
dicate the entire device driver.

104 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

14.4 Disable Read and Write Han-
dlers

Depending on the target’s non-volatile mem-
ory configuration, it may be possible to write
to a status register and make the memory area
completely inaccessible. This is target depen-
dent and beyond the standard capabilities of
any memory type. The user has the optional
capability to provide handlers to disable and
enable access to a partiticular memory area.

14.4. Disable Read and Write Handlers 105

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 14 Section 14.5

14.5 Open a Particular Memory
Partition

This is the driver open call. Usually this call
does nothing other than validate the minor
number.

With some drivers, it may be necessary to
allocate memory when a particular device is
opened. If that is the case, then this is often
the place to do this operation.

106 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

14.6 Close a Particular Memory
Partition

This is the driver close call. Usually this call
does nothing.

With some drivers, it may be necessary to
allocate memory when a particular device is
opened. If that is the case, then this is the place
where that memory should be deallocated.

14.6. Close a Particular Memory Partition 107

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 14 Section 14.7

14.7 Read from a Particular Mem-
ory Partition

This corresponds to the driver read call. Af-
ter validating the minor number and argu-
ments, this call enables reads from the spec-
ified memory area by invoking the user sup-
plied “enable reads handler” and then reads
the indicated memory area. When invoked the
argument_block is actually a pointer to the fol-
lowing structure type:

1 typedef struct {
2 uint32_t offset;
3 void *buffer;
4 uint32_t length;
5 uint32_t status;
6 } Non_volatile_memory_Driver_arguments;

The driver reads length bytes starting at
offset into the partition and places them at
buffer. The result is returned in status.

After the read operation is complete, the user
supplied “disable reads handler” is invoked to
protect the memory area again.

108 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

14.8 Write to a Particular Memory
Partition

This corresponds to the driver write call. After
validating the minor number and arguments,
this call enables writes to the specified mem-
ory area by invoking the “enable writes han-
dler”, then unprotecting the memory area, and
finally actually writing to the indicated mem-
ory area. When invoked the argument_block
is actually a pointer to the following structure
type:

1 typedef struct {
2 uint32_t offset;
3 void *buffer;
4 uint32_t length;
5 uint32_t status;
6 } Non_volatile_memory_Driver_arguments;

The driver writes length bytes from buffer
and writes them to the non-volatile memory
starting at offset into the partition. The re-
sult is returned in status.

After the write operation is complete, the “dis-
able writes handler” is invoked to protect the
memory area again.

14.8. Write to a Particular Memory Partition 109

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 14 Section 14.9

14.9 Erase the Non-Volatile Mem-
ory Area

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, the spec-
ified area of non-volatile memory is erased.

110 Chapter 14. Non-Volatile Memory Driver

CHAPTER

FIFTEEN

NETWORKING DRIVER

111

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 15 Section 15.1

15.1 Introduction

This chapter is intended to provide an
introduction to the procedure for writ-
ing RTEMS network device drivers. The
example code is taken from the ‘Generic
68360’ network device driver. The source
code for this driver is located in the
c/src/lib/libbsp/m68k/gen68360/network
directory in the RTEMS source code distri-
bution. Having a copy of this driver at hand
when reading the following notes will help
significantly.

Legacy Networking Stack

This docuemntation is for the legacy
FreeBSD networking stack in the RTEMS
source tree.

112 Chapter 15. Networking Driver

Chapter 15 Section 15.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

15.2 Learn about the network de-
vice

Before starting to write the network driver be-
come completely familiar with the program-
mer’s view of the device. The following points
list some of the details of the device that must
be understood before a driver can be written.

• Does the device use DMA to transfer
packets to and from memory or does the
processor have to copy packets to and
from memory on the device?

• If the device uses DMA, is it capable of
forming a single outgoing packet from
multiple fragments scattered in separate
memory buffers?

• If the device uses DMA, is it capable of
chaining multiple outgoing packets, or
does each outgoing packet require inter-
vention by the driver?

• Does the device automatically pad short
frames to the minimum 64 bytes or does
the driver have to supply the padding?

• Does the device automatically retry a
transmission on detection of a collision?

• If the device uses DMA, is it capable of
buffering multiple packets to memory, or
does the receiver have to be restarted af-
ter the arrival of each packet?

• How are packets that are too short, too
long, or received with CRC errors han-
dled? Does the device automatically con-
tinue reception or does the driver have to
intervene?

• How is the device Ethernet address set?
How is the device programmed to accept
or reject broadcast and multicast pack-
ets?

• What interrupts does the device gener-
ate? Does it generate an interrupt for
each incoming packet, or only for pack-
ets received without error? Does it gen-
erate an interrupt for each packet trans-
mitted, or only when the transmit queue
is empty? What happens when a trans-
mit error is detected?

In addition, some controllers have specific
questions regarding board specific configura-
tion. For example, the SONIC Ethernet con-
troller has a very configurable data bus inter-
face. It can even be configured for sixteen and
thirty-two bit data buses. This type of informa-
tion should be obtained from the board vendor.

15.2. Learn about the network device 113

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 15 Section 15.3

15.3 Understand the network
scheduling conventions

When writing code for the driver transmit and
receive tasks, take care to follow the network
scheduling conventions. All tasks which are
associated with networking share various data
structures and resources. To ensure the con-
sistency of these structures the tasks execute
only when they hold the network semaphore
(rtems_bsdnet_semaphore). The transmit and
receive tasks must abide by this protocol. Be
very careful to avoid ‘deadly embraces’ with
the other network tasks. A number of rou-
tines are provided to make it easier for the net-
work driver code to conform to the network
task scheduling conventions.

• void rtems_bsdnet_semaphore_release(void)
This function releases the network
semaphore. The network driver tasks
must call this function immediately
before making any blocking RTEMS
request.

• void rtems_bsdnet_semaphore_obtain(void)
This function obtains the network
semaphore. If a network driver task
has released the network semaphore
to allow other network-related tasks
to run while the task blocks, then this
function must be called to reobtain the
semaphore immediately after the return
from the blocking RTEMS request.

• rtems_bsdnet_event_receive(rtems_event_set,rtems_option,rtems_interval,rtems_event_set
*) The network driver task should
call this function when it wishes to
wait for an event. This function re-
leases the network semaphore, calls
rtems_event_receive to wait for the
specified event or events and re-
obtains the semaphore. The value
returned is the value returned by the
rtems_event_receive.

114 Chapter 15. Networking Driver

Chapter 15 Section 15.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

15.4 Network Driver Makefile

Network drivers are considered part of
the BSD network package and as such
are to be compiled with the appropriate
flags. This can be accomplished by adding
-D__INSIDE_RTEMS_BSD_TCPIP_STACK__ to the
command line. If the driver is inside the
RTEMS source tree or is built using the RTEMS
application Makefiles, then adding the follow-
ing line accomplishes this:

1 DEFINES += -D__INSIDE_RTEMS_BSD_TCPIP_STACK_
→˓_

This is equivalent to the following list of defi-
nitions. Early versions of the RTEMS BSD net-
work stack required that all of these be de-
fined.

1 -D_COMPILING_BSD_KERNEL_ -DKERNEL -DINET -
→˓DNFS -DDIAGNOSTIC -DBOOTP_COMPAT

Defining these macros tells the network header
files that the driver is to be compiled with ex-
tended visibility into the network stack. This
is in sharp contrast to applications that simply
use the network stack. Applications do not re-
quire this level of visibility and should stick to
the portable application level API.

As a direct result of being logically inter-
nal to the network stack, network drivers
use the BSD memory allocation routines This
means, for example, that malloc takes three
arguments. See the SONIC device driver
(c/src/lib/libchip/network/sonic.c) for an
example of this. Because of this, network
drivers should not include <stdlib.h>. Do-
ing so will result in conflicting definitions of
malloc().

Application level code including network
servers such as the FTP daemon are not part of
the BSD kernel network code and should not
be compiled with the BSD network flags. They
should include <stdlib.h> and not define the
network stack visibility macros.

15.4. Network Driver Makefile 115

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 15 Section 15.5

15.5 Write the Driver Attach Func-
tion

The driver attach function is responsible for
configuring the driver and making the connec-
tion between the network stack and the driver.

Driver attach functions take a pointer to an
rtems_bsdnet_ifconfig structure as their only
argument. and set the driver parameters based
on the values in this structure. If an entry in
the configuration structure is zero the attach
function chooses an appropriate default value
for that parameter.

The driver should then set up several fields
in the ifnet structure in the device-dependent
data structure supplied and maintained by the
driver:

ifp->if_softc
Pointer to the device-dependent data. The
first entry in the device-dependent data
structure must be an arpcom structure.

ifp->if_name
The name of the device. The network stack
uses this string and the device number for
device name lookups. The device name
should be obtained from the name entry in
the configuration structure.

ifp->if_unit
The device number. The network stack uses
this number and the device name for device
name lookups. For example, if ifp->if_name
is scc and ifp->if_unit is 1, the full de-
vice name would be scc1. The unit number
should be obtained from the name entry in
the configuration structure.

ifp->if_mtu
The maximum transmission unit for the de-
vice. For Ethernet devices this value should
almost always be 1500.

ifp->if_flags
The device flags. Ethernet devices should set
the flags to IFF_BROADCAST|IFF_SIMPLEX, in-
dicating that the device can broadcast pack-
ets to multiple destinations and does not re-
ceive and transmit at the same time.

ifp->if_snd.ifq_maxlen
The maximum length of the queue of pack-
ets waiting to be sent to the driver. This is
normally set to ifqmaxlen.

ifp->if_init
The address of the driver initialization func-
tion.

ifp->if_start
The address of the driver start function.

ifp->if_ioctl
The address of the driver ioctl function.

ifp->if_output
The address of the output function. Ethernet
devices should set this to ether_output.

RTEMS provides a function to parse the driver
name in the configuration structure into a de-
vice name and unit number.

1 int rtems_bsdnet_parse_driver_name (
2 const struct rtems_bsdnet_ifconfig ␣

→˓*config,
3 char **namep
4);

The function takes two arguments; a pointer
to the configuration structure and a pointer to
a pointer to a character. The function parses
the configuration name entry, allocates mem-
ory for the driver name, places the driver name
in this memory, sets the second argument to
point to the name and returns the unit num-
ber. On error, a message is printed and -1 is
returned.

Once the attach function has set up the
above entries it must link the driver data
structure onto the list of devices by calling
if_attach. Ethernet devices should then call
ether_ifattach. Both functions take a pointer
to the device’s ifnet structure as their only ar-
gument.

The attach function should return a non-zero
value to indicate that the driver has been suc-
cessfully configured and attached.

116 Chapter 15. Networking Driver

Chapter 15 Section 15.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

15.6 Write the Driver Start Func-
tion.

This function is called each time the net-
work stack wants to start the transmitter.
This occures whenever the network stack adds
a packet to a device’s send queue and the
IFF_OACTIVE bit in the device’s if_flags is not
set.

For many devices this function need only set
the IFF_OACTIVE bit in the if_flags and send
an event to the transmit task indicating that a
packet is in the driver transmit queue.

15.6. Write the Driver Start Function. 117

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 15 Section 15.7

15.7 Write the Driver Initialization
Function.

This function should initialize the device, at-
tach to interrupt handler, and start the driver
transmit and receive tasks. The function:

1 rtems_id rtems_bsdnet_newproc(
2 char *name,
3 int stacksize,
4 void (*entry)(void *),
5 void *arg
6);

should be used to start the driver tasks.

Note that the network stack may call the driver
initialization function more than once. Make
sure multiple versions of the receive and trans-
mit tasks are not accidentally started.

118 Chapter 15. Networking Driver

Chapter 15 Section 15.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

15.8 Write the Driver Transmit
Task

This task is reponsible for removing packets
from the driver send queue and sending them
to the device. The task should block waiting
for an event from the driver start function in-
dicating that packets are waiting to be trans-
mitted. When the transmit task has drained
the driver send queue the task should clear the
IFF_OACTIVE bit in if_flags and block until
another outgoing packet is queued.

15.8. Write the Driver Transmit Task 119

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 15 Section 15.9

15.9 Write the Driver Receive Task

This task should block until a packet arrives
from the device. If the device is an Ether-
net interface the function ether_input should
be called to forward the packet to the net-
work stack. The arguments to ether_input
are a pointer to the interface data structure,
a pointer to the ethernet header and a pointer
to an mbuf containing the packet itself.

120 Chapter 15. Networking Driver

Chapter 15 Section 15.10 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

15.10 Write the Driver Interrupt
Handler

A typical interrupt handler will do nothing
more than the hardware manipulation re-
quired to acknowledge the interrupt and send
an RTEMS event to wake up the driver re-
ceive or transmit task waiting for the event.
Network interface interrupt handlers must not
make any calls to other network routines.

15.10. Write the Driver Interrupt Handler 121

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 15 Section 15.11

15.11 Write the Driver IOCTL
Function

This function handles ioctl requests directed at
the device. The ioctl commands which must be
handled are:

SIOCGIFADDR, SIOCSIFADDR
If the device is an Ethernet interface
these commands should be passed on to
ether_ioctl.

SIOCSIFFLAGS
This command should be used to start or
stop the device, depending on the state
of the interface IFF_UP and‘‘IFF_RUNNING‘‘
bits in if_flags:

IFF_RUNNING
Stop the device.

IFF_UP
Start the device.

IFF_UP|IFF_RUNNING
Stop then start the device.

0
Do nothing.

122 Chapter 15. Networking Driver

Chapter 15 Section 15.12 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

15.12 Write the Driver Statistic-
Printing Function

This function should print the values of
any statistic/diagnostic counters the network
driver may use. The driver ioctl function
should call the statistic-printing function when
the ioctl command is SIO_RTEMS_SHOW_STATS.

15.12. Write the Driver Statistic-Printing Function 123

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 15 Section 15.12

124 Chapter 15. Networking Driver

CHAPTER

SIXTEEN

SHARED MEMORY SUPPORT DRIVER

The Shared Memory Support Driver is respon-
sible for providing glue routines and configura-
tion information required by the Shared Mem-
ory Multiprocessor Communications Interface
(MPCI). The Shared Memory Support Driver
tailors the portable Shared Memory Driver to
a particular target platform.

This driver is only required in shared memory
multiprocessing systems that use the RTEMS
mulitprocessing support. For more informa-
tion on RTEMS multiprocessing capabilities
and the MPCI, refer to the Multiprocessing
Manager chapter of the RTEMS Application C
User’s Guide.

125

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 16 Section 16.1

16.1 Shared Memory Configura-
tion Table

The Shared Memory Configuration Table is de-
fined in the following structure:

1 typedef volatile uint32_t vol_u32;
2

3 typedef struct {
4 vol_u32 *address; /* write here for␣

→˓interrupt */
5 vol_u32 value; /* this value␣

→˓causes interrupt */
6 vol_u32 length; /* for this length␣

→˓(0,1,2,4) */
7 } Shm_Interrupt_information;
8

9 struct shm_config_info {
10 vol_u32 *base; ␣

→˓ /* base address of SHM */
11 vol_u32 length; ␣

→˓ /* length (in bytes) of SHM */
12 vol_u32 format; ␣

→˓ /* SHM is big or little endian */
13 vol_u32 (*convert)(); ␣

→˓ /* neutral conversion routine */
14 vol_u32 poll_intr; ␣

→˓ /* POLLED or INTR driven mode */
15 void (*cause_intr)(uint32_t);
16 Shm_Interrupt_information Intr; ␣

→˓ /* cause intr information */
17 };
18

19 typedef struct shm_config_info shm_config_
→˓table;

where the fields are defined as follows:

base
is the base address of the shared memory
buffer used to pass messages between the
nodes in the system.

length
is the length (in bytes) of the shared mem-
ory buffer used to pass messages between
the nodes in the system.

format
is either SHM_BIG or SHM_LITTLE to indicate
that the neutral format of the shared mem-
ory area is big or little endian. The format of
the memory should be chosen to match most
of the inter-node traffic.

convert
is the address of a routine which converts
from native format to neutral format. Ide-
ally, the neutral format is the same as the
native format so this routine is quite simple.

poll_intr, cause_intr
is either INTR_MODE or POLLED_MODE to indi-
cate how the node will be informed of in-
coming messages.

Intr
is the information required to cause an inter-
rupt on a node. This structure contains the
following fields:

address
is the address to write at to cause an inter-
rupt on that node. For a polled node, this
should be NULL.

value
is the value to write to cause an interrupt.

length
is the length of the entity to write on the
node to cause an interrupt. This can be 0
to indicate polled operation, 1 to write a
byte, 2 to write a sixteen-bit entity, and 4
to write a thirty-two bit entity.

126 Chapter 16. Shared Memory Support Driver

Chapter 16 Section 16.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

16.2 Primitives

16.2.1 Convert Address

The Shm_Convert_address is responsible for
converting an address of an entity in the
shared memory area into the address that
should be used from this node. Most targets
will simply return the address passed to this
routine. However, some target boards will
have a special window onto the shared mem-
ory. For example, some VMEbus boards have
special address windows to access addresses
that are normally reserved in the CPU’s address
space.

1 void *Shm_Convert_address(void *address)
2 {
3 return the local address version of this␣

→˓bus address
4 }

16.2.2 Get Configuration

The Shm_Get_configuration routine is respon-
sible for filling in the Shared Memory Configu-
ration Table passed to it.

1 void Shm_Get_configuration(
2 uint32_t localnode,
3 shm_config_table **shmcfg
4)
5 {
6 fill in the Shared Memory Configuration␣

→˓Table
7 }

16.2.3 Locking Primitives

This is a collection of routines that are invoked
by the portable part of the Shared Memory
Driver to manage locks in the shared memory
buffer area. Accesses to the shared memory
must be atomic. Two nodes in a multiprocessor
system must not be manipulating the shared
data structures simultaneously. The locking
primitives are used to insure this.

To avoid deadlock, local processor interrupts
should be disabled the entire time the locked
queue is locked.

The locking primitives operate on the lock
field of the Shm_Locked_queue_Control data
structure. This structure is defined as follows:

1 typedef struct {
2 vol_u32 lock; /* lock field for this ␣

→˓queue */
3 vol_u32 front; /* first envelope on queue␣

→˓ */
4 vol_u32 rear; /* last envelope on queue ␣

→˓ */
5 vol_u32 owner; /* receiving (i.e. owning)␣

→˓node */
6 } Shm_Locked_queue_Control;

where each field is defined as follows:

lock
is the lock field. Every node in the system
must agree on how this field will be used.
Many processor families provide an atomic
“test and set” instruction that is used to man-
age this field.

front
is the index of the first message on this
locked queue.

rear
is the index of the last message on this
locked queue.

owner
is the node number of the node that cur-
rently has this structure locked.

16.2.3.1 Initializing a Shared Lock

The Shm_Initialize_lock routine is responsi-
ble for initializing the lock field. This routines
usually is implemented as follows:

1 void Shm_Initialize_lock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 lq_cb->lock = LQ_UNLOCKED;
6 }

16.2.3.2 Acquiring a Shared Lock

The Shm_Lock routine is responsible for acquir-
ing the lock field. Interrupts should be dis-
abled while that lock is acquired. If the lock

16.2. Primitives 127

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 16 Section 16.2

is currently unavailble, then the locking rou-
tine should delay a few microseconds to allow
the other node to release the lock. Doing this
reduces bus contention for the lock. This rou-
tines usually is implemented as follows:

1 void Shm_Lock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 disable processor interrupts
6 set Shm_isrstat to previous interrupt␣

→˓disable level
7

8 while (TRUE) {
9 atomically attempt to acquire the lock

10 if the lock was acquired
11 return
12 delay some small period of time
13 }
14 }

16.2.3.3 Releasing a Shared Lock

The Shm_Unlock routine is responsible for re-
leasing the lock field and reenabling proces-
sor interrupts. This routines usually is imple-
mented as follows:

1 void Shm_Unlock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 set the lock to the unlocked value
6 reenable processor interrupts to their ␣

→˓level prior
7 to the lock being acquired. This value␣

→˓was saved
8 in the global variable Shm_isrstat
9 }

128 Chapter 16. Shared Memory Support Driver

Chapter 16 Section 16.3 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

16.3 Installing the MPCI ISR

The Shm_setvec is invoked by the portable por-
tion of the shared memory to install the inter-
rupt service routine that is invoked when an
incoming message is announced. Some target
boards support an interprocessor interrupt or
mailbox scheme and this is where the ISR for
that interrupt would be installed.

On an interrupt driven node, this routine
would be implemented as follows:

1 void Shm_setvec(void)
2 {
3 install the interprocessor communications␣

→˓ISR
4 }

On a polled node, this routine would be empty.

16.3. Installing the MPCI ISR 129

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 16 Section 16.3

130 Chapter 16. Shared Memory Support Driver

CHAPTER

SEVENTEEN

FRAME BUFFER DRIVER

In this chapter, we present the basic function-
ality implemented by a frame buffer driver:

• frame_buffer_initialize()

• frame_buffer_open()

• frame_buffer_close()

• frame_buffer_read()

• frame_buffer_write()

• frame_buffer_control()

131

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 17 Section 17.1

17.1 Introduction

The purpose of the frame buffer driver is to
provide an abstraction for graphics hardware.
By using the frame buffer interface, an appli-
cation can display graphics without knowing
anything about the low-level details of inter-
facing to a particular graphics adapter. The
parameters governing the mapping of mem-
ory to displayed pixels (planar or linear, bit
depth, etc) is still implementation-specific, but
device-independent methods are provided to
determine and potentially modify these pa-
rameters.

The frame buffer driver is commonly lo-
cated in the console directory of the BSP
and registered by the name /dev/fb0. Addi-
tional frame buffers (if available) are named
/dev/fb1*,*/dev/fb2, etc.

To work with the frame buffer, the following
operation sequence is used:open(), ioctls()
to get the frame buffer info, read() and/or
write(), and close().

132 Chapter 17. Frame Buffer Driver

Chapter 17 Section 17.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

17.2 Driver Function Overview

17.2.1 Initialization

The driver initialization is called once during
the RTEMS initialization process and returns
RTEMS_SUCCESSFUL when the device driver is
successfully initialized. During the initializa-
tion, a name is assigned to the frame buffer
device. If the graphics hardware supports
console text output, as is the case with the
pc386 VGA hardware, initialization into graph-
ics mode may be deferred until the device is
open() ed.

The frame_buffer_initialize() function
may look like this:

1 rtems_device_driver frame_buffer_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg)
5 {
6 rtems_status_code status;
7

8 printk("frame buffer driver initializing.
→˓.\n");

9

10 /*
11 * Register the device
12 */
13 status = rtems_io_register_name("/dev/fb0

→˓", major, 0);
14 if (status != RTEMS_SUCCESSFUL)
15 {
16 printk("Error registering frame buffer␣

→˓device!\n");
17 rtems_fatal_error_occurred(status);
18 }
19

20 /*
21 * graphics hardware initialization goes␣

→˓here for non-console
22 * devices
23 */
24

25 return RTEMS_SUCCESSFUL;
26 }

17.2.2 Opening the Frame Buffer Device

The frame_buffer_open() function is called
whenever a frame buffer device is opened. If
the frame buffer is registered as /dev/fb0, the

frame_buffer_open entry point will be called
as the result of an open("/dev/fb0",mode) in
the application.

Thread safety of the frame buffer driver is
implementation-dependent. The VGA driver
shown below uses a mutex to prevent multiple
open() operations of the frame buffer device.

The frame_buffer_open() function returns
RTEMS_SUCCESSFUL when the device driver is
successfully opened, and RTEMS_UNSATISFIED if
the device is already open:

1 rtems_device_driver frame_buffer_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 if (pthread_mutex_unlock(&mutex) == 0) {
8 /* restore previous state. for VGA this␣

→˓means return to text mode.
9 * leave out if graphics hardware has␣

→˓been initialized in
10 * frame_buffer_initialize()
11 */
12 ega_hwterm();
13 printk("FBVGA close called.\n");
14 return RTEMS_SUCCESSFUL;
15 }
16 return RTEMS_UNSATISFIED;
17 }

In the previous example, the function
ega_hwinit() takes care of hardware-specific
initialization.

17.2.3 Closing the Frame Buffer Device

The frame_buffer_close() is invoked
when the frame buffer device is closed.
It frees up any resources allocated in
frame_buffer_open(), and should restore
previous hardware state. The entry point
corresponds to the device driver close entry
point.

Returns RTEMS_SUCCESSFUL when the device
driver is successfully closed:

1 rtems_device_driver frame_buffer_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg)

17.2. Driver Function Overview 133

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 17 Section 17.2

5 {
6 pthread_mutex_unlock(&mutex);
7

8 /* TODO check mutex return value, RTEMS_
→˓UNSATISFIED if it failed. we

9 * don't want to unconditionally call ega_
→˓hwterm()... */

10 /* restore previous state. for VGA this␣
→˓means return to text mode.

11 * leave out if graphics hardware has been␣
→˓initialized in

12 * frame_buffer_initialize() */
13 ega_hwterm();
14 printk("frame buffer close called.\n");
15 return RTEMS_SUCCESSFUL;
16 }

17.2.4 Reading from the Frame Buffer De-
vice

The frame_buffer_read() is invoked from a
read() operation on the frame buffer device.
Read functions should allow normal and par-
tial reading at the end of frame buffer memory.
This method returns RTEMS_SUCCESSFUL when
the device is successfully read from:

1 rtems_device_driver frame_buffer_read(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 rtems_libio_rw_args_t *rw_args = (rtems_

→˓libio_rw_args_t *)arg;
8 rw_args->bytes_moved = ((rw_args->offset␣

→˓+ rw_args->count) > fb_fix.smem_len) ?
9 (fb_fix.smem_len -

→˓ rw_args->offset) : rw_args->count;
10 memcpy(rw_args->buffer,
11 (const void *) (fb_fix.smem_start␣

→˓+ rw_args->offset),
12 rw_args->bytes_moved);
13 return RTEMS_SUCCESSFUL;
14 }

17.2.5 Writing to the Frame Buffer Device

The frame_buffer_write() is invoked from a
write() operation on the frame buffer device.
The frame buffer write function is similar to
the read function, and should handle similar
cases involving partial writes.

This method returns RTEMS_SUCCESSFUL when
the device is successfully written to:

1 rtems_device_driver frame_buffer_write(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 rtems_libio_rw_args_t *rw_args = (rtems_

→˓libio_rw_args_t *)arg;
8 rw_args->bytes_moved = ((rw_args->offset␣

→˓+ rw_args->count) > fb_fix.smem_len) ?
9 (fb_fix.smem_len -

→˓ rw_args->offset) : rw_args->count;
10 memcpy((void *) (fb_fix.smem_start + rw_

→˓args->offset),
11 rw_args->buffer,
12 rw_args->bytes_moved);
13 return RTEMS_SUCCESSFUL;
14 }

17.2.6 Frame Buffer IO Control

The frame buffer driver allows several ioctls,
partially compatible with the Linux kernel, to
obtain information about the hardware.

All ioctl() operations on the frame buffer de-
vice invoke frame_buffer_control().

Ioctls supported:

• ioctls to get the frame buffer screen info
(fixed and variable).

• ioctl to set and get palette.

1 rtems_device_driver frame_buffer_control(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 rtems_libio_ioctl_args_t *args = arg;
8

9 printk("FBVGA ioctl called, cmd=%x\n",␣
→˓args->command);

10

11 switch(args->command) {
12 case FBIOGET_FSCREENINFO:
13 args->ioctl_return = get_fix_screen_

→˓info((struct fb_fix_screeninfo *) args-
→˓>buffer);

14 break;
15 case FBIOGET_VSCREENINFO:
16 args->ioctl_return = get_var_screen_

→˓info((struct fb_var_screeninfo *) args-
→˓>buffer);

134 Chapter 17. Frame Buffer Driver

Chapter 17 Section 17.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

17 break;
18 case FBIOPUT_VSCREENINFO:
19 /* not implemented yet*/
20 args->ioctl_return = -1;
21 return RTEMS_UNSATISFIED;
22 case FBIOGETCMAP:
23 args->ioctl_return = get_palette((␣

→˓struct fb_cmap *) args->buffer);
24 break;
25 case FBIOPUTCMAP:
26 args->ioctl_return = set_palette((␣

→˓struct fb_cmap *) args->buffer);
27 break;
28 default:
29 args->ioctl_return = 0;
30 break;
31 }
32

33 return RTEMS_SUCCESSFUL;
34 }

See rtems/fb.h for more information on the
list of ioctls and data structures they work
with.

17.2. Driver Function Overview 135

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 17 Section 17.2

136 Chapter 17. Frame Buffer Driver

CHAPTER

EIGHTEEN

ANALOG DRIVER

The Analog driver is responsible for provid-
ing an interface to Digital to Analog Convert-
ers (DACs) and Analog to Digital Converters
(ADCs). The capabilities provided by this class
of device driver are:

• Initialize an Analog Board

• Open a Particular Analog

• Close a Particular Analog

• Read from a Particular Analog

• Write to a Particular Analog

• Reset DACs

• Reinitialize DACS

Most analog devices are found on I/O cards
that support multiple DACs or ADCs on a single
card.

There are currently no analog device drivers
included in the RTEMS source tree. The in-
formation provided in this chapter is based
on drivers developed for applications using
RTEMS. It is hoped that this driver model in-
formation can form the basis for a standard
analog driver model that can be supported in
future RTEMS distribution.

137

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 18 Section 18.1

18.1 Major and Minor Numbers

The major number of a device driver is its in-
dex in the RTEMS Device Address Table.

A minor number is associated with each device
instance managed by a particular device driver.
An RTEMS minor number is an unsigned32 en-
tity. Convention calls for dividing the bits in
the minor number down into categories like
the following:

• board - indicates the board a particular
device is located on

• port - indicates the particular device on
a board.

From the above, it should be clear that a sin-
gle device driver can support multiple copies of
the same board in a single system. The minor
number is used to distinguish the devices.

138 Chapter 18. Analog Driver

Chapter 18 Section 18.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

18.2 Analog Driver Configuration

There is not a standard analog driver configu-
ration table but some fields are common across
different drivers. The analog driver configu-
ration table is typically an array of structures
with each structure containing the information
for a particular board. The following is a list of
the type of information normally required to
configure an analog board:

board_offset
is the base address of a board.

DAC_initial_values
is an array of the voltages that should be
written to each DAC during initialization.
This allows the driver to start the board in
a known state.

18.2. Analog Driver Configuration 139

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 18 Section 18.3

18.3 Initialize an Analog Board

At system initialization, the analog driver’s ini-
tialization entry point will be invoked. As part
of initialization, the driver will perform what-
ever board initialization is required and then
set all outputs to their configured initial state.

The analog driver may register a device name
for each DAC and ADC in the system.

140 Chapter 18. Analog Driver

Chapter 18 Section 18.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

18.4 Open a Particular Analog

This is the driver open call. Usually this call
does nothing other than validate the minor
number.

With some drivers, it may be necessary to
allocate memory when a particular device is
opened. If that is the case, then this is often
the place to do this operation.

18.4. Open a Particular Analog 141

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 18 Section 18.5

18.5 Close a Particular Analog

This is the driver close call. Usually this call
does nothing.

With some drivers, it may be necessary to
allocate memory when a particular device is
opened. If that is the case, then this is the place
where that memory should be deallocated.

142 Chapter 18. Analog Driver

Chapter 18 Section 18.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

18.6 Read from a Particular Analog

This corresponds to the driver read call. After
validating the minor number and arguments,
this call reads the indicated device. Most ana-
log devices store the last value written to a
DAC. Since DACs are output only devices, sav-
ing the last written value gives the appearance
that DACs can be read from also. If the device
is an ADC, then it is sampled.

Note: Many boards have multiple analog in-
puts but only one ADC. On these boards, it
will be necessary to provide some type of mu-
tual exclusion during reads. On these boards,
there is a MUX which must be switched before
sampling the ADC. After the MUX is switched,
the driver must delay some short period of
time (usually microseconds) before the signal
is stable and can be sampled. To make mat-
ters worse, some ADCs cannot respond to wide
voltage swings in a single sample. On these
ADCs, one must do two samples when the volt-
age swing is too large. On a practical basis, this
means that the driver usually ends up double
sampling the ADC on these systems.

The value returned is a single precision
floating point number representing the volt-
age read. This value is stored in the
argument_block passed in to the call. By re-
turning the voltage, the caller is freed from
having to know the number of bits in the
analog and board dependent conversion algo-
rithm.

18.6. Read from a Particular Analog 143

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 18 Section 18.7

18.7 Write to a Particular Analog

This corresponds to the driver write call. After
validating the minor number and arguments,
this call writes the indicated device. If the
specified device is an ADC, then an error is usu-
ally returned.

The value written is a single precision float-
ing point number representing the voltage to
be written to the specified DAC. This value
is stored in the argument_block passed in to
the call. By passing the voltage to the device
driver, the caller is freed from having to know
the number of bits in the analog and board de-
pendent conversion algorithm.

144 Chapter 18. Analog Driver

Chapter 18 Section 18.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

18.8 Reset DACs

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, all of the
DACs are written to 0.0 volts.

18.8. Reset DACs 145

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 18 Section 18.9

18.9 Reinitialize DACS

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, all of the
DACs are written with the initial value config-
ured for this device.

146 Chapter 18. Analog Driver

Chapter 18 Section 18.10 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

18.10 Get Last Written Values

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, the fol-
lowing information is returned to the caller:

• last value written to the specified DAC

• timestamp of when the last write was
performed

18.10. Get Last Written Values 147

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 18 Section 18.10

148 Chapter 18. Analog Driver

CHAPTER

NINETEEN

DISCRETE DRIVER

The Discrete driver is responsible for providing
an interface to Discrete Input/Outputs. The ca-
pabilities provided by this class of device driver
are:

• Initialize a Discrete I/O Board

• Open a Particular Discrete Bitfield

• Close a Particular Discrete Bitfield

• Read from a Particular Discrete Bitfield

• Write to a Particular Discrete Bitfield

• Reset DACs

• Reinitialize DACS

Most discrete I/O devices are found on I/O
cards that support many bits of discrete I/O on
a single card. This driver model is centered on
the notion of reading bitfields from the card.

There are currently no discrete I/O device
drivers included in the RTEMS source tree.
The information provided in this chapter is
based on drivers developed for applications us-
ing RTEMS. It is hoped that this driver model
information can form the discrete I/O driver
model that can be supported in future RTEMS
distribution.

149

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 19 Section 19.1

19.1 Major and Minor Numbers

The major number of a device driver is its in-
dex in the RTEMS Device Address Table.

A minor number is associated with each device
instance managed by a particular device driver.
An RTEMS minor number is an unsigned32 en-
tity. Convention calls for dividing the bits in
the minor number down into categories that
specify a particular bitfield. This results in cat-
egories like the following:

• board - indicates the board a particular
bitfield is located on

• word - indicates the particular word of
discrete bits the bitfield is located within

• start - indicates the starting bit of the
bitfield

• width - indicates the width of the bitfield

From the above, it should be clear that a sin-
gle device driver can support multiple copies of
the same board in a single system. The minor
number is used to distinguish the devices.

By providing a way to easily access a particular
bitfield from the device driver, the application
is insulated with knowing how to mask fields
in and out of a discrete I/O.

150 Chapter 19. Discrete Driver

Chapter 19 Section 19.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

19.2 Discrete I/O Driver Configu-
ration

There is not a standard discrete I/O driver
configuration table but some fields are com-
mon across different drivers. The discrete I/O
driver configuration table is typically an ar-
ray of structures with each structure contain-
ing the information for a particular board. The
following is a list of the type of information
normally required to configure an discrete I/O
board:

board_offset
is the base address of a board.

relay_initial_values
is an array of the values that should be writ-
ten to each output word on the board during
initialization. This allows the driver to start
with the board’s output in a known state.

19.2. Discrete I/O Driver Configuration 151

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 19 Section 19.3

19.3 Initialize a Discrete I/O Board

At system initialization, the discrete I/O
driver’s initialization entry point will be in-
voked. As part of initialization, the driver
will perform whatever board initializatin is re-
quired and then set all outputs to their config-
ured initial state.

The discrete I/O driver may register a device
name for bitfields of particular interest to the
system. Normally this will be restricted to the
names of each word and, if the driver supports
it, an “all words”.

152 Chapter 19. Discrete Driver

Chapter 19 Section 19.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

19.4 Open a Particular Discrete
Bitfield

This is the driver open call. Usually this call
does nothing other than validate the minor
number.

With some drivers, it may be necessary to
allocate memory when a particular device is
opened. If that is the case, then this is often
the place to do this operation.

19.4. Open a Particular Discrete Bitfield 153

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 19 Section 19.5

19.5 Close a Particular Discrete
Bitfield

This is the driver close call. Usually this call
does nothing.

With some drivers, it may be necessary to
allocate memory when a particular device is
opened. If that is the case, then this is the place
where that memory should be deallocated.

154 Chapter 19. Discrete Driver

Chapter 19 Section 19.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

19.6 Read from a Particular Dis-
crete Bitfield

This corresponds to the driver read call. After
validating the minor number and arguments,
this call reads the indicated bitfield. A discrete
I/O devices may have to store the last value
written to a discrete output. If the bitfield is
output only, saving the last written value gives
the appearance that it can be read from also.
If the bitfield is input, then it is sampled.

Note: Many discrete inputs have a tendency
to bounce. The application may have to take
account for bounces.

The value returned is an unsigned32 number
representing the bitfield read. This value is
stored in the argument_block passed in to the
call.

Note: Some discrete I/O drivers have a
special minor number used to access all dis-
crete I/O bits on the board. If this special
minor is used, then the area pointed to by
argument_block must be the correct size.

19.6. Read from a Particular Discrete Bitfield 155

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 19 Section 19.7

19.7 Write to a Particular Discrete
Bitfield

This corresponds to the driver write call. After
validating the minor number and arguments,
this call writes the indicated device. If the
specified device is an ADC, then an error is usu-
ally returned.

The value written is an unsigned32 number
representing the value to be written to the
specified bitfield. This value is stored in the
argument_block passed in to the call.

Note: Some discrete I/O drivers have a
special minor number used to access all dis-
crete I/O bits on the board. If this special
minor is used, then the area pointed to by
argument_block must be the correct size.

156 Chapter 19. Discrete Driver

Chapter 19 Section 19.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

19.8 Disable Discrete Outputs

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, the dis-
crete outputs are disabled.

Note: It may not be possible to disable/enable
discrete output on all discrete I/O boards.

19.8. Disable Discrete Outputs 157

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 19 Section 19.9

19.9 Enable Discrete Outputs

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, the dis-
crete outputs are enabled.

Note: It may not be possible to disable/enable
discrete output on all discrete I/O boards.

158 Chapter 19. Discrete Driver

Chapter 19 Section 19.10 RTEMS BSP and Device Driver Development Guide, Release 4.11.3

19.10 Reinitialize Outputs

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, the dis-
crete outputs are rewritten with the configured
initial output values.

19.10. Reinitialize Outputs 159

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 19 Section 19.11

19.11 Get Last Written Values

This is one of the IOCTL functions supported
by the I/O control device driver entry point.
When this IOCTL function is invoked, the fol-
lowing information is returned to the caller:

• last value written to the specified output
word

• timestamp of when the last write was
performed

160 Chapter 19. Discrete Driver

CHAPTER

TWENTY

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable
Index entries.

• genindex

• search

161

RTEMS BSP and Device Driver Development Guide, Release 4.11.3 Chapter 20 Section 20.0

162 Chapter 20. Command and Variable Index

INDEX

BSP_DEFAULT_UNIFIED_WORK_AREAS, 37
BSP_IDLE_TASK_BODY, 37
BSP_IDLE_TASK_STACK_SIZE, 37
bsp_interrupt_dispatch(), 40
bsp_interrupt_facility_initialize(), 40
bsp_interrupt_handler_default(), 40
BSP_INTERRUPT_STACK_SIZE, 37
bsp_interrupt_vector_disable(), 40
bsp_interrupt_vector_enable(), 40
BSP_ZERO_WORKSPACE_AUTOMATICALLY,

37

CONFIGURE_MALLOC_BSP_SUPPORTS_
SBRK, 35, 37

163

	I BSP and Device Driver Development Guide
	Introduction
	Target Dependent Files
	CPU Dependent
	Board Dependent
	Peripheral Dependent
	Questions to Ask
	CPU Dependent Executive Files
	CPU Dependent Support Files
	Board Support Package Structure

	Makefiles
	Makefiles Used During The BSP Building Process
	Creating a New BSP Make Customization File

	Linker Script
	What is a ``linkcmds'' file?
	Program Sections
	Image of an Executable
	Example Linker Command Script
	Initialized Data

	Miscellaneous Support Files
	GCC Compiler Specifications File
	README Files
	Times
	Tools Subdirectory
	bsp.h Include File
	tm27.h Include File
	Calling Overhead File
	sbrk() Implementation
	bsp_fatal_extension() - Cleanup the Hardware
	Configuration Macros
	set_vector() - Install an Interrupt Vector
	Interrupt Delay Profiling
	Programmable Interrupt Controller API

	Ada95 Interrupt Support
	Introduction
	Mapping Interrupts to POSIX Signals
	Example Ada95 Interrupt Program
	Version Requirements

	Initialization Code
	Introduction
	Required Global Variables
	Board Initialization
	Start Code - Assembly Language Initialization
	boot_card() - Boot the Card
	bsp_work_area_initialize() - BSP Specific Work Area Initialization
	bsp_start() - BSP Specific Initialization
	bsp_predriver_hook() - BSP Specific Predriver Hook
	Device Driver Initialization
	RTEMS Postdriver Callback

	The Interrupt Vector Table
	Interrupt Vector Table on the gen68340 BSP

	Chip Select Initialization
	Integrated Processor Registers Initialization
	Data Section Recopy
	The RTEMS Configuration Table

	Console Driver
	Introduction
	Termios
	Driver Functioning Modes
	Serial Driver Functioning Overview
	Basics
	Termios and Polled IO
	Termios and Interrupt Driven IO
	Initialization
	Opening a serial device
	Closing a Serial Device
	Reading Characters from a Serial Device
	Writing Characters to a Serial Device
	Changing Serial Line Parameters

	Clock Driver
	Introduction
	Clock Driver Shell
	Initialization
	Clock Tick Only Variant
	Simple Timecounter Variant
	Timecounter Variant

	Install Clock Tick Interrupt Service Routine
	Support At Tick
	System Shutdown Support
	Multiple Clock Driver Ticks Per Clock Tick
	Clock Driver Ticks Counter

	Timer Driver
	Benchmark Timer
	benchmark_timer_initialize
	Read_timer
	benchmark_timer_disable_subtracting_average_overhead

	gen68340 UART FIFO Full Mode

	Real-Time Clock Driver
	Introduction
	Initialization
	setRealTimeToRTEMS
	setRealTimeFromRTEMS
	getRealTime
	setRealTime
	checkRealTime

	ATA Driver
	Terms
	Introduction
	Initialization
	ATA Driver Architecture
	ATA Driver Main Internal Data Structures
	Brief ATA Driver Core Overview

	IDE Controller Driver
	Introduction
	Initialization
	Read IDE Controller Register
	Write IDE Controller Register
	Read Data Block Through IDE Controller Data Register
	Write Data Block Through IDE Controller Data Register

	Non-Volatile Memory Driver
	Major and Minor Numbers
	Non-Volatile Memory Driver Configuration
	Initialize the Non-Volatile Memory Driver
	Disable Read and Write Handlers
	Open a Particular Memory Partition
	Close a Particular Memory Partition
	Read from a Particular Memory Partition
	Write to a Particular Memory Partition
	Erase the Non-Volatile Memory Area

	Networking Driver
	Introduction
	Learn about the network device
	Understand the network scheduling conventions
	Network Driver Makefile
	Write the Driver Attach Function
	Write the Driver Start Function.
	Write the Driver Initialization Function.
	Write the Driver Transmit Task
	Write the Driver Receive Task
	Write the Driver Interrupt Handler
	Write the Driver IOCTL Function
	Write the Driver Statistic-Printing Function

	Shared Memory Support Driver
	Shared Memory Configuration Table
	Primitives
	Convert Address
	Get Configuration
	Locking Primitives
	Initializing a Shared Lock
	Acquiring a Shared Lock
	Releasing a Shared Lock

	Installing the MPCI ISR

	Frame Buffer Driver
	Introduction
	Driver Function Overview
	Initialization
	Opening the Frame Buffer Device
	Closing the Frame Buffer Device
	Reading from the Frame Buffer Device
	Writing to the Frame Buffer Device
	Frame Buffer IO Control

	Analog Driver
	Major and Minor Numbers
	Analog Driver Configuration
	Initialize an Analog Board
	Open a Particular Analog
	Close a Particular Analog
	Read from a Particular Analog
	Write to a Particular Analog
	Reset DACs
	Reinitialize DACS
	Get Last Written Values

	Discrete Driver
	Major and Minor Numbers
	Discrete I/O Driver Configuration
	Initialize a Discrete I/O Board
	Open a Particular Discrete Bitfield
	Close a Particular Discrete Bitfield
	Read from a Particular Discrete Bitfield
	Write to a Particular Discrete Bitfield
	Disable Discrete Outputs
	Enable Discrete Outputs
	Reinitialize Outputs
	Get Last Written Values

	Command and Variable Index
	Index

