
RTEMS Source Builder
Release 4.11.2

©Copyright 2016, RTEMS Project (built 10th July 2017)

CONTENTS

I Table of Contents 3

1 RTEMS Source Builder 5
1.1 Why Build from Source? . 7
1.2 History . 8

2 Quick Start 9
2.1 Setup . 11
2.2 Checking . 12
2.3 Build Sets . 13
2.4 Building . 15
2.5 Deployment . 18
2.6 Controlling the Build . 21

3 Hosts 23
3.1 Linux . 24

3.1.1 ArchLinux . 24
3.1.2 CentOS . 24
3.1.3 Fedora . 24
3.1.4 Raspbian . 24
3.1.5 Ubuntu . 25
3.1.6 Linux Mint . 25
3.1.7 openSUSE . 25

3.2 FreeBSD . 26
3.3 NetBSD . 27
3.4 MacOS . 28

3.4.1 Mavericks . 28
3.4.2 Serria . 28

3.5 Windows . 29
3.5.1 MSYS2 . 29
3.5.2 Cygwin . 29

4 Project Sets 33
4.1 Bare Metal . 34
4.2 RTEMS . 35
4.3 Patches . 37

5 Cross and Canadian Cross Building 39
5.1 Cross Building . 40

i

5.2 Canadian Cross Building . 41

6 RTEMS 3rd Party Packages 43
6.1 Vertical Integration . 44
6.2 Building . 45
6.3 Adding . 46
6.4 BSP Support . 47
6.5 RTEMS BSP Configuration . 51

7 Configuration 53
7.1 Source and Patches . 54

7.1.1 HTTP, HTTPS, and FTP . 54
7.1.2 GIT . 55
7.1.3 CVS . 56

7.2 Macros and Defaults . 57
7.2.1 Macro Maps and Files . 57
7.2.2 Personal Macros . 59

7.3 Report Mailing . 60
7.4 Build Set Files . 61
7.5 Configuration Control . 62
7.6 Personal Configurations . 63
7.7 New Configurations . 64

7.7.1 Layering by Including . 64
7.7.2 Configuration File Numbering . 64
7.7.3 Common Configuration Scripts . 64
7.7.4 DTC Example . 64
7.7.5 Debugging . 68

7.8 Scripting . 69
7.8.1 Expanding . 70
7.8.2 %prep . 71
7.8.3 %build . 72
7.8.4 %install . 73
7.8.5 %clean . 74
7.8.6 %include . 74
7.8.7 %name . 74
7.8.8 %summary . 75
7.8.9 %release . 75
7.8.10 %version . 75
7.8.11 %buildarch . 75
7.8.12 %source . 75
7.8.13 %patch . 76
7.8.14 %hash . 77
7.8.15 %echo . 78
7.8.16 %warning . 78
7.8.17 %error . 78
7.8.18 %select . 78
7.8.19 %define . 78
7.8.20 %undefine . 79
7.8.21 %if . 79
7.8.22 %ifn . 81
7.8.23 %ifarch . 81
7.8.24 %ifnarch . 81

ii

7.8.25 %ifos . 81
7.8.26 %else . 81
7.8.27 %endfi . 81
7.8.28 %bconf_with . 81
7.8.29 %bconf_without . 81

8 Commands 83
8.1 Checker (sb-check) . 84
8.2 Defaults (sb-defaults) . 85
8.3 Set Builder (sb-set-builder) . 86
8.4 Set Builder (sb-builder) . 90

9 Bugs, Crashes, and Build Failures 91

10 Contributing 93

iii

iv

Chapter 0 Section 0.0 RTEMS Source Builder, Release 4.11.2

COPYRIGHT (c) 2012 - 2016.
Chris Johns <chrisj@rtems.org>

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.org/. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the Community Project
hosted at http://www.rtems.org/.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documentation https://docs.rtems.org/
Bug Reporting https://devel.rtems.org/query
Mailing Lists https://lists.rtems.org/
Git Repositories https://git.rtems.org/

CONTENTS 1

mailto:chrisj@rtems.org
http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS Source Builder, Release 4.11.2 Chapter 0 Section 0.0

2 CONTENTS

Chapter 0 Section 0.0 RTEMS Source Builder, Release 4.11.2

Part I

TABLE OF CONTENTS

3

RTEMS Source Builder, Release 4.11.2 Chapter 0 Section 0.0

4

CHAPTER

ONE

RTEMS SOURCE BUILDER

The RTEMS Source Builder or RSB is a tool to build packages from source. It is used by the
RTEMS project to build it’s compilers and OS. The RSB helps consolidate the details you need to
build a package from source in a controlled and verifiable way. The tool is aimed at developers
of software who use tool sets for embedded development. The RSB is not limited to building
tools just for RTEMS, you can build bare metal development environments.

Embedded development typically uses cross-compiling tool chains, debuggers, and debugging
aids. Together we call these a tool set. The RTEMS Source Builder is designed to fit this specific
niche but is not limited to it. The RSB can be used outside of the RTEMS project and we
welcome this.

The RTEMS Source Builder is typically used to build a set of tools or a build set. A build set is
a collection of packages and a package is a specific tool, for example gcc or gdb, or library. The
RTEMS Source Builder attempts to support any host environment that runs Python and you can
build the package on. The RSB is not some sort of magic that can take any piece of source code
and make it build. Someone at some point in time has figured out how to build that package
from source and taught this tool.

The RTEMS Source Builder has been tested on:

• ArchLinux

• CentOS

• Fedora

• Raspbian

• Ubuntu (includes XUbuntu)

• Linux Mint

• openSUSE

• FreeBSD

• NetBSD

• MacOS

• Windows

5

RTEMS Source Builder, Release 4.11.2 Chapter 1 Section 1.0

Setting up your Host

Chapter 3 - Hosts (page 23) details setting up hosts.

The RTEMS Source Builder has two types of configuration data. The first is the build set. A build
set describes a collection of packages that define a set of tools you would use when developing
software for RTEMS. For example the basic GNU tool set is binutils, gcc, and gdb and is the
typical base suite of tools you need for an embedded cross-development type project. The
second type of configuration data is the configuration files and they define how a package is
built. Configuration files are scripts loosely based on the RPM spec file format and they detail
the steps needed to build a package. The steps are preparation, building, and installing. Scripts
support macros, shell expansion, logic, includes plus many more features useful when build
packages.

The RTEMS Source Builder does not interact with any host package management systems.
There is no automatic dependence checking between various packages you build or packages
and software your host system you may have installed. We assume the build sets and config-
uration files you are using have been created by developers who do. Support is provided for
package config or pkgconfg type files so you can check and use standard libraries if present. If
you have a problem please ask on our Developers Mailing List.

This documentation caters for a range of users from new to experienced RTEMS developers.
New users can follow the Quick Start section up to the “Installing and Tar Files” to get a working
tools and RTEMS. Users building a binary tool set for release can read the “Installing and Tar
Files”. Users wanting to run and test bleeding edge tools or packages, or wanting update or
extend the RSB’s configuration can read the remaining sections.

Bug Reporting

If you think you have found a problem please see Chapter 9 - Bugs, Crashes, and Build Failures
(page 91).

6 Chapter 1. RTEMS Source Builder

https://lists.rtems.org/mailman/listinfo/devel/

Chapter 1 Section 1.1 RTEMS Source Builder, Release 4.11.2

1.1 Why Build from Source?

The RTEMS Source Builder is not a replacement for the binary install systems you have with
commercial operating systems or open source operating system distributions. Those products
and distributions are critically important and are the base that allows the RSB to work. The
RTEMS Source Builder sits somewhere between you manually entering the commands to build
a tool set and a tool such as yum or apt-get to install binary packages made specifically for
your host operating system. Building manually or installing a binary package from a remote
repository are valid and real alternatives. The RSB provides the specific service of repeatably
being able to build tool sets from source code. The process leaves you with the source code
used to build the tools and the ability to rebuilt it.

If you are developing a system or product that has a long shelf life or is used in a critical piece of
infrastructure that has a long life cycle being able to build from source is important. It insulates
the project from the fast ever changing world of the host development machines. If your tool set
is binary and you have lost the ability to build it you have lost a degree of control and flexibility
open source gives you. Fast moving host environments are fantastic. We have powerful multi-
core computers with huge amounts of memory and state of the art operating systems to run on
them however the product or project you are part of may need to be maintained well past the
life time of these host. Being able to build from source an important and critical part of this
process because you can move to a newer host and create an equivalent tool set.

Building from source provides you with control over the configuration of the package you are
building. If all or the most important dependent parts are built from source you limit the expo-
sure to host variations. For example the GNU C compiler (gcc) currently uses a number of 3rd
party libraries internally (gmp, mpfr, etc). If your validated compiler generating code for your
target processor is dynamically linked against the host’s version of these libraries any change
in the host’s configuration may effect you. The changes the host’s package management system
makes may be perfectly reasonable in relation to the distribution being managed however this
may not extend to you and your tools. Building your tools from source and controlling the spe-
cific version of these dependent parts means you are not exposing yourself to unexpected and
often difficult to resolve problems. On the other side you need to make sure your tools build
and work with newer versions of the host operating system. Given the stability of standards
based libraries like libc and ever improving support for standard header file locations this task
is becoming easier.

The RTEMS Source Builder is designed to be audited and incorporated into a project’s verifi-
cation and validation process. If your project is developing critical applications that needs to
be traced from source to executable code in the target, you need to also consider the tools and
how to track them.

If your IT department maintains all your computers and you do not have suitable rights to install
binary packages, building from source lets you create your own tool set that you install under
your home directory. Avoiding installing any extra packages as a super user is always helpful in
maintaining a secure computing environment.

1.1. Why Build from Source? 7

RTEMS Source Builder, Release 4.11.2 Chapter 1 Section 1.2

1.2 History

The RTEMS Source Builder is a stand alone tool based on another tool called the SpecBuilder
written by Chris Johns. The SpecBuilder was written around 2010 for the RTEMS project to
provide Chris with a way to build tools on hosts that did not support RPMs. At the time the
RTEMS tools maintainer only supported spec files and these files held all the vital configuration
data needed to create suitable tool sets. The available SRPM and spec files by themselves where
of little use because a suitable rpm tool was needed to use them. At the time the available
versions of rpm for a number of non-RPM hosts were broken and randomly maintained. The
solution Chris settled on was to use the spec files and to write a Python based tool that parsed
the spec file format creating a shell script that could be run to build the package. The approach
proved successful and Chris was able to track the RPM version of the RTEMS tools on a non-RPM
host for a number of years.

The SpecBuilder tool did not build tools or packages unrelated to the RTEMS Project where
no suitable spec file was available so another tool was needed. Rather than start again Chris
decided to take the parsing code for the spec file format and build a new tool called the RTEMS
Source Builder.

8 Chapter 1. RTEMS Source Builder

CHAPTER

TWO

QUICK START

The quick start will show you how to build a set of RTEMS tools for a supported architecture.
The tools are installed into a build prefix. The prefix is the top of a group of directories contain-
ing all the files needed to develop RTEMS applications. Building an RTEMS build set will build
all that you need. This includes autoconf, automake, assemblers, linkers, compilers, debuggers,
standard libraries and RTEMS itself.

There is no need to become root or the administrator and we recommend you avoid doing this.
You can build and install the tools anywhere on the host’s file system you, as a standard user,
have read and write access too. I recommend you use your home directory and work under the
directory ~/development/rtems. The examples shown here will do this.

You can use the build prefix to install and maintain different versions of the tools. Doing this
lets you try a new set of tools while not touching your proven working production set of tools.
Once you have proven the new tools are working rebuild with the production prefix switching
your development to them.

We recommend you keep your environment to the bare minimum, particularly the path vari-
able. Using environment variables has been proven over the years to be difficult to manage in
production systems.

Warning: The RSB assumes your host is set up and the needed packages are installed
and configured to work. If your host has not been set up please refer to Chapter 3 - Hosts
(page 23) and your host’s section for packages you need to install.

Path to use when building applications:

Do not forget to set the path before you use the tools, for example to build the RTEMS kernel.

The RSB by default will install (copy) the executables to a directory tree under the prefix you
supply. To use the tools once finished just set your path to the bin directory under the prefix
you use. In the examples that follow the prefix is $HOME/development/rtems/4.11 and is set
using the --prefix option so the path you need to configure to build applications can be set
with the following in a BASH shell:

1 $ export PATH=$HOME/development/rtems/4.11/bin:$PATH

Make sure you place the RTEMS tool path at the front of your path so they are searched first.
RTEMS can provide newer versions of some tools your operating system provides and placing

9

RTEMS Source Builder, Release 4.11.2 Chapter 2 Section 2.0

the RTEMS tools path at the front means it is searched first and the RTEMS needed versions
of the tools are used.

Note: RSB and RTEMS have a matching git branch for each version of RTEMS. For example, if
you want to build a toolchain for 4.11, then you should checkout the 4.11 branch of the RSB:

1 $ git checkout -t origin/4.11

Branches are available for the 4.9, 4.10, and 4.11 versions of RTEMS.

10 Chapter 2. Quick Start

Chapter 2 Section 2.1 RTEMS Source Builder, Release 4.11.2

2.1 Setup

Setup a development work space:

1 $ cd
2 $ mkdir -p development/rtems/src
3 $ cd development/rtems/src

The RTEMS Source Builder is distributed as source. It is Python code so all you need to do is
download the release’s RSB tarball or clone the code directly from the RTEMS GIT repository:

1 $ git clone git://git.rtems.org/rtems-source-builder.git
2 $ cd rtems-source-builder

Workspaces

The examples in the Quick Start Guide build and install tools in your home directory. Please
refer to the RTEMS User Manual for more detail about Sandboxing and the prefix.

2.1. Setup 11

RTEMS Source Builder, Release 4.11.2 Chapter 2 Section 2.2

2.2 Checking

The next step is to check if your host is set up correctly. The RTEMS Source Builder provides a
tool to help:

1 $ source-builder/sb-check
2 warning: exe: absolute exe found in path: (__objcopy) /usr/local/bin/objcopy <1>
3 warning: exe: absolute exe found in path: (__objdump) /usr/local/bin/objdump
4 error: exe: not found: (_xz) /usr/local/bin/xz <2>
5 RTEMS Source Builder environment is not correctly set up
6 $ source-builder/sb-check
7 RTEMS Source Builder environment is ok <3>

Items:

1. A tool is in the environment path but it does not match the expected path.

2. The executable xz is not found.

3. The host’s environment is set up correct.

The checking tool will output a list of executable files not found if problems are detected.
Locate those executable files and install them. You may also be given a list of warnings about
executable files not in the expected location however the executable was located somewhere
in your environment’s path. You will need to check each tool to determine if this is an issue.
An executable not in the standard location may indicate it is not the host operating system’s
standard tool. It maybe ok or it could be buggy, only you can determine this.

The Chapter 3 - Hosts (page 23) section lists packages you should install for common host
operating systems. It maybe worth checking if you have those installed.

12 Chapter 2. Quick Start

Chapter 2 Section 2.3 RTEMS Source Builder, Release 4.11.2

2.3 Build Sets

The RTEMS tools can be built within the RTEMS Source Builder’s source tree. We recommend
you do this so lets change into the RTEMS directory in the RTEMS Source Builder package:

1 $ cd rtems

If you are unsure how to specify the build set for the architecture you wish to build ask the tool:

1 $../source-builder/sb-set-builder --list-bsets <1>
2 RTEMS Source Builder - Set Builder, v4.11.0
3 Examining: config
4 Examining: ../source-builder/config <2>
5 4.10/rtems-all.bset <3>
6 4.10/rtems-arm.bset <4>
7 4.10/rtems-autotools.bset
8 4.10/rtems-avr.bset
9 4.10/rtems-bfin.bset

10 4.10/rtems-h8300.bset
11 4.10/rtems-i386.bset
12 4.10/rtems-lm32.bset
13 4.10/rtems-m32c.bset
14 4.10/rtems-m32r.bset
15 4.10/rtems-m68k.bset
16 4.10/rtems-mips.bset
17 4.10/rtems-nios2.bset
18 4.10/rtems-powerpc.bset
19 4.10/rtems-sh.bset
20 4.10/rtems-sparc.bset
21 4.11/rtems-all.bset
22 4.11/rtems-arm.bset
23 4.11/rtems-autotools.bset
24 4.11/rtems-avr.bset
25 4.11/rtems-bfin.bset
26 4.11/rtems-h8300.bset
27 4.11/rtems-i386.bset
28 4.11/rtems-lm32.bset
29 4.11/rtems-m32c.bset
30 4.11/rtems-m32r.bset
31 4.11/rtems-m68k.bset
32 4.11/rtems-microblaze.bset
33 4.11/rtems-mips.bset
34 4.11/rtems-moxie.bset
35 4.11/rtems-nios2.bset
36 4.11/rtems-powerpc.bset
37 4.11/rtems-sh.bset
38 4.11/rtems-sparc.bset
39 4.11/rtems-sparc64.bset
40 4.11/rtems-v850.bset
41 4.9/rtems-all.bset
42 4.9/rtems-arm.bset
43 4.9/rtems-autotools.bset
44 4.9/rtems-i386.bset
45 4.9/rtems-m68k.bset
46 4.9/rtems-mips.bset
47 4.9/rtems-powerpc.bset
48 4.9/rtems-sparc.bset

2.3. Build Sets 13

RTEMS Source Builder, Release 4.11.2 Chapter 2 Section 2.3

49 gnu-tools-4.6.bset
50 rtems-4.10-base.bset <5>
51 rtems-4.11-base.bset
52 rtems-4.9-base.bset
53 rtems-base.bset <5>

Items:

1. Only option required is --list-bsets

2. The paths inspected. See Chapter 7 - Configuration (page 53).

3. A build set to build all RTEMS 4.10 supported architectures.

4. The build set for the ARM architecture on RTEMS 4.10.

5. Support build set file with common functionality included by other build set files.

14 Chapter 2. Quick Start

Chapter 2 Section 2.4 RTEMS Source Builder, Release 4.11.2

2.4 Building

The quick start builds a SPARC tool set:

1 $../source-builder/sb-set-builder --log=l-sparc.txt \ <1>
2 --prefix=$HOME/development/rtems/4.11 \ <2>
3 4.11/rtems-sparc <3>
4 Source Builder - Set Builder, v0.2.0
5 Build Set: 4.11/rtems-sparc
6 config: expat-2.1.0-1.cfg <4>
7 package: expat-2.1.0-x86_64-freebsd9.1-1
8 building: expat-2.1.0-x86_64-freebsd9.1-1
9 config: tools/rtems-binutils-2.22-1.cfg <5>

10 package: sparc-rtems4.11-binutils-2.22-1
11 building: sparc-rtems4.11-binutils-2.22-1
12 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-1.cfg <6>
13 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
14 building: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
15 config: tools/rtems-gdb-7.5.1-1.cfg <7>
16 package: sparc-rtems4.11-gdb-7.5.1-1
17 building: sparc-rtems4.11-gdb-7.5.1-1
18 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11 <8>
19 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11
20 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11
21 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11
22 cleaning: expat-2.1.0-x86_64-freebsd9.1-1 <9>
23 cleaning: sparc-rtems4.11-binutils-2.22-1
24 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
25 cleaning: sparc-rtems4.11-gdb-7.5.1-1
26 Build Set: Time 0:13:43.616383 <10>

Items

1. Providing a log file redirects the build output into a file. Logging the build output
provides a simple way to report problems.

2. The prefix is the location on your file system the tools are installed into. Provide a prefix
to a location you have read and write access. You can use the prefix to install different
versions or builds of tools. Just use the path to the tools you want to use when building
RTEMS.

3. The build set. This is the SPARC build set. First a specifically referenced file is checked
for and if not found the %{_configdir} path is searched. The set builder will first look
for files with a .bset extension and then for a configuration file with a .cfg extension.

4. The SPARC build set first builds the expat library as it is used in GDB. This is the expat
configuration used.

5. The binutils build configuration.

6. The GCC and Newlib build configuration.

7. The GDB build configuration.

8. Installing the built packages to the install prefix.

2.4. Building 15

RTEMS Source Builder, Release 4.11.2 Chapter 2 Section 2.4

9. All the packages built are cleaned at the end. If the build fails all the needed files are
present. You may have to clean up by deleting the build directory if the build fails.

10. The time to build the package. This lets you see how different host hardware or config-
urations perform.

Your SPARC RTEMS 4.11 tool set will be installed and ready to build RTEMS and RTEMS appli-
cations. When the build runs you will notice the tool fetch the source code from the internet.
These files are cached in directies called source and patches. If you run the build again the
cached files are used. This is what happened in the shown example. Archiving these directories
archives the source you need to recreate the build.

RTEMS Releases

The RSB found in a release will automatically build and install RTEMS. If you do not want a
released version of the RSB to build RTEMS add --without-rtems to the command line. The
development version requires adding --with-rtems to build RTEMS. Use this option to create
a single command to build the tools and RTEMS.

The source used in release builds is downloaded from the RTEMS FTP server. This ensures
the source is always available for a release.

The installed tools:

1 $ ls $HOME/development/rtems/4.11
2 bin include lib libexec share sparc-rtems4.11
3 $ ls $HOME/development/rtems/4.11/bin
4 sparc-rtems4.11-addr2line sparc-rtems4.11-cpp
5 sparc-rtems4.11-gcc-ar sparc-rtems4.11-gprof
6 sparc-rtems4.11-objdump sparc-rtems4.11-size
7 sparc-rtems4.11-ar sparc-rtems4.11-elfedit
8 sparc-rtems4.11-gcc-nm sparc-rtems4.11-ld
9 sparc-rtems4.11-ranlib sparc-rtems4.11-strings

10 sparc-rtems4.11-as sparc-rtems4.11-g++
11 sparc-rtems4.11-gcc-ranlib sparc-rtems4.11-ld.bfd
12 sparc-rtems4.11-readelf sparc-rtems4.11-strip
13 sparc-rtems4.11-c++ sparc-rtems4.11-gcc
14 sparc-rtems4.11-gcov sparc-rtems4.11-nm
15 sparc-rtems4.11-run xmlwf
16 sparc-rtems4.11-c++filt sparc-rtems4.11-gcc-4.7.2
17 sparc-rtems4.11-gdb sparc-rtems4.11-objcopy
18 sparc-rtems4.11-sis
19 $ $HOME/development/rtems/4.11/bin/sparc-rtems4.11-gcc -v
20 Using built-in specs.
21 COLLECT_GCC=/home/chris/development/rtems/4.11/bin/sparc-rtems4.11-gcc
22 COLLECT_LTO_WRAPPER=/usr/home/chris/development/rtems/4.11/bin/../ \
23 libexec/gcc/sparc-rtems4.11/4.7.2/lto-wrapper
24 Target: sparc-rtems4.11 <1>
25 Configured with: ../gcc-4.7.2/configure <2>
26 --prefix=/home/chris/development/rtems/4.11
27 --bindir=/home/chris/development/rtems/4.11/bin
28 --exec_prefix=/home/chris/development/rtems/4.11
29 --includedir=/home/chris/development/rtems/4.11/include
30 --libdir=/home/chris/development/rtems/4.11/lib
31 --libexecdir=/home/chris/development/rtems/4.11/libexec

16 Chapter 2. Quick Start

Chapter 2 Section 2.4 RTEMS Source Builder, Release 4.11.2

32 --mandir=/home/chris/development/rtems/4.11/share/man
33 --infodir=/home/chris/development/rtems/4.11/share/info
34 --datadir=/home/chris/development/rtems/4.11/share
35 --build=x86_64-freebsd9.1 --host=x86_64-freebsd9.1 --target=sparc-rtems4.11
36 --disable-libstdcxx-pch --with-gnu-as --with-gnu-ld --verbose --with-newlib
37 --with-system-zlib --disable-nls --without-included-gettext
38 --disable-win32-registry --enable-version-specific-runtime-libs --disable-lto
39 --enable-threads --enable-plugin --enable-newlib-io-c99-formats
40 --enable-newlib-iconv --enable-languages=c,c++
41 Thread model: rtems <3>
42 gcc version 4.7.2 20120920 <4>
43 (RTEMS 4.11 RSB cb12e4875c203f794a5cd4b3de36101ff9a88403)-1 newlib 2.0.0) (GCC)

Items

1. The target the compiler is built for.

2. The configure options used to build GCC.

3. The threading model is always RTEMS. This makes using the RTEMS tools for bare
metal development more difficult.

4. The version string. It contains the Git hash of the RTEMS Source Builder you are using.
If your local clone has been modifed that state is also recorded in the version string.
The hash allows you to track from a GCC executable back to the original source used to
build it.

Note: The RTEMS thread model enables specific hooks in GCC so applications built with
RTEMS tools need the RTEMS runtime to operate correctly. You can use RTEMS tools to build
bare metal component but it is more difficult than with a bare metal tool chain and you need to
know what you are doing at a low level. The RTEMS Source Builder can build bare metal tool
chains as well. Look in the top level bare directory.

2.4. Building 17

RTEMS Source Builder, Release 4.11.2 Chapter 2 Section 2.5

2.5 Deployment

If you wish to create and distribute your build or you want to archive a build you can create a
tar file. We term this deploying a build. This is a more advanced method for binary packaging
and installing of tools.

By default the RTEMS Source Builder installs the built packages directly and optionally it can
also create a build set tar file or a package tar file per package built. The normal and default
behaviour is to let the RTEMS Source Builder install the tools. The source will be downloaded,
built, installed and cleaned up.

The tar files are created with the full build prefix present and if you follow the examples given
in this documentation the path is absolute. This can cause problems if you are installing on
a host you do not have super user or administrator rights on because the prefix path may
references part you do not have write access too and tar will not extract the files. You can
use the --strip-components option in tar if your host tar application supports it to remove
the parts you do not have write access too or you may need to unpack the tar file somewhere
and copy the file tree from the level you have write access from. Embedding the full prefix
path in the tar files lets you know what the prefix is and is recommended. For example if
/home/chris/development/rtems/4.11 is the prefix used you cannot change directory to the
root (/) and untar the file because the /home is root access only. To install a tar file you have
downloaded into your new machine’s Downloads directory in your home directoty you would
enter:

1 $ cd /somewhere
2 $ tar --strip-components=3 -xjf \
3 $HOME/Downloads/rtems-4.11-sparc-rtems4.11-1.tar.bz2

A build set tar file is created by adding --bset-tar-file option to the sb-set-builder com-
mand:

1 $../source-builder/sb-set-builder --log=l-sparc.txt \
2 --prefix=$HOME/development/rtems/4.11 \
3 --bset-tar-file \ <1>
4 4.11/rtems-sparc
5 Source Builder - Set Builder, v0.2.0
6 Build Set: 4.11/rtems-sparc
7 config: expat-2.1.0-1.cfg
8 package: expat-2.1.0-x86_64-freebsd9.1-1
9 building: expat-2.1.0-x86_64-freebsd9.1-1

10 config: tools/rtems-binutils-2.22-1.cfg
11 package: sparc-rtems4.11-binutils-2.22-1
12 building: sparc-rtems4.11-binutils-2.22-1
13 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-1.cfg
14 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
15 building: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
16 config: tools/rtems-gdb-7.5.1-1.cfg
17 package: sparc-rtems4.11-gdb-7.5.1-1
18 building: sparc-rtems4.11-gdb-7.5.1-1
19 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11 <2>
20 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11
21 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11
22 installing: rtems-4.11-sparc-rtems4.11-1 -> /home/chris/development/rtems/4.11
23 tarball: tar/rtems-4.11-sparc-rtems4.11-1.tar.bz2 <3>
24 cleaning: expat-2.1.0-x86_64-freebsd9.1-1

18 Chapter 2. Quick Start

Chapter 2 Section 2.5 RTEMS Source Builder, Release 4.11.2

25 cleaning: sparc-rtems4.11-binutils-2.22-1
26 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
27 cleaning: sparc-rtems4.11-gdb-7.5.1-1
28 Build Set: Time 0:15:25.92873

Items

1. The option to create a build set tar file.

2. The installation still happens unless you specify --no-install.

3. Creating the build set tar file.

You can also suppress installing the files using the --no-install option. This is useful if your
prefix is not accessiable, for example when building Canadian cross compiled tool sets:

1 $../source-builder/sb-set-builder --log=l-sparc.txt \
2 --prefix=$HOME/development/rtems/4.11 \
3 --bset-tar-file \
4 --no-install \ <1>
5 4.11/rtems-sparc
6 Source Builder - Set Builder, v0.2.0
7 Build Set: 4.11/rtems-sparc
8 config: expat-2.1.0-1.cfg
9 package: expat-2.1.0-x86_64-freebsd9.1-1

10 building: expat-2.1.0-x86_64-freebsd9.1-1
11 config: tools/rtems-binutils-2.22-1.cfg
12 package: sparc-rtems4.11-binutils-2.22-1
13 building: sparc-rtems4.11-binutils-2.22-1
14 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-1.cfg
15 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
16 building: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
17 config: tools/rtems-gdb-7.5.1-1.cfg
18 package: sparc-rtems4.11-gdb-7.5.1-1
19 building: sparc-rtems4.11-gdb-7.5.1-1
20 tarball: tar/rtems-4.11-sparc-rtems4.11-1.tar.bz2 <2>
21 cleaning: expat-2.1.0-x86_64-freebsd9.1-1
22 cleaning: sparc-rtems4.11-binutils-2.22-1
23 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
24 cleaning: sparc-rtems4.11-gdb-7.5.1-1
25 Build Set: Time 0:14:11.721274
26 $ ls tar
27 rtems-4.11-sparc-rtems4.11-1.tar.bz2

Items

1. The option to supressing installing the packages.

2. Create the build set tar.

A package tar file can be created by adding the --pkg-tar-files to the sb-set-builder com-
mand. This creates a tar file per package built in the build set:

2.5. Deployment 19

RTEMS Source Builder, Release 4.11.2 Chapter 2 Section 2.5

1 $../source-builder/sb-set-builder --log=l-sparc.txt \
2 --prefix=$HOME/development/rtems/4.11 \
3 --bset-tar-file \
4 --pkg-tar-files \ <1>
5 --no-install 4.11/rtems-sparc
6 Source Builder - Set Builder, v0.2.0
7 Build Set: 4.11/rtems-sparc
8 config: expat-2.1.0-1.cfg
9 package: expat-2.1.0-x86_64-freebsd9.1-1

10 building: expat-2.1.0-x86_64-freebsd9.1-1
11 config: tools/rtems-binutils-2.22-1.cfg
12 package: sparc-rtems4.11-binutils-2.22-1
13 building: sparc-rtems4.11-binutils-2.22-1
14 config: tools/rtems-gcc-4.7.2-newlib-1.20.0-1.cfg
15 package: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
16 building: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
17 config: tools/rtems-gdb-7.5.1-1.cfg
18 package: sparc-rtems4.11-gdb-7.5.1-1
19 building: sparc-rtems4.11-gdb-7.5.1-1
20 tarball: tar/rtems-4.11-sparc-rtems4.11-1.tar.bz2
21 cleaning: expat-2.1.0-x86_64-freebsd9.1-1
22 cleaning: sparc-rtems4.11-binutils-2.22-1
23 cleaning: sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1
24 cleaning: sparc-rtems4.11-gdb-7.5.1-1
25 Build Set: Time 0:14:37.658460
26 $ ls tar
27 expat-2.1.0-x86_64-freebsd9.1-1.tar.bz2 sparc-rtems4.11-binutils-2.22-1.tar.bz2
28 sparc-rtems4.11-gdb-7.5.1-1.tar.bz2 <2> rtems-4.11-sparc-rtems4.11-1.tar.bz2 <3>
29 sparc-rtems4.11-gcc-4.7.2-newlib-1.20.0-1.tar.bz2

Items

1. The option to create packages tar files.

2. The GDB package tar file.

3. The build set tar file. All the others in a single tar file.

20 Chapter 2. Quick Start

Chapter 2 Section 2.6 RTEMS Source Builder, Release 4.11.2

2.6 Controlling the Build

Build sets can be controlled via the command line to enable and disable various features. There
is no definitive list of build options that can be listed because they are implemented with the
configuration scripts. The best way to find what is available is to grep the configuration files.
for with and without.

Following are currentlt available:

--without-rtems
Do not build RTEMS when building an RTEMS build set.

--without-cxx
Do not build a C++ compiler.

--with-objc
Attempt to build a C++ compiler.

--with-fortran
Attempt to build a Fortran compiler.

2.6. Controlling the Build 21

RTEMS Source Builder, Release 4.11.2 Chapter 2 Section 2.6

22 Chapter 2. Quick Start

CHAPTER

THREE

HOSTS

The known supported hosts are listed in the following sections. If a host or a new version of a
host is known to work and it not listed please lets us know.

23

RTEMS Source Builder, Release 4.11.2 Chapter 3 Section 3.1

3.1 Linux

A number of different Linux distrubutions are known to work. The following have been tested
and report as working.

3.1.1 ArchLinux

The following packages are required on a fresh Archlinux 64bit installation:

1 # pacman -S base-devel gdb xz unzip ncurses git zlib

Archlinux, by default installs texinfo-5 which is incompatible for building GCC 4.7 tree. You
will have to obtain texinfo-legacy from AUR and provide a manual override:

1 # pacman -R texinfo
2 $ yaourt -S texinfo-legacy
3 # ln -s /usr/bin/makeinfo-4.13a /usr/bin/makeinfo

3.1.2 CentOS

The following packages are required on a minimal CentOS 6.3 64bit installation:

1 # yum install autoconf automake binutils gcc gcc-c++ gdb make patch \
2 bison flex xz unzip ncurses-devel texinfo zlib-devel python-devel git

The minimal CentOS distribution is a specific DVD that installs a minimal system. If you use a
full system some of these packages may have been installed.

3.1.3 Fedora

The RTEMS Source Builder has been tested on Fedora 19 64bit with the following packages:

1 # yum install ncurses-devel python-devel git bison gcc cvs gcc-c++ \
2 flex texinfo patch perl-Text-ParseWords zlib-devel

3.1.4 Raspbian

The is the Debian distribution for the Raspberry Pi. The following packages are required:

1 $ sudo apt-get install autoconf automake bison flex binutils gcc g++ gdb \
2 texinfo unzip ncurses-dev python-dev git

It is recommended you get Model B of the Pi with 512M of memory and to mount a remote disk
over the network. The tools can be built on the network disk with a prefix under your home
directory as recommended and end up on the SD card.

24 Chapter 3. Hosts

Chapter 3 Section 3.1 RTEMS Source Builder, Release 4.11.2

3.1.5 Ubuntu

The latest version is Ubuntu 16.04.1 LTS 64bit. This section also includes Xubuntu. A minimal
installation was used and the following packages installed:

1 $ sudo apt-get build-dep binutils gcc g++ gdb unzip git
2 $ sudo apt-get install python2.7-dev

3.1.6 Linux Mint

zlib package is required on Linux Mint. It has a different name (other than the usual zlib-dev):

1 # sudo apt-get install zlib1g-dev

3.1.7 openSUSE

This has been reported to work but no instructions were provided. This is an opportunity to
contribute. Please submit any guidance you can provide.

3.1. Linux 25

RTEMS Source Builder, Release 4.11.2 Chapter 3 Section 3.2

3.2 FreeBSD

The RTEMS Source Builder has been tested on FreeBSD 9.1, 10.3 and 11 64bit version. You
need to install some ports. They are:

1 # cd /usr/ports
2 # portinstall --batch lang/python27

If you wish to build Windows (mingw32) tools please install the following ports:

1 # cd /usr/ports
2 # portinstall --batch devel/mingw32-binutils devel/mingw32-gcc
3 # portinstall --batch devel/mingw32-zlib devel/mingw32-pthreads

The +zlip+ and +pthreads+ ports for MinGW32 are used for builiding a Windows QEMU.

If you are on FreeBSD 10.0 and you have pkgng installed you can use ‘pkg install’ rather than
‘portinstall’.

26 Chapter 3. Hosts

Chapter 3 Section 3.3 RTEMS Source Builder, Release 4.11.2

3.3 NetBSD

The RTEMS Source Builder has been tested on NetBSD 6.1 i386. Packages to add are:

1 # pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/i386/6.1/devel/gmake-3.82nb7.tgz
2 # pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/i386/6.1/devel/bison-2.7.1.tgz
3 # pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/i386/6.1/archivers/xz-5.0.4.tgz

3.3. NetBSD 27

RTEMS Source Builder, Release 4.11.2 Chapter 3 Section 3.4

3.4 MacOS

The RTEMS Source Builder has been tested on Mountain Lion. You will need to install the Xcode
app using the App Store tool, run Xcode and install the Developers Tools package within Xcode.

3.4.1 Mavericks

The RSB works on Mavericks and the GNU tools can be built for RTEMS using the Mavericks
clang LLVM tool chain. You will need to build and install a couple of packages to make the RSB
pass the +sb-check+. These are CVS and XZ. You can get these tools from a packaging tool for
MacOS such as MacPorts or HomeBrew.

I do not use 3rd party packaging on MacOS and prefer to build the packages from source using
a prefix of /usr/local. There are good 3rd party packages around however they sometimes
bring in extra dependence and that complicates my build environment and I want to know the
minimal requirements when building tools. The following are required:

. The XZ package’s home page is http://tukaani.org/xz/ and I use version
5.0.5. XZ builds and installs cleanly.

3.4.2 Serria

The RSB works on Serria with the latest Xcode.

28 Chapter 3. Hosts

http://tukaani.org/xz/

Chapter 3 Section 3.5 RTEMS Source Builder, Release 4.11.2

3.5 Windows

Windows tool sets are supported. The tools are native Windows executable which means they
do not need an emulation layer to run once built. The tools understand and use standard
Windows paths and integrate easily into Windows IDE environments because they understand
and use standard Windows paths. Native Windows tools have proven over time to be stable and
reliable with good performance. If you are a Windows user or you are required to use Windows
you can still develop RTEMS application as easily as a Unix operating system. Some debugging
experiences may vary and if this is an issue please raised the topic on the RTEMS Users mailing
list.

Building the tools or some other packages may require a Unix or POSIX type shell. There are a
few options, Cygwin and MSYS2. I recommend MSYS2.

3.5.1 MSYS2

This is a new version of the MinGW project’s original MSYS. MSYS2 is based around the Arch
Linux pacman packager. MSYS and MSYS2 are a specific fork of the Cygwin project with some
fundamental changes in the handling of paths and mounts that allow easy interaction between
the emulated POSIX environment and the native Windows environment.

Install MSYS2 using the installer you can download from https://msys2.github.io/. Follow the
instructions on the install page and make sure you remove any global path entries to any other
Cygwin, MinGW, MSYS or packages that may uses a Cygwin DLL, for example some ports of
Git.

To build the tools you need install the following packages using pacman:

1 $ pacman -S git cvs bison make texinfo patch unzip diffutils tar \
2 mingw64/mingw-w64-x86_64-gcc mingw64/mingw-w64-x86_64-binutils

To build make sure you add ‘–without-python –jobs=none’ to the standard RSB command line.
MSYS2 has a temp file name issue and so the GNU AR steps on itself when running in parallel
on SMP hardware which means we have to set the jobs option to none.

Install a suitable version of Python from http://www.python.org/ and add it to the start of your
path. The MSYS2 python does not work with waf.

3.5.2 Cygwin

Building on Windows is a little more complicated because the Cygwin shell is used rather than
the MSYS2 shell. The MSYS2 shell is simpler because the detected host triple is MinGW so the
build is a standard cross-compiler build. A Canadian cross-build using Cygwin is supported if
you would like native tools or you can use a Cygwin built set of tools.

Install a recent Cygwin version using the Cygwin setup tool. Select and install the groups and
packages listed:

3.5. Windows 29

https://msys2.github.io/
http://www.python.org/

RTEMS Source Builder, Release 4.11.2 Chapter 3 Section 3.5

Table 3.1: Cygwin Packages

Group Package
Archive bsdtar
Archive unzip
Archive xz
Devel autoconf
Devel autoconf2.1
Devel autoconf2.5
Devel automake
Devel binutils
Devel bison
Devel flex
Devel gcc4-core
Devel gcc4-g++
Devel git
Devel make
Devel mingw64-x86_64-binutils
Devel mingw64-x86_64-gcc-core
Devel mingw64-x86_64-g++
Devel mingw64-x86_64-runtime
Devel mingw64-x86_64-zlib
Devel patch
Devel zlib-devel
MinGW mingw-zlib-devel
Python python

The setup tool will add a number of dependent package and it is ok to accept them.

Disabling Windows Defender improves performance if you have another up to date virus detec-
tion tool installed and enabled. The excellent Process Hacker 2 tool can monitor the perfor-
mance and the Windows Defender service contributed a high load. In this case a 3rd party virus
tool was installed so the Windows Defender service was not needed.

To build a MinGW tool chain a Canadian cross-compile (Cxc) is required on Cygwin because
the host is Cygwin therefore a traditional cross-compile will result in Cygiwn binaries. With a
Canadian cross-compile a Cygwin cross-compiler is built as well as the MinGW RTEMS cross-
compiler. The Cygwin cross-compiler is required to build the C runtime for the RTEMS target
because we are building under Cygiwn. The build output for an RTEMS 4.10 ARM tool set is:

1 chris@cygthing ~/development/rtems/src/rtems-source-builder/rtems
2 $../source-builder/sb-set-builder --log=l-arm.txt --prefix=$HOME/development/rtems/4.10 4.

→˓10/rtems-arm
3 RTEMS Source Builder - Set Builder, v0.2
4 Build Set: 4.10/rtems-arm
5 config: expat-2.1.0-1.cfg
6 package: expat-2.1.0-x86_64-w64-mingw32-1
7 building: expat-2.1.0-x86_64-w64-mingw32-1
8 reporting: expat-2.1.0-1.cfg -> expat-2.1.0-x86_64-w64-mingw32-1.html
9 config: tools/rtems-binutils-2.20.1-1.cfg

10 package: arm-rtems4.10-binutils-2.20.1-1 <1>
11 building: arm-rtems4.10-binutils-2.20.1-1
12 package: (Cxc) arm-rtems4.10-binutils-2.20.1-1 <2>

30 Chapter 3. Hosts

Chapter 3 Section 3.5 RTEMS Source Builder, Release 4.11.2

13 building: (Cxc) arm-rtems4.10-binutils-2.20.1-1
14 reporting: tools/rtems-binutils-2.20.1-1.cfg ->
15 arm-rtems4.10-binutils-2.20.1-1.html
16 config: tools/rtems-gcc-4.4.7-newlib-1.18.0-1.cfg
17 package: arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1
18 building: arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1
19 package: (Cxc) arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1
20 building: (Cxc) arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1
21 reporting: tools/rtems-gcc-4.4.7-newlib-1.18.0-1.cfg ->
22 arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1.html
23 config: tools/rtems-gdb-7.3.1-1.cfg
24 package: arm-rtems4.10-gdb-7.3.1-1
25 building: arm-rtems4.10-gdb-7.3.1-1
26 reporting: tools/rtems-gdb-7.3.1-1.cfg -> arm-rtems4.10-gdb-7.3.1-1.html
27 config: tools/rtems-kernel-4.10.2.cfg
28 package: arm-rtems4.10-kernel-4.10.2-1
29 building: arm-rtems4.10-kernel-4.10.2-1
30 reporting: tools/rtems-kernel-4.10.2.cfg -> arm-rtems4.10-kernel-4.10.2-1.html
31 installing: expat-2.1.0-x86_64-w64-mingw32-1 -> /cygdrive/c/Users/chris/development/rtems/

→˓4.10
32 installing: arm-rtems4.10-binutils-2.20.1-1 -> /cygdrive/c/Users/chris/development/rtems/4.

→˓10 <3>
33 installing: arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1 -> /cygdrive/c/Users/chris/development/

→˓rtems/4.10
34 installing: arm-rtems4.10-gdb-7.3.1-1 -> /cygdrive/c/Users/chris/development/rtems/4.10
35 installing: arm-rtems4.10-kernel-4.10.2-1 -> /cygdrive/c/Users/chris/development/rtems/4.10
36 cleaning: expat-2.1.0-x86_64-w64-mingw32-1
37 cleaning: arm-rtems4.10-binutils-2.20.1-1
38 cleaning: arm-rtems4.10-gcc-4.4.7-newlib-1.18.0-1
39 cleaning: arm-rtems4.10-gdb-7.3.1-1
40 cleaning: arm-rtems4.10-kernel-4.10.2-1
41 Build Set: Time 10:09:42.810547 <4>

Items:

1. The Cygwin version of the ARM cross-binutils.

2. The +(Cxc)+ indicates this is the MinGW build of the package.

3. Only the MinGW version is installed.

4. Cygwin is slow so please be patient. This time was on an AMD Athlon 64bit Dual Core
6000+ running at 3GHz with 4G RAM running Windows 7 64bit.

Warning: Cygwin documents the ‘Big List Of Dodgy Apps’ or ‘BLODA’. The link is http:
//cygwin.com/faq/faq.html#faq.using.bloda and it is worth a look. You will see a large
number of common pieces of software found on Windows systems that can cause problems.
My testing has been performed with NOD32 running and I have seen some failures. The
list is for all of Cygwin so I am not sure which of the listed programs effect the RTEMS
Source Biulder. The following FAQ item talks about fork failures and presents some technical
reasons they cannot be avoided in all cases. Cygwin and it’s fork MSYS are fantastic pieces
of software in a difficult environment. I have found building a single tool tends to work,
building all at once is harder.

3.5. Windows 31

http://cygwin.com/faq/faq.html#faq.using.bloda
http://cygwin.com/faq/faq.html#faq.using.bloda

RTEMS Source Builder, Release 4.11.2 Chapter 3 Section 3.5

32 Chapter 3. Hosts

CHAPTER

FOUR

PROJECT SETS

The RTEMS Source Builder supports project configurations. Project configurations can be public
or private and can be contained in the RTEMS Source Builder project if suitable, other projects
they use the RTEMS Source Builder or privately on your local file system.

The configuration file loader searches the macro _configdir and by default this is set to
%{_topdir}/config:%{_sbdir}/config where _topdir is the your current working direct, in
other words the directory you invoke the RTEMS Source Builder command in, and _sbdir is the
directory where the RTEMS Source Builder command resides. Therefore the config directory
under each of these is searched so all you need to do is create a config in your project and add
your configuration files. They do not need to be under the RTEMS Source Builder source tree.
Public projects are included in the main RTEMS Source Builder such as RTEMS.

You can also add your own patches directory next to your config directory as the
%patch command searches the _patchdir macro variable and it is by default set to
%{_topdir}/patches:%{_sbdir}/patches.

The source-builder/config directory provides generic scripts for building various tools. You
can specialise these in your private configurations to make use of them. If you add new generic
configurations please contribute them back to the project

33

RTEMS Source Builder, Release 4.11.2 Chapter 4 Section 4.1

4.1 Bare Metal

The RSB contains a ‘bare’ configuration tree and you can use this to add packages you use
on the hosts. For example ‘qemu’ is supported on a range of hosts. RTEMS tools live in the
rtems/config directory tree. RTEMS packages include tools for use on your host computer as
well as packages you can build and run on RTEMS.

The bare metal support for GNU Tool chains. An example is the lang/gcc491 build set. You
need to provide a target via the command line --target option and this is in the standard 2 or
3 tuple form. For example for an ARM compiler you would use arm-eabi or ‘‘arm-eabihf‘, and
for SPARC you would use sparc-elf :

1 $ cd rtems-source-builder/bare
2 $../source-builder/sb-set-builder --log=log_arm_eabihf \
3 --prefix=$HOME/development/bare --target=arm-eabihf lang/gcc491
4 RTEMS Source Builder - Set Builder, v0.3.0
5 Build Set: lang/gcc491
6 config: devel/expat-2.1.0-1.cfg
7 package: expat-2.1.0-x86_64-apple-darwin13.2.0-1
8 building: expat-2.1.0-x86_64-apple-darwin13.2.0-1
9 config: devel/binutils-2.24-1.cfg

10 package: arm-eabihf-binutils-2.24-1
11 building: arm-eabihf-binutils-2.24-1
12 config: devel/gcc-4.9.1-newlib-2.1.0-1.cfg
13 package: arm-eabihf-gcc-4.9.1-newlib-2.1.0-1
14 building: arm-eabihf-gcc-4.9.1-newlib-2.1.0-1
15 config: devel/gdb-7.7-1.cfg
16 package: arm-eabihf-gdb-7.7-1
17 building: arm-eabihf-gdb-7.7-1
18 installing: expat-2.1.0-x86_64-apple-darwin13.2.0-1 -> /Users/chris/development/bare
19 installing: arm-eabihf-binutils-2.24-1 -> /Users/chris/development/bare
20 installing: arm-eabihf-gcc-4.9.1-newlib-2.1.0-1 -> /Users/chris/development/bare
21 installing: arm-eabihf-gdb-7.7-1 -> /Users/chris/development/bare
22 cleaning: expat-2.1.0-x86_64-apple-darwin13.2.0-1
23 cleaning: arm-eabihf-binutils-2.24-1
24 cleaning: arm-eabihf-gcc-4.9.1-newlib-2.1.0-1
25 cleaning: arm-eabihf-gdb-7.7-1

34 Chapter 4. Project Sets

Chapter 4 Section 4.2 RTEMS Source Builder, Release 4.11.2

4.2 RTEMS

The RTEMS Configurations found in the rtems directory. The configurations are grouped by
RTEMS version. In RTEMS the tools are specific to a specific version because of variations
between Newlib and RTEMS. Restructuring in RTEMS and Newlib sometimes moves libc func-
tionality between these two parts and this makes existing tools incompatible with RTEMS.

RTEMS allows architectures to have different tool versions and patches. The large number of
architectures RTEMS supports can make it difficult to get a common stable version of all the
packages. An architecture may require a recent GCC because an existing bug has been fixed,
however the more recent version may have a bug in other architecture. Architecture specific
patches should be limited to the architecture it relates to. The patch may fix a problem on the
effect architecture however it could introduce a problem in another architecture. Limit exposure
limits any possible crosstalk between architectures.

If you are building a released version of RTEMS the release RTEMS tar file will be downloaded
and built as part of the build process. If you are building a tool set for use with the develop-
ment branch of RTEMS, the development branch will be cloned directly from the RTEMS GIT
repository and built.

When building RTEMS within the RTEMS Source Builder it needs a suitable working autoconf
and automake. These packages need to built and installed in their prefix in order for them to
work. The RTEMS Source Builder installs all packages only after they have been built so if you
host does not have a recent enough version of autoconf and automake you first need to build
them and install them then build your tool set. The commands are:

1 $../source-builder/sb-set-builder --log=l-4.11-at.txt \
2 --prefix=$HOME/development/rtems/4.11 4.11/rtems-autotools
3 $ export PATH=~/development/rtems/4.11/bin:$PATH <1>
4 $../source-builder/sb-set-builder --log=l-4.11-sparc.txt \
5 --prefix=$HOME/development/rtems/4.11 4.11/rtems-sparc

Items:

1. Setting the path.

If this is your first time building the tools and RTEMS it pays to add the --dry-run option. This
will run through all the configuration files and if any checks fail you will see this quickly rather
than waiting for until the build fails a check.

To build snapshots for testing purposes you use the available macro maps passing them on
the command line using the --macros option. For RTEMS these are held in config/snapshots
directory. The following builds newlib from CVS:

1 $../source-builder/sb-set-builder --log=l-4.11-sparc.txt \
2 --prefix=$HOME/development/rtems/4.11 \
3 --macros=snapshots/newlib-head.mc \
4 4.11/rtems-sparc

and the following uses the version control heads for binutils, gcc, newlib, gdb and RTEMS:

1 $../source-builder/sb-set-builder --log=l-heads-sparc.txt \
2 --prefix=$HOME/development/rtems/4.11-head \

4.2. RTEMS 35

RTEMS Source Builder, Release 4.11.2 Chapter 4 Section 4.2

3 --macros=snapshots/binutils-gcc-newlib-gdb-head.mc \
4 4.11/rtems-sparc

36 Chapter 4. Project Sets

Chapter 4 Section 4.3 RTEMS Source Builder, Release 4.11.2

4.3 Patches

Packages being built by the RSB need patches from time to time and the RSB sup-
ports patching upstream packages. The patches are held in a seperate directory
called patches relative to the configuration directory you are building. For example
%{_topdir}/patches:%{_sbdir}/patches. Patches are declared in the configuration files in a
similar manner to the package’s source so please refer to the %source documentation. Patches,
like the source, are to be made publically available for configurations that live in the RSB pack-
age and are downloaded on demand.

If a package has a patch management tool it is recommended you reference the package’s patch
management tools directly. If the RSB does not support the specific patch manage tool please
contact the mailing list to see if support can be added.

Patches for packages developed by the RTEMS project can be placed in the RTEMS Tools Git
repository. The tools directory in the repository has various places a patch can live. The tree is
broken down in RTEMS releases and then tools within that release. If the package is not specific
to any release the patch can be added closer to the top under the package’s name. Patches to
fix specific tool related issues for a specific architecture should be grouped under the specific
architecture and only applied when building that architecture avoiding a patch breaking an
uneffected architecture.

Patches in the RTEMS Tools repository need to be submitted to the upstream project. It should
not be a clearing house for patches that will not be accepted upstream.

Patches are added to a component’s name and in the %prep: section the patches can be set up,
meaning they are applied to source. The patches are applied in the order they are added. If
there is a dependency make sure you order the patches correctly when you add them. You can
add any number of patches and the RSB will handle them efficently.

Patches can have options. These are added before the patch URL. If no options are provided the
patch’s setup default options are used.

Patches can be declared in build set up files.

This examples shows how to declare a patch for gdb in the lm32 architecture:

1 %patch add <1> gdb <2> %{rtems_gdb_patches}/lm32/gdb-sim-lm32uart.diff <3>

Items:

1. The patch’s add command.

2. The group of patches this patch belongs too.

3. The patch’s URL. It is downloaded from here.

Patches require a checksum to avoid a warning. The %hash directive can be used to add a
checksum for a patch that is used to verify the patch:

1 %hash md5 <1> gdb-sim-lm32uart.diff <2> 77d070878112783292461bd6e7db17fb <3>

4.3. Patches 37

RTEMS Source Builder, Release 4.11.2 Chapter 4 Section 4.3

Items:

1. The type of checksum, in the case an MD5 hash.

2. The patch file the checksum is for.

3. The MD5 hash.

The patches are applied when a patch setup command is issued in the %prep: section. All
patches in the group are applied. To apply the GDB patch above use:

1 %patch setup <1> gdb <2> -p1 <3>

Items:

1. The patch’s setup command.

2. The group of patches to apply.

3. The patch group’s default options. If no option is given with the patch these options are
used.

Architecture specific patches live in the architecture build set file isolating the patch to that
specific architecture. If a patch is common to a tool it resides in the RTEMS tools configuration
file. Do not place patches for tools in the source-builder/config template configuration files.

To test a patch simply copy it to your local patches directory. The RSB will see the patch is
present and will not attempt to download it. Once you are happy with the patch submit it to
the project and a core developer will review it and add it to the RTEMS Tools git repository.
For example, to test a local patch for newlib, add the following two lines to the .cfg file in
rtems/config/tools/ that is included by the bset you use:

1 %patch add newlib file://0001-this-is-a-newlib-patch.patch <1>
2 %hash md5 0001-this-is-a-newlib-patch.diff 77d070878112783292461bd6e7db17fb <2>

Items:

1. The diff file prepended with file:// to tell RSB this is a local file.

2. The output from md5sum on the diff file.

38 Chapter 4. Project Sets

CHAPTER

FIVE

CROSS AND CANADIAN CROSS
BUILDING

Cross building and Canadian Cross building is the process of building on one machine an exe-
cutable that runs on another machine. An example is building a set of RTEMS tools on Linux to
run on Windows. The RSB supports cross building and Canadian cross building.

This sections details how to the RSB to cross and Canadian cross build.

39

RTEMS Source Builder, Release 4.11.2 Chapter 5 Section 5.1

5.1 Cross Building

Cross building is where the _build_ machine and _host_ are different. The _build_ machine
runs the RSB and the _host_ machine is where the output from the build runs. An example is
building a package such as NTP for RTEMS on your development machine.

To build the NTP package for RTEMS you enter the RSB command:

1 $../source-builder/sb-set-builder \
2 --log=log_ntp_arm.txt \
3 --prefix=$HOME/development/rtems/4.11 \ <1>
4 --host=arm-rtems4.11 \ <2>
5 --with-rtems-bsp=xilinx_zynq_zc706 \ <3>
6 4.11/net/ntp

Items:

1. The tools and the RTEMS BSP are installed under the same prefix.

2. The --host command is the RTEMS architecture and version.

3. The BSP is built and installed in the prefix. The arhcitecture must match the --host
architecture.

40 Chapter 5. Cross and Canadian Cross Building

Chapter 5 Section 5.2 RTEMS Source Builder, Release 4.11.2

5.2 Canadian Cross Building

A Canadian cross builds are where the build, host and target machines all differ. For example
building an RTEMS compiler for an ARM processor that runs on Windows is built using a Linux
machine. The process is controlled by setting the build triplet to the host you are building,
the host triplet to the host the tools will run on and the target to the RTEMS architecture you
require. The tools needed by the RSB are:

• Build host C and C++ compiler

• Host C and C++ cross compiler

The RTEMS Source Builder requires you provide the build host C and C++ compiler and the
final host C and C++ cross-compiler. The RSB will build the build host RTEMS compiler and
the final host RTEMS C and C++ compiler, the output of this process.

The Host C and C++ compiler is a cross-compiler that builds executables for the host you want
the tools for. You need to provide these tools. For Windows a number of Unix operating systems
provide MinGW tool sets as packages.

The RSB will build an RTEMS tool set for the build host. This is needed when building the final
host’s RTEMS compiler as it needs to build RTEMS runtime code such as libc on the build host.

TIP: Make sure the host’s cross-compiler tools are in your path before run the RSB build com-
mand.

TIP: Canadian Cross built tools will not run on the machine being used to build them so you
should provide the --bset-tar-files and --no-install options. The option to not install the
files lets you provide a prefix that does not exist or you cannot access.

To perform a cross build add --host= to the command line. For example to build a MinGW tool
set on FreeBSD for Windows add --host=mingw32 if the cross compiler is mingw32-gcc:

1 $../source-builder/sb-set-builder --host=mingw32 \
2 --log=l-mingw32-4.11-sparc.txt \
3 --prefix=$HOME/development/rtems/4.11 \
4 4.11/rtems-sparc

If you are on a Linux Fedora build host with the MinGW packages installed the command line
is:

1 $../source-builder/sb-set-builder --host=i686-w64-mingw32 \
2 --log=l-mingw32-4.11-sparc.txt \
3 --prefix=$HOME/development/rtems/4.11 \
4 4.11/rtems-sparc

5.2. Canadian Cross Building 41

RTEMS Source Builder, Release 4.11.2 Chapter 5 Section 5.2

42 Chapter 5. Cross and Canadian Cross Building

CHAPTER

SIX

RTEMS 3RD PARTY PACKAGES

This section describes how to build and add an RTEMS 3rd party package to the RSB.

A 3rd party package is a library or software package built to run on RTEMS, examples are
NTP, Net-Snmp, libjpeg or Python. These pieces of software can be used to help build RTEMS
applications. The package is built for a specific BSP and so requires a working RTEMS tool chain
and an installed RTEMS Board Support Package (BSP).

The RSB support for building 3rd party packages is based around the pkconfig files (PC) installed
with the BSP. The pkgconfig support in RTEMS is considered experimental and can have some
issues for some BSPs. This issue is rooted deep in the RTEMS build system. If you have any
issues with this support please ask on the RTEMS developers mailing list.

43

RTEMS Source Builder, Release 4.11.2 Chapter 6 Section 6.1

6.1 Vertical Integration

The RSB supports horizontal integration with support for multiple architectures. Adding pack-
ages to the RSB as libraries is vertical integration. Building the GCC tool chain requires you
build an assembler before you build a compiler. The same can be done for 3rd party libraries,
you can crate build sets that stack library dependences vertically to create a stack.

44 Chapter 6. RTEMS 3rd Party Packages

Chapter 6 Section 6.2 RTEMS Source Builder, Release 4.11.2

6.2 Building

To build a package you need to have a suitable RTEMS tool chain and RTEMS BSP installed.
The set builder command line requires you provide the tools path, the RTEMS host, and the
prefix path to the installed RTEMS BSP. The prefix needs to be the same as the prefix used to
build RTEMS.

To build Net-SNMP the command is:

1 $ cd rtems-source-builder/rtems
2 $../source-builder/sb-set-builder --log=log_sis_net_snmp \
3 --prefix=$HOME/development/rtems/bsps/4.11 \
4 --with-tools=$HOME/development/rtems/4.11 \
5 --host=sparc-rtems4.11 --with-rtems-bsp=sis 4.11/net-mgmt/net-snmp
6 RTEMS Source Builder - Set Builder, v0.3.0
7 Build Set: 4.11/net-mgmt/net-snmp
8 config: net-mgmt/net-snmp-5.7.2.1-1.cfg
9 package: net-snmp-5.7.2.1-sparc-rtems4.11-1

10 building: net-snmp-5.7.2.1-sparc-rtems4.11-1
11 installing: net-snmp-5.7.2.1-sparc-rtems4.11-1 -> /Users/chris/development/rtems/bsps/4.11
12 cleaning: net-snmp-5.7.2.1-sparc-rtems4.11-1
13 Build Set: Time 0:01:10.651926

6.2. Building 45

RTEMS Source Builder, Release 4.11.2 Chapter 6 Section 6.3

6.3 Adding

Adding a package requires you first build it manually by downloading the source for the package
and building it for RTEMS using the command line of a standard shell. If the package has not
been ported to RTEMS you will need to port it and this may require you asking questions on
the package’s user or development support lists as well as RTEMS’s developers list. Your porting
effort may end up with a patch. RTEMS requires a patch be submitted upstream to the project’s
community as well as RTEMS so it can be added to the RTEMS Tools git repository. A patch in
the RTEMS Tools git reposiitory can then be referenced by an RSB configuration file.

A package may create executables, for example NTP normally creates executables such as ntdp,
ntpupdate, or ntpdc. These executables can be useful when testing the package however they
are of limited use by RTEMS users because they cannot be directly linked into a user application.
Users need to link to the functions in these executables or even the executable as a function
placed in libraries. If the package does not export the code in a suitable manner please contact
the project’s commuinity and see if you can work them to provide a way for the code to be
exported. This may be difficult because exporting internal headers and functions opens the
project up to API compatibility issues they did not have before. In the simplest case attempting
to get the code into a static library with a single call entry point exported in a header would
give RTEMS user’s access to the package’s main functionality.

A package requires 3 files to be created:

• The first file is the RTEMS build set file and it resides in the
rtems/config/%{rtems_version} path in a directory tree based on the FreeBSD ports col-
lection. For the NTP package and RTEMS 4.11 this is rtems/config/4.11/net/ntp.bset.
If you do not know the FreeBSD port path for the package you are adding please ask.
The build set file references a specific configuration file therefore linking the RTEMS
version to a specific version of the package you are adding. Updating the package to a
new version requires changing the build set to the new configuration file.

• The second file is an RTEMS version specific configuration file and it includes the
RSB RTEMS BSP support. These configuration files reside in the rtems/config tree
again under the FreeBSD port’s path name. For example the NTP package is found
in the net directory of the FreeBSD ports tree so the NTP configuration path is
rtems/config/net/ntp-4.2.6p5-1.cfg for that specific version. The configuration file
name typically provides version specific references and the RTEMS build set file refer-
ences a specific version. This configuration file references the build configuration file held
in the common configuration file tree.

• The build configuration. This is a common script that builds the package. It resides
in the source-builder/config directory and typically has the packages’s name with the
major version number. If the build script does not change for each major version number
a common base script can be created and included by each major version configuration
script. The gcc compiler configuration is an example. This approach lets you branch a
version if something changes that is not backwards compatible. It is important to keep
existing versions building. The build configuration should be able to build a package
for the build host as well as RTEMS as the RSB abstracts the RTEMS specific parts. See
Chapter 7 - Configuration (page 53) for more details.

46 Chapter 6. RTEMS 3rd Party Packages

Chapter 6 Section 6.4 RTEMS Source Builder, Release 4.11.2

6.4 BSP Support

The RSB provides support to help build packages for RTEMS. RTEMS applications can be viewed
as statically linked executables operating in a single address space. As a result only the static
libraries a package builds are required and these libraries need to be ABI compatible with the
RTEMS kernel and application code meaning compiler ABI flags cannot be mixed when building
code. The 3rd party package need to use the same compiler flags as the BSP used to build
RTEMS.

Note: RTEMS’s dynamic loading support does not use the standard shared library support
found in Unix and the ELF standard. RTEMS’s loader uses static libraries and the runtime link
editor performs a similar function to a host based static linker. RTEMS will only reference static
libraries even if dynamic libraries are created and installed.

The RSB provides the configuration file rtems/config/rtems-bsp.cfg to support
building 3rd party packages and you need to include this file in your RTEMS
version specific configuration file. For example the Net-SNMP configuration file
rtems/config/net-mgmt/net-snmp-5.7.2.1-1.cfg:

1 #
2 # NetSNMP 5.7.2.1
3 #
4 %if %{release} == %{nil}
5 %define release 1 <1>
6 %endif
7

8 %include %{_configdir}/rtems-bsp.cfg <2>
9

10 #
11 # NetSNMP Version
12 #
13 %define net_snmp_version 5.7.2.1 <3>
14

15 #
16 # We need some special flags to build this version.
17 #
18 %define net_snmp_cflags <4> -DNETSNMP_CAN_USE_SYSCTL=1 -DARP_SCAN_FOUR_ARGUMENTS=1 -DINP_

→˓IPV6=0
19

20 #
21 # Patch for RTEMS support.
22 #
23 %patch add net-snmp %{rtems_git_tools}/net-snmp/rtems-net-snmp-5.7.2.1-20140623.patch <5>
24

25 #
26 # NetSNMP Build configuration
27 #
28 %include %{_configdir}/net-snmp-5-1.cfg <6>

Items:

1. The release number.

6.4. BSP Support 47

RTEMS Source Builder, Release 4.11.2 Chapter 6 Section 6.4

2. Include the RSB RTEMS BSP support.

3. The Net-SNMP package’s version.

4. Add specific CFLAGS to the build process. See the

net-snmp-5.7.2.1-1.cfg for details.

5. The RTEMS Net-SNMP patch downloaded from the RTEMS Tools git repo.

6. The Net-SNMP standard build configuration.

The RSB RTEMS BSP support file rtems/config/rtems-bsp.cfg checks to make sure standard
command line options are provided. These include --host and --with-rtems-bsp. If the
--with-tools command line option is not given the ${_prefix} is used:

1 %if %{_host} == %{nil} <1>
2 %error No RTEMS target specified: --host=host
3 %endif
4

5 %ifn %{defined with_rtems_bsp} <2>
6 %error No RTEMS BSP specified: --with-rtems-bsp=bsp
7 %endif
8

9 %ifn %{defined with_tools} <3>
10 %define with_tools %{_prefix}
11 %endif
12

13 #
14 # Set the path to the tools.
15 #
16 %{path prepend %{with_tools}/bin} <4>

Items:

1. Check the host has been set.

2. Check a BSP has been specified.

3. If no tools path has been provided assume they are under the %{_prefix}.

4. Add the tools bin path to the system path.

RTEMS exports the build flags used in pkgconfig (.pc) files and the RSB can read and man-
age them even when there is no pkgconfig support installed on your build machine. Using
this support we can obtain a BSP’s configuration and set some standard macros variables
(rtems/config/rtems-bsp.cfg):

1 %{pkgconfig prefix %{_prefix}/lib/pkgconfig} <1>
2 %{pkgconfig crosscompile yes} <2>
3 %{pkgconfig filter-flags yes} <3>
4

5 #
6 # The RTEMS BSP Flags
7 #
8 %define rtems_bsp %{with_rtems_bsp}
9 %define rtems_bsp_ccflags %{pkgconfig ccflags %{_host}-%{rtems_bsp}} <4>

48 Chapter 6. RTEMS 3rd Party Packages

Chapter 6 Section 6.4 RTEMS Source Builder, Release 4.11.2

10 %define rtems_bsp_cflags %{pkgconfig cflags %{_host}-%{rtems_bsp}}
11 %define rtems_bsp_ldflags %{pkgconfig ldflags %{_host}-%{rtems_bsp}}
12 %define rtems_bsp_libs %{pkgconfig libs %{_host}-%{rtems_bsp}}

Items:

1. Set the path to the BSP’s pkgconfig file.

2. Let pkgconfig know this is a cross-compile build.

3. Filter flags such as warnings. Warning flags are specific to a package.

4. Ask pkgconfig for the various items we require.

The flags obtain by pkgconfig and given a rtems_bsp_ prefix and we uses these to set the RSB
host support CFLAGS, LDFLAGS and LIBS flags. When we build a 3rd party library your host
computer is the _build_ machine and RTEMS is the _host_ machine therefore we set the host
variables (rtems/config/rtems-bsp.cfg):

1 %define host_cflags %{rtems_bsp_cflags}
2 %define host_ldflags %{rtems_bsp_ldflags}
3 %define host_libs %{rtems_bsp_libs}

Finally we provide all the paths you may require when configuring a package. Packages by
default consider the _prefix the base and install various files under this tree. The package you
are building is specific to a BSP and so needs to install into the specific BSP path under the
_prefix. This allows more than BSP build of this package to be install under the same _prefix
at the same time (rtems/config/rtems-bsp.cfg):

1 %define rtems_bsp_prefix %{_prefix}/%{_host}/%{rtems_bsp} <1>
2 %define _exec_prefix %{rtems_bsp_prefix}
3 %define _bindir %{_exec_prefix}/bin
4 %define _sbindir %{_exec_prefix}/sbin
5 %define _libexecdir %{_exec_prefix}/libexec
6 %define _datarootdir %{_exec_prefix}/share
7 %define _datadir %{_datarootdir}
8 %define _sysconfdir %{_exec_prefix}/etc
9 %define _sharedstatedir %{_exec_prefix}/com

10 %define _localstatedir %{_exec_prefix}/var
11 %define _includedir %{_libdir}/include
12 %define _lib lib
13 %define _libdir %{_exec_prefix}/%{_lib}
14 %define _libexecdir %{_exec_prefix}/libexec
15 %define _mandir %{_datarootdir}/man
16 %define _infodir %{_datarootdir}/info
17 %define _localedir %{_datarootdir}/locale
18 %define _localedir %{_datadir}/locale
19 %define _localstatedir %{_exec_prefix}/var

Items:

1. The path to the BSP.

6.4. BSP Support 49

RTEMS Source Builder, Release 4.11.2 Chapter 6 Section 6.4

When you configure a package you can reference these paths and the RSB will provide sensible
default or in this case map them to the BSP (source-builder/config/ntp-4-1.cfg):

1 ../${source_dir_ntp}/configure \ <1>
2 --host=%{_host} \
3 --prefix=%{_prefix} \
4 --bindir=%{_bindir} \
5 --exec_prefix=%{_exec_prefix} \
6 --includedir=%{_includedir} \
7 --libdir=%{_libdir} \
8 --libexecdir=%{_libexecdir} \
9 --mandir=%{_mandir} \

10 --infodir=%{_infodir} \
11 --datadir=%{_datadir} \
12 --disable-ipv6 \
13 --disable-HOPFPCI

Items:

1. The configure command for NTP.

50 Chapter 6. RTEMS 3rd Party Packages

Chapter 6 Section 6.5 RTEMS Source Builder, Release 4.11.2

6.5 RTEMS BSP Configuration

To build a package for RTEMS you need to build it with the matching BSP configuration. A BSP
can be built with specific flags that require all code being used needs to be built with the same
flags.

6.5. RTEMS BSP Configuration 51

RTEMS Source Builder, Release 4.11.2 Chapter 6 Section 6.5

52 Chapter 6. RTEMS 3rd Party Packages

CHAPTER

SEVEN

CONFIGURATION

The RTEMS Source Builder has two types of configuration data:

• Build Sets

• Package Build Configurations

By default these files can be located in two separate directories and searched. The first directory
is config in your current working directory (_topdir) and the second is config located in the
base directory of the RTEMS Source Builder command you run (_sbdir). The RTEMS directory
rtems` located at the top of the RTEMS Source Builder source code is an example of a specific
build configuration directory. You can create custom or private build configurations and if you
run the RTEMS Source Builder command from that directory your configurations will be used.

The configuration search path is a macro variable and is reference as %{_configdir}. It’s default
is defined as:

1 _configdir : dir optional<2> %{_topdir}/config:%{_sbdir}/config <1>

Items:

1. The _topdir is the directory you run the command from and _sbdir is the location of
the RTEMS Source Builder command.

2. A macro definition in a macro file has 4 fields, the label, type, constraint and the defi-
nition.

Build set files have the file extension .bset and the package build configuration files have the file
extension of .cfg. The sb-set-builder command will search for build sets and the sb-builder
commands works with package build configuration files.

Both types of configuration files use the # character as a comment character. Anything after this
character on the line is ignored. There is no block comment.

53

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.1

7.1 Source and Patches

The RTEMS Source Builder provides a flexible way to manage source. Source and patches are
declare in configurations file using the source and patch directives. These are a single line
containing a Universal Resource Location or URL and can contain macros and shell expansions.
The Chapter 7 Section 8.2 - %prep (page 71) section details the source and patch directives

The URL can reference remote and local source and patch resources. The following schemes
are provided:

http:
Remote access using the HTTP protocol.

https:
Remote access using the Secure HTTP protocol.

ftp:
Remote access using the FTP protocol.

git:
Remote access to a GIT repository.

pm:
Remote access to a patch management repository.

file:
Local access to an existing source directory.

7.1.1 HTTP, HTTPS, and FTP

Remote access to TAR or ZIP files is provided using HTTP, HTTPS and FTP protocols. The full
URL provided is used to access the remote file including any query components. The URL is
parsed to extract the file component and the local source directory is checked for that file. If the
file is located locally the remote file is not downloaded. Currently no other checks are made. If
a download fails you need to manually remove the file from the source directory and start the
build process again.

The URL can contain macros. These are expanded before issuing the request to download the
file. The standard GNU GCC compiler source URL is:

1 %source set<1> gcc<2> ftp://ftp.gnu.org/gnu/gcc/gcc-%{gcc_version}/gcc-%{gcc_version}.tar.
→˓bz2

Items:

1. The %source command’s set command sets the source. The first is set and following sets
are ignored.

2. The source is part of the gcc group.

The type of compression is automatically detected from the file extension. The supported com-
pression formats are:

54 Chapter 7. Configuration

Chapter 7 Section 7.1 RTEMS Source Builder, Release 4.11.2

gz:
GNU ZIP

bzip2:
BZIP2

zip:
ZIP

xy:
XY

The output of the decompression tool is feed to the standard tar utility if not a ZIP file and
unpacked into the build directory. ZIP files are unpacked by the decompression tool and all
other files must be in the tar file format.

The %source directive typically supports a single source file tar or zip file. The set command is
used to set the URL for a specific source group. The first set command encoutner is registered
and any further set commands are ignored. This allows you to define a base standard source
location and override it in build and architecture specific files. You can also add extra source
files to a group. This is typically done when a collection of source is broken down in a number
of smaller files and you require the full package. The source’s setup command must reide in
the %prep: section and it unpacks the source code ready to be built.

If the source URL references the GitHub API server https://api.github.com/ a tarball of the
specified version is download. For example the URL for the STLINK project on GitHub and
version is:

1 %define stlink_version 3494c11
2 %source set stlink https://api.github.com/repos/texane/stlink/texane-stlink-%{stlink_

→˓version}.tar.gz

7.1.2 GIT

A GIT repository can be cloned and used as source. The GIT repository resides in the ‘source’
directory under the git directory. You can edit, update and use the repository as you normally
do and the results will used to build the tools. This allows you to prepare and test patches in
the build environment the tools are built in. The GIT URL only supports the GIT protocol. You
can control the repository via the URL by appending options and arguments to the GIT path.
The options are delimited by ? and option arguments are delimited from the options with =.
The options are:

protocol:
Use a specific protocol. The supported values are ssh, git, http, https, ftp, ftps, rsync, and
none.

branch:
Checkout the specified branch.

pull:
Perform a pull to update the repository.

fetch:
Perform a fetch to get any remote updates.

7.1. Source and Patches 55

https://api.github.com/

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.1

reset:
Reset the repository. Useful to remove any local changes. You can pass the hard argument to
force a hard reset.

An example is:

1 %source set gcc git://gcc.gnu.org/git/gcc.git?branch=gcc-4_7-branch?reset=hard

This will clone the GCC git repository and checkout the 4.7-branch and perform a hard reset.
You can select specific branches and apply patches. The repository is cleaned up before each
build to avoid various version control errors that can arise.

The protocol option lets you set a specific protocol. The git:// prefix used by the RSB to select
a git repository can be removed using none or replaced with one of the standard git protcols.

7.1.3 CVS

A CVS repository can be checked out. CVS is more complex than GIT to handle because of
the modules support. This can effect the paths the source ends up in. The CVS URL only
supports the CVS protocol. You can control the repository via the URL by appending options
and arguments to the CVS path. The options are delimited by ? and option arguments are
delimited from the options with =. The options are:

module:
The module to checkout.

src-prefix:
The path into the source where the module starts.

tag:
The CVS tag to checkout.

date:
The CVS date to checkout.

The following is an example of checking out from a CVS repository:

1 %source set newlib cvs://pserver:anoncvs@sourceware.org/cvs/src?module=newlib?src-
→˓prefix=src

56 Chapter 7. Configuration

Chapter 7 Section 7.2 RTEMS Source Builder, Release 4.11.2

7.2 Macros and Defaults

The RTEMS Source Builder uses tables of macros read in when the tool runs. The initial global
set of macros is called the defaults. These values are read from a file called defaults.mc and
modified to suite your host. This host specific adaption lets the Source Builder handle differ-
ences in the build hosts.

Build set and configuration files can define new values updating and extending the global macro
table. For example builds are given a release number. This is typically a single number at the
end of the package name. For example:

1 %define release 1

Once defined if can be accessed in a build set or package configuration file with:

1 %{release}

The sb-defaults command lists the defaults for your host. I will not include the output of this
command because of its size:

1 $../source-builder/sb-defaults

A nested build set is given a separate copy of the global macro maps. Changes in one change
set are not seen in other build sets. That same happens with configuration files unless inline
includes are used. Inline includes are seen as part of the same build set and configuration and
changes are global to that build set and configuration.

7.2.1 Macro Maps and Files

Macros are read in from files when the tool starts. The default settings are read from the
defaults macro file called defaults.mc located in the top level RTEMS Source Builder command
directory. User macros can be read in at start up by using the --macros command line option.

The format for a macro in macro files is:

1 Name Type Attribute String

where Name is a case insensitive macro name, the Type field is:

none:
Nothing, ignore.

dir:
A directory path.

exe:
An executable path.

triplet:
A GNU style architecture, platform, operating system string.

the Attribute field is:

none:
Nothing, ignore

7.2. Macros and Defaults 57

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.2

required:
The host check must find the executable or path.

optional:
The host check generates a warning if not found.

override:
Only valid outside of the global map to indicate this macro overrides the same one in the
global map when the map containing it is selected.

undefine:
Only valid outside of the global map to undefine the macro if it exists in the global map
when the map containing it is selected. The global map’s macro is not visible but still exists.

and the String field is a single or tripled multiline quoted string. The ‘String’ can contain
references to other macros. Macro that loop are not currently detected and will cause the tool
to lock up.

Maps are declared anywhere in the map using the map directive:

1 # Comments
2 [my-special-map] <1>
3 _host: none, override, 'abc-xyz'
4 multiline: none, override, '''First line,
5 second line,
6 and finally the last line'''

Items:

1. The map is set to my-special-map.

Any macro defintions following a map declaration are placed in that map and the default map
is global when loading a file. Maps are selected in configuration files by using the %select
directive:

1 %select my-special-map

Selecting a map means all requests for a macro first check the selected map and if present return
that value else the global map is used. Any new macros or changes update only the global
map. This may change in future releases so please make sure you use the override attribute.

The macro files specificed on the command line are looked for in the _configdir paths. See
<<X1,‘‘_configdir‘‘>> variable for details. Included files need to add the %{_configdir} macro
to the start of the file.

Macro map files can include other macro map files using the %include directive. The macro
map to build binutils, gcc, newlib, gdb and RTEMS from version control heads is:

1 # <1>
2 # Build all tool parts from version control head.
3 #
4 %include %{_configdir}/snapshots/binutils-head.mc
5 %include %{_configdir}/snapshots/gcc-head.mc
6 %include %{_configdir}/snapshots/newlib-head.mc
7 %include %{_configdir}/snapshots/gdb-head.mc

58 Chapter 7. Configuration

Chapter 7 Section 7.2 RTEMS Source Builder, Release 4.11.2

Items:

1. The file is config/snapshots/binutils-gcc-newlib-gdb-head.mc.

The macro map defaults to global at the start of each included file and the map setting of the
macro file including the other macro files does not change.

7.2.2 Personal Macros

When the tools start to run they will load personal macros. Personal macros are in the standard
format for macros in a file. There are two places personal macros can be configured. The first
is the environment variable RSB_MACROS. If present the macros from the file the environment
variable points to are loaded. The second is a file called .rsb_macros in your home directory.
You need to have the environment variable HOME defined for this work.

7.2. Macros and Defaults 59

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.3

7.3 Report Mailing

The build reports can be mailed to a specific email address to logging and monitoring. Mailing
requires a number of parameters to function. These are:

• To mail address

• From mail address

• SMTP host

The to mail address is taken from the macro %{_mail_tools_to} and the default is rtems-
tooltestresults at rtems.org. You can override the default with a personal or user macro file
or via the command line option --mail-to. The from mail address is taken from:

• GIT configuration

• User .mailrc file

• Command line

If you have configured an email and name in git it will be used used. If you do not a check
is made for a .mailrc file. The environment variable MAILRC is used if present else your home
directory is check. If found the file is scanned for the from setting:

1 set from="Foo Bar <foo@bar>"

You can also support a from address on the command line with the --mail-from option.

The SMTP host is taken from the macro %{_mail_smtp_host} and the default is localhost. You
can override the default with a personal or user macro file or via the command line option
--smtp-host.

60 Chapter 7. Configuration

Chapter 7 Section 7.4 RTEMS Source Builder, Release 4.11.2

7.4 Build Set Files

Build set files lets you list the packages in the build set you are defining and have a file extension
of .bset. Build sets can define macro variables, inline include other files and reference other
build set or package configuration files.

Defining macros is performed with the %define macro:

1 %define _target m32r-rtems4.11

Inline including another file with the %include macro continues processing with the specified
file returning to carry on from just after the include point:

1 %include rtems-4.11-base.bset

This includes the RTEMS 4.11 base set of defines and checks. The configuration paths as defined
by _configdir are scanned. The file extension is optional.

You reference build set or package configuration files by placing the file name on a single line:

1 tools/rtems-binutils-2.22-1

The _configdir path is scanned for tools/rtems-binutils-2.22-1.bset or
tools/rtems-binutils-2.22-1.cfg. Build set files take precedent over package configu-
ration files. If tools/rtems-binutils-2.22-1 is a build set a new instance of the build set
processor is created and if the file is a package configuration the package is built with the
package builder. This all happens once the build set file has finished being scanned.

7.4. Build Set Files 61

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.5

7.5 Configuration Control

The RTEMS Souce Builder is designed to fit within most verification and validation processes.
All of the RTEMS Source Builder is source code. The Python code is source and comes with
a commercial friendly license. All configuration data is text and can be read or parsed with
standard text based tools.

File naming provides configuration management. A specific version of a package is captured
in a specific set of configuration files. The top level configuration file referenced in a build set
or passed to the sb-builder command relates to a specific configuration of the package being
built. For example the RTEMS configuration file rtems-gcc-4.7.2-newlib-2.0.0-1.cfg creates
an RTEMS GCC and Newlib package where the GCC version is 4.7.2, the Newlib version is
2.0.0, plus any RTEMS specific patches that related to this version. The configuration defines
the version numbers of the various parts that make up this package:

1 %define gcc_version 4.7.2
2 %define newlib_version 2.0.0
3 %define mpfr_version 3.0.1
4 %define mpc_version 0.8.2
5 %define gmp_version 5.0.5

The package build options, if there are any are also defined:

1 %define with_threads 1
2 %define with_plugin 0
3 %define with_iconv 1

The generic configuration may provide defaults in case options are not specified. The patches
this specific version of the package requires can be included:

1 Patch0: gcc-4.7.2-rtems4.11-20121026.diff

Finally including the GCC 4.7 configuration script:

1 %include %{_configdir}/gcc-4.7-1.cfg

The gcc-4.7-1.cfg file is a generic script to build a GCC 4.7 compiler with Newlib. It is not
specific to RTEMS. A bare no operating system tool set can be built with this file.

The -1 part of the file names is a revision. The GCC 4.7 script maybe revised to fix a problem
and if this fix effects an existing script the file is copied and given a -2 revision number. Any
dependent scripts referencing the earlier revision number will not be effected by the change.
This locks down a specific configuration over time.

62 Chapter 7. Configuration

Chapter 7 Section 7.6 RTEMS Source Builder, Release 4.11.2

7.6 Personal Configurations

The RSB supports personal configurations. You can view the RTEMS support in the rtems
directory as a private configuration tree that resides within the RSB source. There is also the
bare set of configurations. You can create your own configurations away from the RSB source
tree yet use all that the RSB provides.

To create a private configuration change to a suitable directory:

1 $ cd ~/work
2 $ mkdir test
3 $ cd test
4 $ mkdir config

and create a config directory. Here you can add a new configuration or build set file. The
section ‘Adding New Configurations’ details how to add a new confguration.

7.6. Personal Configurations 63

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.7

7.7 New Configurations

This section describes how to add a new configuration to the RSB. We will add a configuration
to build the Device Tree Compiler. The Device Tree Compiler or DTC is part of the Flattened
Device Tree project and compiles Device Tree Source (DTS) files into Device Tree Blobs (DTB).
DTB files can be loaded by operating systems and used to locate the various resources such as
base addresses of devices or interrupt numbers allocated to devices. The Device Tree Compiler
source code can be downloaded from http://www.jdl.com/software. The DTC is supported in
the RSB and you can find the configuration files under the bare/config tree. I suggest you have
a brief look over these files.

7.7.1 Layering by Including

Configurations can be layered using the %include directive. The user invokes the outer layers
which include inner layers until all the required configuration is present and the package can
be built. The outer layers can provide high level details such as the version and the release and
the inner layers provide generic configuration details that do not change from one release to
another. Macro variables are used to provide the specific configuration details.

7.7.2 Configuration File Numbering

Configuration files have a number at the end. This is a release number for that configuration
and it gives us the ability to track a specific configuration for a specific version. For example
lets say the developers of the DTC package change the build system from a single makefile to
autoconf and automake between version 1.3.0 and version 1.4.0. The configuration file used to
build the package would change have to change. If we did not number the configuration files
the ability to build 1.1.0, 1.2.0 or 1.3.0 would be lost if we update a common configuration file
to build an autoconf and automake version. For version 1.2.0 the same build script can be used
so we can share the same configuration file between version 1.1.0 and version 1.2.0. An update
to any previous release lets us still build the package.

7.7.3 Common Configuration Scripts

Common configuration scripts that are independent of version, platform and architecture are
useful to everyone. These live in the Source Builder’s configuration directory. Currently there
are scripts to build binutils, expat, DTC, GCC, GDB and libusb. These files contain the recipes
to build these package without the specific details of the versions or patches being built. They
expect to be wrapped by a configuration file that ties the package to a specific version and
optionally specific patches.

7.7.4 DTC Example

We will be building the DTC for your host rather than a package for RTEMS. We will create a file
called source-builder/config/dtc-1-1.cfg. This is a common script that can be used to build
a specific version using a general recipe. The file name is dtc-1-1.cfg where the cfg extension
indicates this is a configuration file. The first 1 says this is for the major release 1 of the package
and the last 1 is the build configuration version.

64 Chapter 7. Configuration

http://www.jdl.com/software

Chapter 7 Section 7.7 RTEMS Source Builder, Release 4.11.2

The file starts with some comments that detail the configuration. If there is anything unusual
about the configuration it is a good idea to add something in the comments here. The comments
are followed by a check for the release. In this case if a release is not provided a default of 1 is
used:

1 #
2 # DTC 1.x.x Version 1.
3 #
4 # This configuration file configure's, make's and install's DTC.
5 #
6

7 %if %{release} == %{nil}
8 %define release 1
9 %endif

The next section defines some information about the package. It does not effect the build and is
used to annotate the reports. It is recommended this information is kept updated and accurate:

1 Name: dtc-%{dtc_version}-%{_host}-%{release}
2 Summary: Device Tree Compiler v%{dtc_version} for target %{_target} on host %{_host}
3 Version: %{dtc_version}
4 Release: %{release}
5 URL: http://www.jdl.com/software/
6 BuildRoot: %{_tmppath}/%{name}-root-%(%{__id_u} -n)

The next section defines the source and any patches. In this case there is a single source package
and it can be downloaded using the HTTP protocol. The RSB knows this is GZip’ped tar file. If
more than one package package is needed add them increasing the index. The gcc-4.8-1.cfg
configuration contains examples of more than one source package as well as conditionally in-
cluding source packages based on the outer configuration options:

1 #
2 # Source
3 #
4 %source set dtc http://www.jdl.com/software/dtc-v%{dtc_version}.tgz

The remainder of the script is broken in to the various phases of a build. They are:

. Preperation . Bulding . Installing, and . Cleaning

Preparation is the unpacking of the source, applying any patches as well as any package specific
set ups. This part of the script is a standard Unix shell script. Be careful with the use of % and $.
The RSB uses % while the shell scripts use $.

A standard pattern you will observe is the saving of the build’s top directory. This is used instead
of changing into a subdirectory and then changing to the parent when finished. Some hosts will
change in a subdirectory that is a link however changing to the parent does not change back
to the parent of the link rather it changes to the parent of the target of the link and that is
something the RSB nor you can track easily. The RSB configuration script’s are a collection of
various subtle issues so please ask if you are unsure why something is being done a particular
way.

The preparation phase will often include source and patch setup commands. Outer layers can
set the source package and add patches as needed while being able to use a common recipe for
the build. Users can override the standard build and supply a custom patch for testing using the
user macro command line interface:

7.7. New Configurations 65

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.7

1 #
2 # Prepare the source code.
3 #
4 %prep
5 build_top=$(pwd)
6

7 %source setup dtc -q -n dtc-v%{dtc_version}
8 %patch setup dtc -p1
9

10 cd ${build_top}

The configuration file gcc-common-1.cfg is a complex example of source preparation. It contains
a number of source packages and patches and it combines these into a single source tree for
building. It uses links to map source into the GCC source tree so GCC can be built using the
single source tree method. It also shows how to fetch source code from version control. Newlib
is taken directly from its CVS repository.

Next is the building phase and for the DTC example this is simply a matter of running make.
Note the use of the RSB macros for commands. In the case of %{__make} it maps to the correct
make for your host. In the case of BSD systems we need to use the GNU make and not the GNU
make.

If your package requires a configuration stage you need to run this before the make stage. Again
the GCC common configuration file provides a detailed example:

1 %build
2 build_top=$(pwd)
3

4 cd dtc-v%{dtc_version}
5

6 %{build_build_flags}
7

8 %{__make} PREFIX=%{_prefix}
9

10 cd ${build_top}

You can invoke make with the macro %{?_smp_flags} as a command line argument. This macro
is controlled by the --jobs command line option and the host CPU detection support in the
RSB. If you are on a multicore host you can increase the build speed using this macro. It also
lets you disabled building on multicores to aid debugging when testing.

Next is the install phase. This phase is a little more complex because you may be building a tar
file and the end result of the build is never actually installed into the prefix on the build host
and you may not even have permissions to perform a real install. Most packages install to the
prefix and the prefix is typically supplied via the command to the RSB or the package’s default
is used. The default can vary depending on the host’s operating system. To install to a path that
is not the prefix the DESTDIRmake variable is used. Most packages should honour the DISTDIR
make variables and you can typically specify it on the command line to make when invoking the
install target. This results in the package being installed to a location that is not the prefix but
one you can control. The RSB provides a shell variable called SB_BUILD_ROOT you can use. In a
build set where you are building a number of packages you can collect all the built packages in
a single tree that is captured in the tar file.

Also note the use of the macro %{__rmdir}. The use of these macros allow the RSB to vary
specific commands based on the host. This can help on hosts like Windows where bugs can

66 Chapter 7. Configuration

Chapter 7 Section 7.7 RTEMS Source Builder, Release 4.11.2

effect the standard commands such as rm. There are many many macros to help you. You can
find these listed in the defaults.mc file and in the trace output. If you are new to creating and
editing configurations learning these can take a little time:

1 %install
2 build_top=$(pwd)
3

4 %{__rmdir} -rf $SB_BUILD_ROOT
5

6 cd dtc-v%{dtc_version}
7 %{__make} DESTDIR=$SB_BUILD_ROOT PREFIX=%{_prefix} install
8

9 cd ${build_top}

Finally there is an optional clean section. The RSB will run this section if --no-clean has not
been provided on the command line. The RSB does clean up for you.

Once we have the configuration files we can execute the build using the sb-builder command.
The command will perform the build and create a tar file in the tar directory:

1 $../source-builder/sb-builder --prefix=/usr/local \
2 --log=log_dtc devel/dtc-1.2.0
3 RTEMS Source Builder, Package Builder v0.2.0
4 config: devel/dtc-1.2.0
5 package: dtc-1.2.0-x86_64-freebsd9.1-1
6 download: http://www.jdl.com/software/dtc-v1.2.0.tgz -> sources/dtc-v1.2.0.tgz
7 building: dtc-1.2.0-x86_64-freebsd9.1-1
8 $ ls tar
9 dtc-1.2.0-x86_64-freebsd9.1-1.tar.bz2

If you want to have the package installed automatically you need to create a build set. A build
set can build one or more packages from their configurations at once to create a single package.
For example the GNU tools is typically seen as binutils, GCC and GDB and a build set will build
each of these packages and create a single build set tar file or install the tools on the host into
the prefix path.

The DTC build set file is called dtc.bset and contains:

1 #
2 # Build the DTC.
3 #
4

5 %define release 1
6

7 devel/dtc-1.2.0.cfg

To build this you can use something similar to:

1 $../source-builder/sb-set-builder --prefix=/usr/local --log=log_dtc \
2 --trace --bset-tar-file --no-install dtc
3 RTEMS Source Builder - Set Builder, v0.2.0
4 Build Set: dtc
5 config: devel/dtc-1.2.0.cfg
6 package: dtc-1.2.0-x86_64-freebsd9.1-1
7 building: dtc-1.2.0-x86_64-freebsd9.1-1
8 tarball: tar/x86_64-freebsd9.1-dtc-set.tar.bz2
9 cleaning: dtc-1.2.0-x86_64-freebsd9.1-1

7.7. New Configurations 67

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.7

10 Build Set: Time 0:00:02.865758
11 $ ls tar
12 dtc-1.2.0-x86_64-freebsd9.1-1.tar.bz2 x86_64-freebsd9.1-dtc-set.tar.bz2

The build is for a FreeBSD host and the prefix is for user installed packages. In this example
I cannot let the source builder perform the install because I never run the RSB with root priv-
iledges so a build set or bset tar file is created. This can then be installed using root privildges.

The command also supplies the --trace option. The output in the log file will contian all the
macros.

7.7.5 Debugging

New configuration files require debugging. There are two types of debugging. The first is
debugging RSB script bugs. The --dry-run option is used here. Suppling this option will result
in most of the RSB processing to be performed and suitable output placed in the log file. This
with the --trace option should help you resolve any issues.

The second type of bug to fix are related to the execution of one of phases. These are usually
a mix of shell script bugs or package set up or configuration bugs. Here you can use any
normal shell script type debug technique such as set +x to output the commands or echo
statements. Debugging package related issues may require you start a build with teh RSB and
supply --no-clean option and then locate the build directories and change directory into them
and manually run commands until to figure what the package requires.

68 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.2

7.8 Scripting

Configuration files specify how to build a package. Configuration files are scripts and have a
.cfg file extension. The script format is based loosely on the RPM spec file format however
the use and purpose in this tool does not compare with the functionality and therefore the
important features of the spec format RPM needs and uses.

The script language is implemented in terms of macros. The built-in list is:

%{}:
Macro expansion with conditional logic.

%():
Shell expansion.

%prep:
The source preparation shell commands.

%build:
The build shell commands.

%install:
The package install shell commands.

%clean:
The package clean shell commands.

%include:
Inline include another configuration file.

%name:
The name of the package.

%summary:
A brief package description. Useful when reporting about a build.

%release:
The package release. A number that is the release as built by this tool.

%version:
The package’s version string.

%buildarch:
The build architecture.

%source:
Define a source code package. This macro has a number appended.

%patch:
Define a patch. This macro has a is number appended.

%hash:
Define a checksum for a source or patch file.

%echo:
Print the following string as a message.

%warning:
Print the following string as a warning and continue.

7.8. Scripting 69

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.8

%error:
Print the following string as an error and exit.

%select:
Select the macro map. If there is no map nothing is reported.

%define:
Define a macro. Macros cannot be redefined, you must first undefine it.

%undefine:
Undefine a macro.

%if:
Start a conditional logic block that ends with a %endif.

%ifn:
Inverted start of a conditional logic block.

%ifarch:
Test the architecture against the following string.

%ifnarch:
Inverted test of the architecture

%ifos:
Test the host operating system.

%else:
Start the else conditional logic block.

%endfi:
End the conditional logic block.

%bconf_with:
Test the build condition with setting. This is the --with-* command line option.

%bconf_without:
Test the build condition without setting. This is the --without-* command line option.

7.8.1 Expanding

A macro can be %{string} or the equivalent of %string. The following macro expansions
supported are:

%{string}:
Expand the ‘string’ replacing the entire macro text with the text in the table for the entry
‘string . For example if ‘var’ is ‘foo’ then ${var} would become foo.

%{expand: string}:
Expand the ‘string’ and then use it as a string to the macro expanding the macro. For example
if foo is set to bar and bar is set to foobar then %{expand:foo} would result in foobar. Shell
expansion can also be used.

%{with string}:
Expand the macro to 1 if the macro with_string is defined else expand to 0. Macros with the
name with_string can be define with command line arguments to the RTEMS Source Builder
commands.

70 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.2

%{defined string}:
Expand the macro to 1 if a macro of name string is defined else expand to ‘0’.

%{?string: expression}:
Expand the macro to expression if a macro of name string is defined else expand to %{nil}.

%{!?string: expression}:
Expand the macro to expression if a macro of name string is not defined. If the macro is
define expand to %{nil}.

%(expression):
Expand the macro to the result of running the expression in a host shell. It is assumed this is
a Unix type shell. For example %(whoami) will return your user name and %(date) will return
the current date string.

7.8.2 %prep

The +%prep+ macro starts a block that continues until the next block macro. The prep or
preparation block defines the setup of the package’s source and is a mix of RTEMS Source
Builder macros and shell scripting. The sequence is typically +%source+ macros for source,
+%patch+ macros to patch the source mixed with some shell commands to correct any source
issues:

1 <1> <2> <3>
2 %source setup gcc -q -c -T -n %{name}-%{version}

Items:

1. The source group to set up.

2. The source’s name.

3. The version of the source.

The source set up are declared with the source set and add commands. For example:

1 %source set gdb http://ftp.gnu.org/gnu/gdb/gdb-%{gdb_version}.tar.bz2

This URL is the primary location of the GNU GDB source code and the RTEMS Source Builder
can download the file from this location and by inspecting the file extension use bzip2 decom-
pression with +tar+. When the %prep section is processed a check of the local source directory
is made to see if the file has already been downloaded. If not found in the source cache directory
the package is downloaded from the URL. You can append other base URLs via the command
line option --url. This option accepts a comma delimited list of sites to try.

You could optionally have a few source files that make up the package. For example GNU’s GCC
was a few tar files for a while and it is now a single tar file. Support for multiple source files
can be conditionally implemented with the following scripting:

1 %source set gcc ftp://ftp.gnu.org/gnu/gcc/gcc-%{gcc_version}/gcc-code-%{gcc_version}.tar.
→˓bz2

2 %source add gcc ftp://ftp.gnu.org/gnu/gcc/gcc-%{gcc_version}/gcc-g++-%{gcc_version}.tar.bz2
3 %source setup gcc -q -T -D -n gcc-%{gcc_version}

7.8. Scripting 71

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.8

Separate modules use separate source groups. The GNU GCC compiler for RTEMS uses Newlib,
MPFR, MPC, and GMP source packages. You define the source with:

1 %source set gcc ftp://ftp.gnu.org/gnu/gcc/gcc-%{gcc_version}/gcc-%{gcc_version}.tar.bz2
2 %source set newlib ftp://sourceware.org/pub/newlib/newlib-%{newlib_version}.tar.gz
3 %source set mpfr http://www.mpfr.org/mpfr-%{mpfr_version}/mpfr-%{mpfr_version}.tar.bz2
4 %source set mpc http://www.multiprecision.org/mpc/download/mpc-%{mpc_version}.tar.gz
5 %source set gmp ftp://ftp.gnu.org/gnu/gmp/gmp-%{gmp_version}.tar.bz2

and set up with:

1 %source setup gcc -q -n gcc-%{gcc_version}
2 %source setup newlib -q -D -n newlib-%{newlib_version}
3 %source setup mpfr -q -D -n mpfr-%{mpfr_version}
4 %source setup mpc -q -D -n mpc-%{mpc_version}
5 %source setup gmp -q -D -n gmp-%{gmp_version}

Patching also occurs during the preparation stage. Patches are handled in a similar way to the
source packages except you only add patches. Patches are applied using the +setup+ command.
The +setup+ command takes the default patch option. You can provide options with each patch
by adding them as arguments before the patch URL. Patches with no options uses the +setup+
default.

1 %patch add gdb %{rtems_gdb_patches}/gdb-sim-arange-inline.diff
2 %patch add gdb -p0 <1> %{rtems_gdb_patches}/gdb-sim-cgen-inline.diff

Items:

1. This patch has a custom option.

To apply these patches:

1 %patch setup gdb -p1 <1>

Items:

1. The default options.

7.8.3 %build

The %build macro starts a block that continues until the next block macro. The build block is a
series of shell commands that execute to build the package. It assumes all source code has been
unpacked, patch and adjusted so the build will succeed.

The following is an example take from the GutHub STLink project. The STLink is a JTAG
debugging device for the ST ARM family of processors:

1 %build
2 export PATH="%{_bindir}:${PATH}" <1>
3

4 cd texane-stlink-%{stlink_version} <2>

72 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.2

5

6 ./autogen.sh <3>
7

8 %if "%{_build}" != "%{_host}"
9 CFLAGS_FOR_BUILD="-g -O2 -Wall" \ <4>

10 %endif
11 CPPFLAGS="-I $SB_TMPPREFIX/include/libusb-1.0" \ <5>
12 CFLAGS="$SB_OPT_FLAGS" \
13 LDFLAGS="-L $SB_TMPPREFIX/lib" \
14 ./configure \ <6>
15 --build=%{_build} --host=%{_host} \
16 --verbose \
17 --prefix=%{_prefix} --bindir=%{_bindir} \
18 --exec-prefix=%{_exec_prefix} \
19 --includedir=%{_includedir} --libdir=%{_libdir} \
20 --mandir=%{_mandir} --infodir=%{_infodir}
21

22 %{__make} %{?_smp_mflags} all <7>
23

24 cd ..

Items:

1. Setup the PATH environment variable. This is not always needed.

2. This package builds in the source tree so enter it.

3. The package is actually checked directly out from the github project and so it needs its
autoconf and automake files generated.

4. Flags for a cross-compiled build.

5. Various settings passed to configure to customise the build. In this example an include
path is being set to the install point of libusb. This package requires libusb is built
before it.

6. The configure command. The RTEMS Source Builder provides all the needed paths as
macro variables. You just need to provide them to configure.

7. Running make. Do not use make directly, use the RTEMS Source Builder’s defined value.
This value is specific to the host. A large number of packages need GNU make and
on BSD systems this is gmake. You can optionally add the SMP flags if the packages
build system can handle parallel building with multiple jobs. The _smp_mflags value is
automatically setup for SMP hosts to match the number of cores the host has.

7.8.4 %install

The %install macro starts a block that continues until the next block macro. The install block
is a series of shell commands that execute to install the package. You can assume the package
has build correctly when this block starts executing.

Never install the package to the actual prefix the package was built with. Always install to the
RTEMS Source Builder’s temporary path defined in the macro variable __tmpdir. The RTEMS
Source Builder sets up a shell environment variable called SB_BUILD_ROOT as the standard install

7.8. Scripting 73

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.8

point. Most packages support adding DESTDIR= to the make install command.

Looking at the same example as in Chapter 7 Section 8.3 - %build (page 72):

1 %install
2 export PATH="%{_bindir}:${PATH}" <1>
3 rm -rf $SB_BUILD_ROOT <2>
4

5 cd texane-stlink-%{stlink_version} <3>
6 %{__make} DESTDIR=$SB_BUILD_ROOT install <4>
7

8 cd ..

Items:

1. Setup the PATH environment variable. This is not always needed.

2. Clean any installed files. This make sure the install is just what the package installs and
not any left over files from a broken build or install.

3. Enter the build directory. In this example it just happens to be the source directory.

4. Run make install to install the package overriding the DESTDIR make variable.

7.8.5 %clean

The %clean macro starts a block that continues until the next block macro. The clean block is
a series of shell commands that execute to clean up after a package has been built and install.
This macro is currenly not been used because the RTEMS Source Builder automatically cleans
up.

7.8.6 %include

The %include macro inline includes the specific file. The __confdir path is searched. Any
relative path component of the include file is appended to each part of the __configdir. Adding
an extension is optional as files with .bset and .cfg are automatically searched for.

Inline including means the file is processed as part of the configuration at the point it is included.
Parsing continues from the next line in the configuration file that contains the %include macro.

Including files allow a kind of configuration file reuse. The outer configuration files provide
specific information such as package version numbers and patches and then include a generic
configuration script which builds the package:

1 %include %{_configdir}/gcc-4.7-1.cfg

7.8.7 %name

The name of the package being built. The name typically contains the components of the pack-
age and their version number plus a revision number. For the GCC with Newlib configuration
the name is typically:

74 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.2

1 Name: %{_target}-gcc-%{gcc_version}-newlib-%{newlib_version}-%{release}

7.8.8 %summary

The %summary is a brief description of the package. It is useful when reporting. This information
is not capture in the package anywhere. For the GCC with Newlib configuration the summary
is typically:

1 Summary: GCC v%{gcc_version} and Newlib v%{newlib_version} for target %{_target} on host %
→˓{_host}

7.8.9 %release

The %release is packaging number that allows revisions of a package to happen where none
package versions change. This value typically increases when the configuration building the
package changes:

1 %define release 1

7.8.10 %version

The %version macro sets the version the package. If the package is a single component it tracks
that component’s version number. For example in the libusb configuration the %version is
the same as %libusb_version, however in a GCC with Newlib configuration there is no single
version number. In this case the GCC version is used:

1 Version: %{gcc_version}

7.8.11 %buildarch

The %buildarch macro is set to the architecture the package contains. This is currently not
used in the RTEMS Source Builder and may go away. This macro is more important in a real
packaging system where the package could end up on the wrong architecture.

7.8.12 %source

The %source macro has 3 commands that controls what it does. You can set the source files,
add source files to a source group, and setup the source file group getting it ready to be used.

Source files are source code files in tar or zip files that are unpacked, copied or symbolically
linked into the package’s build tree. Building a package requires one or more dependent pack-
ages. These are typically the packages source code plus dependent libraries or modules. You
can create any number of these source groups and set each of them up with a separe source
group for each needed library or module. Each source group normally has a single tar, zip or
repository and the set defines this. Some projects split the source code into separate tar or zip
files and you install them by using the add command.

7.8. Scripting 75

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.8

The first instance of a set command creates the source group and sets the source files to be set
up. Subsequence set commands for the same source group are ignored. this lets you define the
standard source files and override them for specific releases or snapshots. To set a source file
group:

1 %source set gcc <1> ftp://ftp.gnu.org/gnu/gcc/gcc-%{gcc_version}/gcc-%{gcc_version}.tar.bz2

Items:

1. The source group is gcc.

To add another source package to be installed into the same source tree you use the add com-
mand:

1 %source add gcc ftp://ftp.gnu.org/gnu/gcc/gcc-%{gcc_version}/g++-%{gcc_version}.tar.bz2

The source setup command can only be issued in the %prep: section. The setup is:

1 %source gcc setup -q -T -D -n %{name}-%{version}

Accepted options are:

-n:
The -n option is used to set the name of the software’s build directory. This is necessary only
when the source archive unpacks into a directory named other than <name>-<version>.

-c:
The -c option is used to direct %setup to create the top-level build directory before unpacking
the sources.

-D:
The -D option is used to direct %setup to not delete the build directory prior to unpacking the
sources. This option is used when more than one source archive is to be unpacked into the
build directory, normally with the -b or -a options.

-T:
The -T option is used to direct %setup to not perform the default unpacking of the source
archive specified by the first Source: macro. It is used with the -a or -b options.

-b <n>:
The -b option is used to direct %setup to unpack the source archive specified on the nth
Source: macro line before changing directory into the build directory.

7.8.13 %patch

The %patch macro has the same 3 command as the %source command however the set com-
mands is not really that useful with the with command. You add patches with the add command
and setup applies the patches. Patch options can be added to each patch by placing them before
the patch URL. If no patch option is provided the default options passed to the setup command
are used. An option starts with a -. The setup command must reside inside the %prep section.

Patches are grouped in a similar way to the %source macro so you can control applying a group
of patches to a specific source tree.

76 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.2

The __patchdir path is search.

To add a patch:

1 %patch add gcc <1> gcc-4.7.2-rtems4.11-20121026.diff
2 %patch add gcc -p0 <2> gcc-4.7.2-rtems4.11-20121101.diff

Items:

1. The patch group is gcc.

2. Option for this specific patch.

Placing %patch setup in the %prep section will apply the groups patches:

1 %patch setup gcc <1> -p1 <2>
2

3 1. The patch group.
4

5 2. The default option used to apply the patch.

7.8.14 %hash

The %hash macro requires 3 arguments and defines a checksum for a specific file. The checksum
is not applied until the file is checked before downloading and once downloaded. A patch or
source file that does not has a hash defined generates a warning.

A file to be checksum must be unqiue in the any of the source and patch directories. The
basename of the file is used as the key for the hash.

The hash algorthim can be md5, sha1, sha224, sha256, sha384, and sha512 and we typically use
md5.

To add a hash:

1 %hash md5 <1> net-snmp-%{net_snmp_version}.tar.gz <2> 7db683faba037249837b226f64d566d4 <3>

Items:

1. The type of checksum.

2. The file to checksum. It can contain macros that are expanded for you.

3. The MD5 hash for the Net-SNMP file net-snmp-5.7.2.1.tar.gz.

Do not include a path with the file name. Only the basename is required. Files can be searched
for from a number of places and having a path conponent would create confusion. This does
mean files with hashes must be unique.

Downloading of repositories such as git and cvs cannot be checksumed. It is assumed those
protocols and tools manage the state of the files.

7.8. Scripting 77

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.8

7.8.15 %echo

The %echo macro outputs the following string to stdout. This can also be used as %{echo:
message}.

7.8.16 %warning

The %warning macro outputs the following string as a warning. This can also be used as
%{warning: message}.

7.8.17 %error

The %error macro outputs the follow string as an error and exits the RTEMS Source Builder.
This can also be used as %{error: message}.

7.8.18 %select

The %select macro selects the map specified. If there is no map no error or warning is gener-
ated. Macro maps provide a simple way for a user to override the settings is a configuration file
without having to edit it. The changes are recorded in the build report so can be traced.

Configuration use different maps so macro overrides can target a specific package.

The default map is global:

1 %select gcc-4.8-snapshot <1>
2 %define one_plus_one 2 <2>

Items:

1. The map switches to gcc-4.8-snapshot. Any overrides in this map will be used.

2. Defining macros only updates the global map and not the selected map.

7.8.19 %define

The %define macro defines a new macro or updates an existing one. If no value is given it is
assumed to be 1:

1 %define foo bar
2 %define one_plus_one 2
3 %define one <1>

Items:

1. The macro _one_ is set to 1.

78 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.2

7.8.20 %undefine

The %undefine macro removes a macro if it exists. Any further references to it will result in an
undefine macro error.

7.8.21 %if

The %if macro starts a conditional logic block that can optionally have a else section. A test
follows this macro and can have the following operators:

7.8. Scripting 79

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.8

%{} Check the macro is set or true, ie non-zero:
1 %if ${foo}
2 %warning The test passes, must not be

empty or is non-zero→˓

3 %else
4 %error The test fails, must be empty

or zero→˓

5 %endif

! The not operator inverts the test of the macro:
1 %if ! ${foo}
2 %warning The test passes, must be

empty or zero→˓

3 %else
4 %error The test fails, must not be

empty or is non-zero→˓

5 %endif

== The left hand size must equal the right hand
side. For example:

1 %define one 1
2 %if ${one} == 1
3 %warning The test passes
4 %else
5 %error The test fails
6 %endif

You can also check to see if a macro is empty:
1 %if ${nothing} == %{nil}
2 %warning The test passes
3 %else
4 %error The test fails

!= The left hand size does not equal the right
hand side. For example:

1 #
2 # Check a value not being equal.
3 #
4 %define one 1
5 %if ${one} != 2
6 %warning The test passes
7 %else
8 %error The test fails
9 %endif

10 #
11 # Check if a macro is set.
12 #
13 %if ${something} != %{nil}
14 %warning The test passes
15 %else
16 %error The test fails
17 %endif

> The left hand side is numerically greater than
the right hand side.

> The left hand side is numerically greater than
or equal to the right hand side.

< The left hand side is numerically less than the
right hand side.

<= The left hand side is numerically less than or
equal to the right hand side.

80 Chapter 7. Configuration

Chapter 7 Section 7.8 RTEMS Source Builder, Release 4.11.2

7.8.22 %ifn

The %ifn macro inverts the normal %if logic. It avoids needing to provide empty if blocks
followed by else blocks. It is useful when checking if a macro is defined:

1 %ifn %{defined foo}
2 %define foo bar
3 %endif

7.8.23 %ifarch

The %ifarch is a short cut for %if %{_arch} == i386. Currently not used.

7.8.24 %ifnarch

The %ifnarch is a short cut for %if %{_arch} != i386. Currently not used.

7.8.25 %ifos

The %ifos is a short cut for %if %{_os} != mingw32. It allows conditional support for various
operating system differences when building packages.

7.8.26 %else

The %else macro starts the conditional else block.

7.8.27 %endfi

The %endif macro ends a conditional logic block.

7.8.28 %bconf_with

The %bconf_with macro provides a way to test if the user has passed a specific option on
the command line with the --with-<label> option. This option is only available with the
sb-builder command.

7.8.29 %bconf_without

The %bconf_without macro provides a way to test if the user has passed a specific option on
the command line with the --without-<label> option. This option is only available with the
sb-builder command.

7.8. Scripting 81

RTEMS Source Builder, Release 4.11.2 Chapter 7 Section 7.8

82 Chapter 7. Configuration

CHAPTER

EIGHT

COMMANDS

83

RTEMS Source Builder, Release 4.11.2 Chapter 8 Section 8.1

8.1 Checker (sb-check)

This commands checks your system is set up correctly. Most options are ignored:

1 $../source-builder/sb-check --help
2 sb-check: [options] [args]
3 RTEMS Source Builder, an RTEMS Tools Project (c) 2012-2013 Chris Johns
4 Options and arguments:
5 --force : Force the build to proceed
6 --quiet : Quiet output (not used)
7 --trace : Trace the execution
8 --dry-run : Do everything but actually run the build
9 --warn-all : Generate warnings

10 --no-clean : Do not clean up the build tree
11 --always-clean : Always clean the build tree, even with an error
12 --jobs : Run with specified number of jobs, default: num CPUs.
13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target triplet
16 --prefix path : Tools build prefix, ie where they are installed
17 --topdir path : Top of the build tree, default is $PWD
18 --configdir path : Path to the configuration directory, default: ./config
19 --builddir path : Path to the build directory, default: ./build
20 --sourcedir path : Path to the source directory, default: ./source
21 --tmppath path : Path to the temp directory, default: ./tmp
22 --macros file[,[file] : Macro format files to load after the defaults
23 --log file : Log file where all build out is written too
24 --url url[,url] : URL to look for source
25 --no-download : Disable the source downloader
26 --targetcflags flags : List of C flags for the target code
27 --targetcxxflags flags : List of C++ flags for the target code
28 --libstdcxxflags flags : List of C++ flags to build the target libstdc++ code
29 --with-<label> : Add the --with-<label> to the build
30 --without-<label> : Add the --without-<label> to the build
31 --regression : Set --no-install, --keep-going and --always-clean
32 $../source-builder/sb-check
33 RTEMS Source Builder - Check, v0.2.0
34 Environment is ok

84 Chapter 8. Commands

Chapter 8 Section 8.2 RTEMS Source Builder, Release 4.11.2

8.2 Defaults (sb-defaults)

This commands outputs and the default macros for your when given no arguments. Most
options are ignored:

1 $../source-builder/sb-defaults --help
2 sb-defaults: [options] [args]
3 RTEMS Source Builder, an RTEMS Tools Project (c) 2012-2013 Chris Johns
4 Options and arguments:
5 --force : Force the build to proceed
6 --quiet : Quiet output (not used)
7 --trace : Trace the execution
8 --dry-run : Do everything but actually run the build
9 --warn-all : Generate warnings

10 --no-clean : Do not clean up the build tree
11 --always-clean : Always clean the build tree, even with an error
12 --jobs : Run with specified number of jobs, default: num CPUs.
13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target triplet
16 --prefix path : Tools build prefix, ie where they are installed
17 --topdir path : Top of the build tree, default is $PWD
18 --configdir path : Path to the configuration directory, default: ./config
19 --builddir path : Path to the build directory, default: ./build
20 --sourcedir path : Path to the source directory, default: ./source
21 --tmppath path : Path to the temp directory, default: ./tmp
22 --macros file[,[file] : Macro format files to load after the defaults
23 --log file : Log file where all build out is written too
24 --url url[,url] : URL to look for source
25 --no-download : Disable the source downloader
26 --targetcflags flags : List of C flags for the target code
27 --targetcxxflags flags : List of C++ flags for the target code
28 --libstdcxxflags flags : List of C++ flags to build the target libstdc++ code
29 --with-<label> : Add the --with-<label> to the build
30 --without-<label> : Add the --without-<label> to the build
31 --regression : Set --no-install, --keep-going and --always-clean

8.2. Defaults (sb-defaults) 85

RTEMS Source Builder, Release 4.11.2 Chapter 8 Section 8.3

8.3 Set Builder (sb-set-builder)

This command builds a set:

1 $../source-builder/sb-set-builder --help
2 RTEMS Source Builder, an RTEMS Tools Project (c) 2012-2013 Chris Johns
3 Options and arguments:
4 --force : Force the build to proceed
5 --quiet : Quiet output (not used)
6 --trace : Trace the execution
7 --dry-run : Do everything but actually run the build
8 --warn-all : Generate warnings
9 --no-clean : Do not clean up the build tree

10 --always-clean : Always clean the build tree, even with an error
11 --regression : Set --no-install, --keep-going and --always-clean
12 ---jobs : Run with specified number of jobs, default: num CPUs.
13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target triplet
16 --prefix path : Tools build prefix, ie where they are installed
17 --topdir path : Top of the build tree, default is $PWD
18 --configdir path : Path to the configuration directory, default: ./config
19 --builddir path : Path to the build directory, default: ./build
20 --sourcedir path : Path to the source directory, default: ./source
21 --tmppath path : Path to the temp directory, default: ./tmp
22 --macros file[,[file] : Macro format files to load after the defaults
23 --log file : Log file where all build out is written too
24 --url url[,url] : URL to look for source
25 --no-download : Disable the source downloader
26 --no-install : Do not install the packages to the prefix
27 --targetcflags flags : List of C flags for the target code
28 --targetcxxflags flags : List of C++ flags for the target code
29 --libstdcxxflags flags : List of C++ flags to build the target libstdc++ code
30 --with-<label> : Add the --with-<label> to the build
31 --without-<label> : Add the --without-<label> to the build
32 --mail-from : Email address the report is from.
33 --mail-to : Email address to send the email too.
34 --mail : Send email report or results.
35 --smtp-host : SMTP host to send via.
36 --no-report : Do not create a package report.
37 --report-format : The report format (text, html, asciidoc).
38 --bset-tar-file : Create a build set tar file
39 --pkg-tar-files : Create package tar files
40 --list-bsets : List available build sets
41 --list-configs : List available configurations
42 --list-deps : List the dependent files.

The arguments are a list of build sets to build.

Options:

--force:
Force the build to proceed even if the host check fails. Typically this happens if executable
files are found in the path at a different location to the host defaults.

--trace:
Trace enable printing of debug information to stdout. It is really only of use to RTEMS Source
Builder’s developers.

86 Chapter 8. Commands

Chapter 8 Section 8.3 RTEMS Source Builder, Release 4.11.2

--dry-run:
Do everything but actually run the build commands. This is useful when checking a new
configuration parses cleanly.

--warn-all:
Generate warnings.

--no-clean:
Do not clean up the build tree during the cleaning phase of the build. This leaves the source
and the build output on disk so you can make changes, or amend or generate new patches. It
also allows you to review configure type output such as config.log.

--always-clean:
Clean away the results of a build even if the build fails. This is normally used with
--keep-going when regression testing to see which build sets fail to build. It keeps the disk
usage down.

--jobs:
Control the number of jobs make is given. The jobs can be none for only 1 job, half so the
number of jobs is half the number of detected cores, a fraction such as 0.25 so the number of
jobs is a quarter of the number of detected cores and a number such as 25 which forces the
number of jobs to that number.

--host:
Set the host triplet value. Be careful with this option.

--build:
Set the build triplet. Be careful with this option.

--target:
Set the target triplet. Be careful with this option. This is useful if you have a generic configu-
ration script that can work for a range of architectures.

--prefix path:
Tools build prefix, ie where they are installed.

--topdir path:
Top of the build tree, that is the current directory you are in.

--configdir path:
Path to the configuration directory. This overrides the built in defaults.

--builddir path:
Path to the build directory. This overrides the default of +build+.

--sourcedir path:
Path to the source directory. This overrides the default of +source+.

--tmppath path:
Path to the temporary directory. This overrides the default of +tmp+.

--macros files:
Macro files to load. The configuration directory path is searched.

--log file:
Log all the output from the build process. The output is directed to +stdout+ if no log file is
provided.

8.3. Set Builder (sb-set-builder) 87

RTEMS Source Builder, Release 4.11.2 Chapter 8 Section 8.3

--url url:
URL to look for source when downloading. This is can be comma separate list.

--no-download:
Disable downloading of source and patches. If the source is not found an error is raised.

--targetcflags flags:
List of C flags for the target code. This allows for specific local customisation when testing
new variations.

--targetcxxflags flags:
List of C++ flags for the target code. This allows for specific local customisation when testing
new variations.

--libstdcxxflags flags:
List of C++ flags to build the target libstdc++ code. This allows for specific local customisa-
tion when testing new variations.

--with-<label>:
Add the --with-<label> to the build. This can be tested for in a script with the %bconf_with
macro.

--without-<label>:
Add the --without-<label> to the build. This can be tested for in a script with the
%bconf_without macro.

--mail-from:
Set the from mail address if report mailing is enabled.

--mail-to:
Set the to mail address if report mailing is enabled. The report is mailed to this address.

--mail:
Mail the build report to the mail to address.

--smtp-host:
The SMTP host to use to send the email. The default is localhost.

--no-report:
Do not create a report format.

--report-format format:
The report format can be text or html. The default is html.

--keep-going:
Do not stop on error. This is useful if your build sets performs a large number of testing
related builds and there are errors.

--always-clean:
Always clean the build tree even with a failure.

--no-install:
Do not install the packages to the prefix. Use this if you are only after the tar files.

--regression:
A convenience option which is the same as --no-install, --keep-going and --always-clean.

--bset-tar-file:
Create a build set tar file. This is a single tar file of all the packages in the build set.

88 Chapter 8. Commands

Chapter 8 Section 8.3 RTEMS Source Builder, Release 4.11.2

--pkg-tar-files:
Create package tar files. A tar file will be created for each package built in a build set.

--list-bsets:
List available build sets.

--list-configs:
List available configurations.

--list-deps:
Print a list of dependent files used by a build set. Dependent files have a dep[?]` prefix
where ``? is a number. The files are listed alphabetically.

8.3. Set Builder (sb-set-builder) 89

RTEMS Source Builder, Release 4.11.2 Chapter 8 Section 8.4

8.4 Set Builder (sb-builder)

This command builds a configuration as described in a configuration file. Configuration files
have the extension of .cfg:

1 $./source-builder/sb-builder --help
2 sb-builder: [options] [args]
3 RTEMS Source Builder, an RTEMS Tools Project (c) 2012 Chris Johns
4 Options and arguments:
5 --force : Force the build to proceed
6 --quiet : Quiet output (not used)
7 --trace : Trace the execution
8 --dry-run : Do everything but actually run the build
9 --warn-all : Generate warnings

10 --no-clean : Do not clean up the build tree
11 --always-clean : Always clean the build tree, even with an error
12 --jobs : Run with specified number of jobs, default: num CPUs.
13 --host : Set the host triplet
14 --build : Set the build triplet
15 --target : Set the target triplet
16 --prefix path : Tools build prefix, ie where they are installed
17 --topdir path : Top of the build tree, default is $PWD
18 --configdir path : Path to the configuration directory, default: ./config
19 --builddir path : Path to the build directory, default: ./build
20 --sourcedir path : Path to the source directory, default: ./source
21 --tmppath path : Path to the temp directory, default: ./tmp
22 --macros file[,[file] : Macro format files to load after the defaults
23 --log file : Log file where all build out is written too
24 --url url[,url] : URL to look for source
25 --targetcflags flags : List of C flags for the target code
26 --targetcxxflags flags : List of C++ flags for the target code
27 --libstdcxxflags flags : List of C++ flags to build the target libstdc++ code
28 --with-<label> : Add the --with-<label> to the build
29 --without-<label> : Add the --without-<label> to the build
30 --list-configs : List available configurations

90 Chapter 8. Commands

CHAPTER

NINE

BUGS, CRASHES, AND BUILD FAILURES

The RTEMS Source Builder is a Python program and every care is taken to test the code however
bugs, crashes, and build failures can and do happen. If you find a bug please report it via the
Developer Site or email on the RTEMS Users list.

Please include the generated RSB report. If you see the following a report has been generated:

1 ...
2 ...
3 Build FAILED <1>
4 See error report: rsb-report-4.11-rtems-lm32.txt <2>

Items:

1. The build has failed.

2. The report’s file name.

The generated report contains the command line, version of the RSB, your host’s uname details,
the version of Python and the last 200 lines of the log.

If for some reason there is no report please send please report the following:

• Command line,

• The git hash,

• Host details with the output of the uname -a command,

• If you have made any modifications.

If there is a Python crash please cut and paste the Python backtrace into the bug report. If the
tools fail to build please locate the first error in the log file. This can be difficult to find on hosts
with many cores so it sometimes pays to re-run the command with the --jobs=none option to
get a log that is correctly sequenced. If searching the log file seach for error: and the error
should be just above it.

91

https://devel.rtems.org

RTEMS Source Builder, Release 4.11.2 Chapter 9 Section 9.0

92 Chapter 9. Bugs, Crashes, and Build Failures

CHAPTER

TEN

CONTRIBUTING

We welcome all users adding, fixing, updating and upgrading packages and their configurations.
The RSB is open source and open to contributions. These can be bug fixes, new features or new
configurations. Please break patches down into changes to the core Python code, configuration
changes or new configurations.

Please email patches generated using git so your commit messages and you are acknowledged
as the contributor.

• genindex

• search

93

	I Table of Contents
	RTEMS Source Builder
	Why Build from Source?
	History

	Quick Start
	Setup
	Checking
	Build Sets
	Building
	Deployment
	Controlling the Build

	Hosts
	Linux
	ArchLinux
	CentOS
	Fedora
	Raspbian
	Ubuntu
	Linux Mint
	openSUSE

	FreeBSD
	NetBSD
	MacOS
	Mavericks
	Serria

	Windows
	MSYS2
	Cygwin

	Project Sets
	Bare Metal
	RTEMS
	Patches

	Cross and Canadian Cross Building
	Cross Building
	Canadian Cross Building

	RTEMS 3rd Party Packages
	Vertical Integration
	Building
	Adding
	BSP Support
	RTEMS BSP Configuration

	Configuration
	Source and Patches
	HTTP, HTTPS, and FTP
	GIT
	CVS

	Macros and Defaults
	Macro Maps and Files
	Personal Macros

	Report Mailing
	Build Set Files
	Configuration Control
	Personal Configurations
	New Configurations
	Layering by Including
	Configuration File Numbering
	Common Configuration Scripts
	DTC Example
	Debugging

	Scripting
	Expanding
	%prep
	%build
	%install
	%clean
	%include
	%name
	%summary
	%release
	%version
	%buildarch
	%source
	%patch
	%hash
	%echo
	%warning
	%error
	%select
	%define
	%undefine
	%if
	%ifn
	%ifarch
	%ifnarch
	%ifos
	%else
	%endfi
	%bconf_with
	%bconf_without

	Commands
	Checker (sb-check)
	Defaults (sb-defaults)
	Set Builder (sb-set-builder)
	Set Builder (sb-builder)

	Bugs, Crashes, and Build Failures
	Contributing

