
Getting Started with RTEMS for C/C++ Users

Edition 4.0.0, for RTEMS 4.0.0

October 1998

On-Line Applications Research Corporation

On-Line Applications Research Corporation

TEXinfo 1.1.1.1

COPYRIGHT c
 1988 - 1998.

On-Line Applications Research Corporation (OAR).

The authors have used their best e�orts in preparing this material. These e�orts include the

development, research, and testing of the theories and programs to determine their e�ectiveness.

No warranty of any kind, expressed or implied, with regard to the software or the material contained

in this document is provided. No liability arising out of the application or use of any product

described in this document is assumed. The authors reserve the right to revise this material and to

make changes from time to time in the content hereof without obligation to notify anyone of such

revision or changes.

Any inquiries concerning RTEMS, its related support components, or its documentation should be

directed to either:

On-Line Applications Research Corporation

4910-L Corporate Drive

Huntsville, AL 35805

VOICE: (256) 722-9985

FAX: (256) 722-0985

EMAIL: rtems@OARcorp.com

Chapter 1: Introduction 1

1 Introduction

The purpose of this document is to guide you through the process of installing a GNU cross

development environment to use with RTEMS.

If you are already familiar with the concepts behind a cross compiler and have a background in

Unix, these instructions should provide the bare essentials for performing a setup of the following

items:

� GNU C/C++ Cross Compilation Tools for RTEMS on your host system

� RTEMS OS for the target host

� GDB Debugger

The remainder of this chapter provides background information on real-time embedded systems

and cross development and an overview of other resources of interest on the Internet. If you are

not familiar with real-time embedded systems or the other areas, please read those sections. These

sections will help familiarize you with the types of systems RTEMS is designed to be used in and

the cross development process used when developing RTEMS applications.

1.1 Real-Time Embedded Systems

Real-time embedded systems are found in practically every facet of our everyday lives. Today's

systems range from the common telephone, automobile control systems, and kitchen appliances to

complex air tra�c control systems, military weapon systems, an d production line control including

robotics and automation. However, in the current climate of rapidly changing technology, it is

di�cult to reach a consensus on the de�nition of a real-time embedded system. Hardware costs

are continuing to rapidly decline while at the same time the hardware is increasing in power and

functionality. As a result, embedded systems that were not considered viable two years ago are

suddenly a cost e�ective solution. In this domain, it is not uncommon for a single hardware

con�guration to employ a variety of architectures and technologies. Therefore, we shall de�ne an

embedded system as any computer system that is built into a larger system consisting of multiple

technologies such as digital and analog electronics, mechanical devices, and sensors.

Even as hardware platforms become more powerful, most embedded systems are critically dependent

on the real-time software embedded in the systems themselves. Regardless of how e�ciently the

hardware operates, the performance of the embedded real-time software determines the success of

the system. As the complexity of the embedded hardware platform grows, so does the size and

complexity of the embedded software. Software systems must routinely perform activities which

were only dreamed of a short time ago. These large, complex, real-time embedded applications

now commonly contain one million lines of code or more.

Real-time embedded systems have a complex set of characteristics that distinguish them from

other software applications. Real-time embedded systems are driven by and must respond to real

2 Getting Started with RTEMS for C/C++ Users

world events while adhering to rigorous requirements imposed by the environment with which they

interact. The correctness of the system depends not only on the results of computations, but also

on the time at which the results are produced. The most important and complex characteristic

of real-time application systems is that they must receive and respond to a set of external stimuli

within rigid and critical time constraints.

A single real-time application can be composed of both soft and hard real-time components. A

typical example of a hard real-time system is a nuclear reactor control system that must not only

detect failures, but must also respond quickly enough to prevent a meltdown. This application

also has soft real-time requirements because it may involve a man-machine interface. Providing an

interactive input to the control system is not as critical as setting o� an alarm to indicate a failure

condition. However, th e interactive system component must respond within an acceptable time

limit to allow the operator to interact e�ciently with the control system.

1.2 Cross Development

Today almost all real-time embedded software systems are developed in a cross development envi-

ronment using cross development tools. In the cross development environment, software develop-

ment activities are typically performed on one computer system, the host system, while the result

of the development e�ort (produced by the cross tools) is a software system that executes on the

target platform. The requirements for the target platform are usually incompatible and quite often

in direct con
ict with the requirements for the host. Moreover, the target hardware is often custom

designed for a particular project. This means that the cross development toolset must allow the

developer to customize the tools to address target speci�c run-time issues. The toolset must have

provisions for board dependent initialization code, device drivers, and error handling code.

The host computer is optimized to support the code development cycle with support for code

editors, compilers, and linkers requiring large disk drives, user development windows, and multiple

developer connections. Thus the host computer is typically a traditional UNIX workstation such

as are available from SUN or Silicon Graphics, or a PC running either a version of MS-Windows or

UNIX. The host system may also be required to execute o�ce productivity applications to allow

the software developer to write documentation, make presentations, or track the project's progress

using a project management tool. This necessitates that the host computer be general purpose

with resources such as a thirty-two or sixty-four bit processor, large amounts of RAM, a monitor,

mouse, keyboard, hard and
oppy disk drives, CD-ROM drive, and a graphics card. It is likely

that the system will be multimedia capable and have some networking capability.

Conversely, the target platform generally has limited traditional computer resources. The hardware

is designed for the particular functionality and requirements of the embedded system and optimized

to perform those tasks e�ectively. Instead of hard drivers��s and keyboards, it is composed

of sensors, relays, and stepper motors. The per-unit cost of the target platform is typically a

critical concern. No hardware component is included without being cost justi�ed. As a result,

the processor of the target system is often from a di�erent processor family than that of the

Chapter 1: Introduction 3

host system and usually has lower performance. In addition to the processor families targeted

only for use in embedded systems, there are versions of nearly every general-purpose process or

speci�cally tailored for real-time embedded systems. For example, many of the processors targeting

the embedded market do not include hardware
oating point units, but do include peripherals such

as timers, serial controllers, or network interfaces.

1.3 Resources on the Internet

This section describes various resources on the Internet which are of use to RTEMS users.

1.3.1 RTEMS Mailing List

rtems-list@OARcorp.com

This mailing list is dedicated to discussion of issues related to RTEMS. If you have questions about

RTEMS, wish to make suggestions, or just want to pick up hints, this is a good list to subscribe to.

Subscribe by sending a message with the one line "subscribe" to rtems-list-request@OARcorp.com.

1.3.2 CrossGCCMailing List

crossgcc@cygnus.com

This mailing list is dedicated to the use of the GNU tools in cross development environments.

Most of the discussions focus on embedded issues. Subscribe by sending a message with the one

line "subscribe" to crossgcc-request@cygnus.com.

The crossgcc FAQ as well as a number of patches and utiliities of interest to cross development

system users are available at ftp://ftp.cygnus.com/pub/embedded/crossgcc.

1.3.3 EGCS Mailing List

egcs@cygnus.com

This mailing list is dedicated to the EGCS Project which was formed to speed the development and

integration of the various GNU languages. The RTEMS and Linux communities were among those

initially targetted by the EGCS Project as being important for its success. Numerous RTEMS

users have made contributions to this project. Subscribe by sending a message with the one line

"subscribe" to egcs-request@cygnus.com.

4 Getting Started with RTEMS for C/C++ Users

Chapter 2: Requirements 5

2 Requirements

A fairly large amount of disk space is required to perform the build of the GNU C/C++ Cross

Compiler Tools for RTEMS. The following table may help in assessing the amount of disk space

required for your installation:

+--+------------------------------+

| Component | Disk Space Required |

+--+------------------------------+

| archive directory | 30 Mbytes |

| tools src unzipped | 100 Mbytes |

| each individual build directory | 300 Mbytes worst case |

| each installation directory | 20-400 Mbytes |

+--+------------------------------+

The disk space required for each installation directory depends primarily on the number of RTEMS

BSPs which are to be installed. If a single BSP is installed, then the size of each install directory

will tend to be in the 40-60 Mbyte range.

The instructions in this manual should work on any computer running a UNIX variant. Some

native GNU tools are used by this procedure including:

� GCC

� GNU make

� GNU makeinfo

In addition, some native utilities may be de�cient for building the GNU tools.

2.1 GNUmakeinfo Version Requirements

In order to build egcs 1.1b or newer, the GNU makeinfo program installed on your system must

be at least version 1.68. The appropriate version of makeinfo is distributed with egcs 1.1b.

The following demonstrates how to determine the version of makeinfo on your machine:

makeinfo --version

6 Getting Started with RTEMS for C/C++ Users

Chapter 3: Building the GNU C/C++ Cross Compiler Toolset 7

3 Building theGNUC/C++Cross Compiler Toolset

This chapter describes the steps required to acquire the source code for a GNU cross compiler

toolset, apply any required RTEMS speci�c patches, compile that toolset and install it.

3.1 Create the Archive and Build Directories

Start by making the archive directory to contain the downloaded source code and the tools

directory to be used as a build directory. The command sequence to do this is shown below:

mkdir archive

mkdir tools

This will result in an initial directory structure similar to the one shown in the following �gure:

/whatever/prefix/you/choose/

archive/

tools/

3.2 Get All the Pieces

This section lists the components of an RTEMS cross development system. Included are the

locations of each component as well as any required RTEMS speci�c patches.

egcs 1.1b

FTP Site: egcs.cygnus.com

Directory: /pub/egcs/releases/egcs-1.1b

File: egcs-1.1b.tar.gz

binutils 2.9.1

FTP Site: ftp.gnu.org

Directory: /pub/gnu

File: binutils-2.9.1.tar.gz

newlib 1.8.0

FTP Site: ftp.cygnus.com

Directory: /pub/newlib

File: newlib-1.8.0.tar.gz

RTEMS 4.0.0

FTP Site: ftp.OARcorp.com

Directory: /pub/rtems/4.0.0

File: rtems-4.0.0.tgz

8 Getting Started with RTEMS for C/C++ Users

RTEMS Hello World

FTP Site: ftp.OARcorp.com

Directory: /pub/rtems/4.0.0

File: hello_world_c.tgz

RTEMS Speci�c Tool Patches and Scripts

FTP Site: ftp.OARcorp.com

Directory: /pub/rtems/4.0.0/c_tools

File: c_build_scripts-4.0.0.tgz

File: binutils-2.9.1-rtems-diff-19981027.gz

File: newlib-1.8.0-rtems-diff-19981027.gz

File: egcs-1.1b-rtems-diff-19981027.gz

3.3 Unarchiving the Tools

While in the tools directory, unpack the compressed tar �les using the following command se-

quence:

cd tools

tar xzf ../archive/egcs-1.1b.tar.gz

tar xzf ../archive/binutils-2.9.1.tar.gz

tar xzf ../archive/newlib-1.8.0.tar.gz

tar xzf ../archive/c_build_scripts-4.0.0.tgz

After the compressed tar �les have been unpacked, the following directories will have been created

under tools.

� binutils-2.9.1

� egcs-1.1b

� newlib-1.8.0

There will also be a set of scripts in the current directory which aid in building the tools and

RTEMS. They are:

� bit

� bit gdb

� bit rtems

� common.sh

� user.cfg

When the bit script is executed later in this process, it will automatically create two other subdi-

rectories:

� src

Chapter 3: Building the GNU C/C++ Cross Compiler Toolset 9

� build-${CPU}-tools

Similarly, the bit_gdb script will create the subdirectory build-${CPU}-gdb and the bit_rtems

script will create the subdirectory build-${CPU}-rtems.

The tree should look something like the following �gure:

/whatever/prefix/you/choose/

archive/

egcs-1.1b.tar.gz

binutils-2.9.1.tar.gz

newlib-1.8.0.tar.gz

rtems-4.0.0.tgz

c_build_scripts-4.0.0.tgz

egcs-1.1b-rtems-diff-19981027.gz

binutils-2.9.1-rtems-diff-19981027.gz

newlib-1.8.0-rtems-diff-19981027.gz

hello_world_c.tgz

bit

tools/

binutils-2.9.1/

egcs-1.1b/

newlib-1.8.0/

rtems-4.0.0/

bit

bit_gdb

bit_rtems

common.sh

user.cfg

3.4 Host Speci�c Notes

3.4.1 Solaris 2.x

The build scripts are written in "shell". The program /bin/sh on Solaris 2.x is not robust enough

to execute these scripts. If you are on a Solaris 2.x host, then change the �rst line of the �les bit,

bit_gdb, and bit_rtems to use the /bin/ksh shell instead.

3.4.2 Linux

3.4.2.1 Broken install Program

Certain versions of GNU �leutils include a version of install which does not work properly. Please

perform the following test to see if you need to upgrade:

install -c -d /tmp/foo/bar

10 Getting Started with RTEMS for C/C++ Users

If this does not create the speci�ed directories your install program will not install RTEMS properly.

You will need to upgrade to at least GNU �leutile version 3.16 to resolve this problem.

3.5 Reading the Tools Documentation

Each of the tools in the GNU development suite comes with documentation. It is in the reader's and

tool maintainers' interest that one read the documentation before posting a problem to a mailing

list or news group.

3.6 Apply RTEMS Patch to EGCS

Apply the patch using the following command sequence:

cd tools/egcs-1.1b

zcat ../../archive/egcs-1.1b-rtems-diff-19981027.gz | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/egcs-1.1b

find . -name "*.rej" -print

If any �les are found with the .rej extension, a patch has been rejected. This should not happen

with a good patch �le which is properly applied.

3.7 Apply RTEMS Patch to binutils

Apply the patch using the following command sequence:

cd tools/binutils-2.9.1

zcat ../../archive/binutils-2.9.1-rtems-diff-19981027.gz | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/binutils-2.9.1

find . -name "*.rej" -print

If any �les are found with the .rej extension, a patch has been rejected. This should not happen

with a good patch �le which is properly applied.

3.8 Apply RTEMS Patch to newlib

Apply the patch using the following command sequence:

cd tools/newlib-1.8.0

zcat ../../archive/newlib-1.8.0-rtems-diff-19981027.gz | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/newlib-1.8.0

find . -name "*.rej" -print

Chapter 3: Building the GNU C/C++ Cross Compiler Toolset 11

If any �les are found with the .rej extension, a patch has been rejected. This should not happen

with a good patch �le which is properly applied.

3.9 Localizing the Con�guration

Edit the user.cfg �le to alter the settings of various variables which are used to tailor the build

process. Each of the variables set in user.cfg may be modi�ed as described below:

INSTALL_POINT is the location where you wish the GNU C/C++ cross compilation tools for

RTEMS to be built. It is recommended that the directory chosen to receive

these tools be named so that it is clear from which egcs distribution it was

generated and for which target system the tools are to produce code for.

WARNING: The INSTALL_POINT should not be a subdirectory under the

build directory. The build directory will be removed automatically upon

successful completion of the build procedure.

BINUTILS is the directory under tools that contains binutils-2.9.1. For example:

BINUTILS=binutils-2.9.1

GCC is the directory under tools that contains egcs-1.1b. For example,

GCC=egcs-1.1b

NEWLIB is the directory under tools that contains newlib-1.8.0. For example:

NEWLIB=newlib-1.8.0

BUILD_DOCS is set to "yes" if you want to install documentation. For example:

BUILD_DOCS=yes

BUILD_OTHER_LANGUAGES

is set to "yes" if you want to build languages other than C and C++. At the

current time, this enables Fortan and Objective-C. For example:

BUILD_OTHER_LANGUAGES=yes

NOTE: Based upon the version of the compiler being used, it may not be

possible to build languages other than C and C++ cross. In many cases,

the language run-time support libraries are not "multilib'ed". Thus the

executable code in these libraries will be for the default compiler settings

and not necessarily be correct for your CPU model.

RTEMS is the directory under tools that contails rtems-4.0.0.

ENABLE_RTEMS_POSIX

is set to "yes" if you want to enable the RTEMS POSIX API support. At

this time, this feature is not supported by the UNIX ports of RTEMS and is

forced to "no" for those targets. This corresponds to the configure option

--enable-posix.

12 Getting Started with RTEMS for C/C++ Users

ENABLE_RTEMS_TESTS

is set to "yes" if you want to build the RTEMS Test Suite. If this is set

to "no", then only the Sample Tests will be built. This corresponds to the

configure option --enable-tests.

ENABLE_RTEMS_TCPIP

is set to "yes" if you want to build the RTEMS TCP/IP Stack. If a particular

BSP does not support TCP/IP, then this feature is automatically disabled.

This corresponds to the configure option --enable-tcpip.

ENABLE_RTEMS_CXX is set to "yes" if you want to build the RTEMS C++ support including the

C++Wrapper for the Classic API. This corresponds to the configure option

--enable-cxx.

3.10 Running the bit Script

After the bit script has been modi�ed to re
ect the local installation, the modi�ed bit script is

run using the following sequence:

cd tools

./bit <target configuration>

Where <target con�guration> is one of the following:

� hppa1.1

� i386

� i386-elf

� i386-go32

� i960

� m68k

� mips64orion

� powerpc

� sh

� sparc

If no errors are encountered, the bit script will conclude by printing messages similar to the

following:

The src and build-i386-tools subdirectory may now be removed.

Started: Fri Apr 10 10:14:07 CDT 1998

Finished: Fri Apr 10 12:01:33 CDT 1998

If the bit script successfully completes, then the GNU C/C++ cross compilation tools are installed.

Chapter 3: Building the GNU C/C++ Cross Compiler Toolset 13

If the bit script does not successfully complete, then investigation will be required to determine

the source of the error.

14 Getting Started with RTEMS for C/C++ Users

Chapter 4: Building RTEMS 15

4 Building RTEMS

4.1 Unpack the RTEMS Source

Use the following command sequence to unpack the RTEMS source into the tools directory:

cd tools

tar xzf ../archive/rtems-4.0.0.tgz

4.2 Add <INSTALL POINT>/bin to Executable PATH

In order to compile RTEMS, you must have the cross compilation toolset in your search patch. The

following command appends the directory where the tools were installed in the previous chapter:

export PATH=$PATH:<INSTALL_POINT>/bin

NOTE: The above command is in Bourne shell (sh) syntax and should work with the Korn (ksh)

and GNU Bourne Again Shell (bash). It will not work with the C Shell (csh) or derivatives of the

C Shell.

4.3 Verifying the Operation of the Cross Toolset

In order to insure that the cross-compiler is invoking the correct subprograms (like as and ld), one

can test assemble a small program. When in verbose more, gcc prints out information showing

where it found the subprograms it invokes. Place the following function in a �le named f.c:

int f(int x)

{

return x + 1;

}

Then assemble the �le using a command similar to the following:

m68k-rtems-gcc -v -S f.c

Where m68k-rtems-gcc should be changed to match the installed name of your cross compiler. The

result of this command will be a sequence of output showing where the cross-compiler searched for

and found its subcomponents. Verify that these paths correspond to your <INSTALL POINT>.

NOTE: One of the most common installation errors is for the cross-compiler not to be able to �nd

the cross assembler and default to using the native as. This can result in very confusing error

messages.

4.4 Generate RTEMS for a Speci�c Target and BSP

16 Getting Started with RTEMS for C/C++ Users

4.4.1 Using the bit rtems Script

The simplest way to build RTEMS is to use the bit_rtems script. This script interprets the settings

in the user.cfg �le to enable or disable the various RTEMS options.

This script is invoked as follows:

./bit_rtems CPU [BSP]

Where CPU is one of the RTEMS supported CPU families from the following list:

� hppa1.1

� i386

� i386-elf

� i386-go32

� i960

� m68k

� mips64orion

� powerpc

� sh

� sparc

BSP is a supported BSP for the selected CPU family. The list of supported BSPs may be found in

the �le tools/rtems-4.0.0/README.con�gure in the RTEMS source tree. If the BSP parameter is

not speci�ed, then all supported BSPs for the selected CPU family will be built.

4.4.2 Using the RTEMS con�gure Script Directly

Make a build directory under tools and build the RTEMS product in this directory. The ../rtems-

4.0.0/con�gure command has numerous command line arguments. These arguments are discussed

in detail in documentation that comes with the RTEMS distribution. In the installation described

in the section "Unpack the RTEMS source", these con�guration options can be found in the �le

tools/rtems-4.0.0/README.con�gure.

The following shows the command sequence required to con�gure, compile, and install RTEMS

with the POSIX API, FreeBSD TCP/IP, and C++ support disabled. RTEMS will be built to target

the BOARD_SUPPORT_PACKAGE board.

mkdir build-rtems

cd build-rtems

../rtems-4.0.0/configure --target=<TARGET_CONFIGURATION> \

--disable-posix --disable-tcpip --disable-cxx \

--enable-rtemsbsp=<BOARD_SUPPORT_PACKAGE>\

--prefix=<INSTALL_POINT>

gmake all install

Chapter 4: Building RTEMS 17

Where the list of currently supported of <TARGET CONFIGURATION>'s and

<BOARD SUPPORT PACKAGE>'s can be found in tools/rtems-4.0.0/README.con�gure.

<INSTALL POINT> is the installation point from the previous step "Modify the bit script" in the

build of the tools.

18 Getting Started with RTEMS for C/C++ Users

Chapter 5: Building the Sample Application 19

5 Building the Sample Application

5.1 Unpack the Sample Application

Use the following command to unarchive the sample application:

cd tools

tar xzf ../archive/hello_world_c.tgz

5.2 Set the Environment Variable RTEMS MAKEFILE PATH

It must point to the appropriate directory containing RTEMS build for our target and board

support package combination.

export RTEMS_MAKEFILE_PATH = \

<INSTALLATION_POINT>/rtems/<BOARD_SUPPORT_PACKAGE>

Where <INSTALLATION POINT> and <BOARD SUPPORT PACKAGE> are those used when

con�guring and installing RTEMS.

5.3 Build the Sample Application

Use the following command to start the build of the sample application:

cd tools/hello_world_c

gmake

If no errors are detected during the sample application build, it is reasonable to assume that the

build of the GNU C/C++ Cross Compiler Tools for RTEMS and RTEMS itself for the selected host

and target combination was done properly.

5.4 Application Executable

If the sample application has successfully been build, then the application executable is placed in

the following directory:

tools/hello_world_c/o-<BOARD_SUPPORT_PACKAGE>/<filename>.exe

How this executable is downloaded to the target board is very dependent on the

BOARD SUPPORT PACKAGE selected.

20 Getting Started with RTEMS for C/C++ Users

Chapter 6: Building the GNU Debugger 21

6 Building theGNUDebugger

GDB is not currently RTEMS aware. The following con�gurations have been successfully used with

RTEMS applications:

� Sparc Instruction Simulator (SIS)

� PowerPC Instruction Simulator (PSIM)

� DINK32

Other con�gurations of gdb have successfully been used by RTEMS users but are not documented

here.

6.1 Unarchive the gdb Distribution

Use the following commands to unarchive the gdb distribution:

cd tools

tar xzf ../archive/gdb-4.17.tar.gz

The directory gdb-4.17 is created under the tools directory.

6.2 Apply RTEMS Patch to GDB

Apply the patch using the following command sequence:

cd tools/gdb-4.17

zcat archive/gdb-4.17-rtems-diff-19981027.gz | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/gdb-4.17

find . -name "*.rej" -print

If any �les are found with the .rej extension, a patch has been rejected. This should not happen

with a good patch �le.

To see the �les that have been modi�ed use the sequence:

cd tools/gdb-4.17

find . -name "*.orig" -print

The �les that are found, have been modi�ed by the patch �le.

6.3 Using the bit gdb script

The simplest way to build gdb for RTEMS is to use the bit_gdb script. This script interprets

the settings in the user.cfg �le to produce the gdb con�guration most appropriate for the target

CPU.

22 Getting Started with RTEMS for C/C++ Users

This script is invoked as follows:

./bit_gdb CPU

Where CPU is one of the RTEMS supported CPU families from the following list:

� hppa1.1

� i386

� i386-elf

� i386-go32

� i960

� m68k

� mips64orion

� powerpc

� sh

� sparc

If gdb supports a CPU instruction simulator for this con�guration, then it is included in the build.

6.4 Using the gdb con�gure Script Directly

6.4.1 GDB with Sparc Instruction Simulation (SIS)

Make the Build Directory

Create a build directory for the SIS Debugger

cd tools

mkdir build-sis

Con�gure for the Build

Con�gure the GNU Debugger for the Sparc Instruction Simulator (SIS):

cd tools/build-sis

../gdb-4.17/configure --target-sparc-erc32-aout \

--program-prefix=sparc-rtems- \

--disable-gdbtk \

--enable-targets=all \

--prefix=<INSTALL_POINT_FOR_SIS>

Where <INSTALL POINT FOR SIS> is a unique location where the gdb with SIS will be created.

Chapter 6: Building the GNU Debugger 23

Make the Debugger

From tools/build-sis execute the following command sequence:

gmake all install

6.4.2 GDB with PowerPC Instruction Simulator

Make the Build Directory

Create a build directory for the SIS Debugger

cd tools

mkdir build-ppc

Con�gure for the Build

Con�gure the GNU Debugger for the PowerPC Instruction Simulator (PSIM):

cd tools/build-ppc

../gdb-4.17/configure \

--target=powerpc-unknown-eabi \

--program-prefix=powerpc-rtems- \

--enable-sim-powerpc \

--enable-sim-timebase \

--enable-sim-inline \

--enable-sim-hardware \

--enable-targets=all \

--prefix=<INSTALL_POINT_FOR_PPC>

Where <INSTALL POINT FOR PPC> is a unique location where the gdb with PSIM will be

created.

Make the Debugger

From tools/build-ppc execute the following command sequence:

gmake all install

6.4.3 GDB for DINK32

Make the Build Directory

Create a build directory for the DINK32 Debugger

cd tools

mkdir build-dink32

24 Getting Started with RTEMS for C/C++ Users

Con�gure for the Build

Con�gure the GNU Debugger to communicate with the DINK32 ROM monitor:

cd tools/build-dink32

../gdb-4.17/configure --target-powerpc-elf \

--program-prefix=powerpc-rtems- \

--enable-targets=all \

--prefix=<INSTALL_POINT_FOR_DINK32>

Where <INSTALL POINT FOR DINK32> is a unique location where the gdb Dink32 will be cre-

ated.

Make the Debugger

From tools/build-dink32 execute the following command sequence:

gmake all install

Chapter 7: Using MS-Windows as a Development Host 25

7 UsingMS-Windows as a DevelopmentHost

This chapter discusses the installation of the GNU tool chain on a computer running the Microsoft

Windows NT operating system.

This chapter is based on a draft provided by Geo�roy Montel <g montel@yahoo.com>. Geo�roy's

procedure was based on information from David Fiddes <D.J@�ddes.surfaid.org>. Their input and

feedback is greatly appreciated.

STATUS: This chapter should be considered preliminary. Please be careful when following these

instructions.

7.1 Version Information

This installation process works well under Windows NT. Using Windows 95 or 98 is not recom-

mended although it should be possible with version 3.77 of gmake and an updated cygwinb19.dll.

This procedure should also work with newer version of the tool versions listed in this chapter, but

this has not been veri�ed. If you have success with a particular version of the toolset or notice

problems in this chapter, please let the RTEMS maintainers know so they can be addressed in

future revisions of this document.

7.2 MS-Windows Host Speci�c Requirements

This section details the components required to install and build a Windows hosted GNU cross

development toolset.

7.2.1 Unzipping Archives

You will have to uncompress many archives during this process. You must NOT use WinZip or

PKZip. Instead the un-archiving process uses the GNU zip and tar programs as shown below:

tar -xzvf archive.tgz

tar is provided with Cygwin32.

7.2.2 Text Editor

You absolutely have to use a text editor which can save �les with Unix format (so don't use Notepad

nor Wordpad). If you do not have an appropriate text editor, try Programmers File Editor, it is

free and very convenient. This editor may be downloaded from:

http://www.lancs.ac.uk/people/cpaap/pfe/

26 Getting Started with RTEMS for C/C++ Users

7.2.3 Bug in Patch Utility

There is a bug in the patch utility provided in Cygwin32 B19. The �les modi�ed end up having

MS-DOS style line termination. They must have Unix format, so a dos2unix-like command must

be used to put them back into Unix format as shown below:

$ dos2unix XYZ

Dos2Unix: Cleaning file XYZ ...

The dos2unix utility may be downloaded from:

ftp://ftp.micros.hensa.ac.uk/platforms/ibm-pc/ms-dos/simtelnet/txtutl/dos2unix.zip

You must change the format of every patched �le for the toolset build to work correctly.

7.2.4 Files Needed

This section lists the �les required to build and install a Windows hosted GNU cross development

toolset and their home WWW site. In addition to the sources required for the cross environment

listed earlier in Section 3.2 [Get All the Pieces], page 7, you will need to download the following

�les from their respective sites using your favorite Web browser or ftp client.

cdk.exe http://www.cygnus.com/misc/gnu-win32/

coolview.tar.gz http://www.lexa.ru/sos/

7.2.5 System Requirements

Although the �nished cross-compiler is fairly easy on resources, building it can take a signi�cant

amount of processing power and disk space. The recommended build system spec is:

1. An AMD K6-300, Pentium II-300 or better processor. GNU C and Cygwin32 are very CPU

hungry.

2. At least 64MB of RAM.

3. At least 400MB of FAT16 disk space or 250MB if you have an NTFS partition.

Even with this spec of machine expect the full suite to take over 2 hours to build with a further

half an hour for RTEMS itself.

7.3 Installing Cygwin32 B19

This section describes the process of installing the version B19 of the Cygwin32 environment. It

assumes that this toolset is installed in a directory referred to as <RTOS>.

1. Execute cdk.exe. These instructions assume that you install Cygwin32 under the

<RTOS>\cygnus\b19 directory.

2. Execute Cygwin.bat (either on the start menu or under <RTOS>\cygnus\b19).

Chapter 7: Using MS-Windows as a Development Host 27

3. At this point, you are at the command line of bash, a Unix-like shell. You have to mount

the "/" directory. Type:

umount /

mount -b <RTOS> /

For example, the following sequence mounts the E:\unix as the root directory for the

Cygwin32 environment. Note the use of two \s when specifying DOS paths in bash:

umount /

mount -b e:\\unix /

4. Create the /bin, /tmp, /source and /build directories.

mkdir /bin

mkdir /tmp

mkdir /source

mkdir /build

mkdir /build/binutils

mkdir /build/egcs

5. The light Bourne shell provided with Cygwin B19 is buggy. You should copy it to a fake

name and copy bash.exe to sh.exe:

cd <RTOS>/cygnus/b19/H-i386-cygwin32/bin

mv sh.exe old_sh.exe

cp bash.exe sh.exe

The Bourne shell has to be present in /bin directory to run shell scripts properly:

cp <RTOS>/cygnus/b19/H-i386-cygwin32/bin/sh.exe /bin

cp <RTOS>/cygnus/b19/H-i386-cygwin32/bin/bash.exe /bin

6. Open the �le /cygnus/b19/H-i386-cygwin32/lib/gcc-lib/i386-cygwin32/2.7-

b19/specs, and change the following line:

-lcygwin %{mwindows:-luser32 -lgdi32 -lcomdlg32} -lkernel32

to:

-lcygwin %{mwindows:-luser32 -lgdi32 -lcomdlg32} -lkernel32 -ladvapi32

At this point, you have a native installation of Cygwin32 and are ready to proceed to building a

cross-compiler.

7.4 Installing binutils

1. Unarchive binutils-2.9.1.tar.gz following the instructions in Section 3.3 [Unarchiving the

Tools], page 8 into the /source directory. Apply the appropriate RTEMS speci�c patch as

detailed in Section 3.7 [Apply RTEMS Patch to binutils], page 10.

2. In the /build/binutils directory, execute the following command to con�gure binutils

2.9.1:

/source/binutils-2.9.1/configure --verbose --target=m68k-rtems \

--prefix=/gcc-m68k-rtems --with-gnu-as --with-gnu-ld

28 Getting Started with RTEMS for C/C++ Users

Replace m68k-rtems with the target con�guration of your choice. See Section 3.10 [Running

the bit Script], page 12 for a list of the targets available.

3. Execute the following command to compile the toolset:

make

4. Install the full package with the following command:

make -k install

There is a problem with the gnu info package which will cause an error during installation.

Telling make to keep going with -k allows the install to complete.

5. In the cygnus.bat �le, add the directory containing the cross-compiler executables to your

search path by inserting the following line:

PATH=E:\unix\gcc-m68k-rtems\bin;%PATH%

6. You can erase the /build/binutils directory content if disk space is tight.

7. Exit bash and run cygnus.bat to restart the Cygwin32 environment with the new path.

7.5 Installing EGCS ANDNEWLIB

1. Unarchive and patch {No value for \EGCS-TAR"} and newlib-1.8.0.tar.gz following the

instructions in Section 3.3 [Unarchiving the Tools], page 8. Apply the appropriate RTEMS

speci�c patches as detailed in Section 3.6 [Apply RTEMS Patch to EGCS], page 10 and

Section 3.8 [Apply RTEMS Patch to newlib], page 10.

NOTE: See Section 7.2.3 [Bug in Patch Utility], page 26.

2. Remove the following directories (we cannot use Fortran or Objective-C as Cygwin32 cross-

compilers):

/source/egcs-1.1b/libf2c

/source/egcs-1.1b/gcc/objc

/source/egcs-1.1b/gcc/f

NOTE: See Section 7.2.3 [Bug in Patch Utility], page 26.

3. Link the following directories from Newlib to the main EGCS directory, /source/egcs-1.1b/

:

� ln -s ../newlib-1.8.0/newlib newlib

� ln -s ../newlib-1.8.0/libgloss libgloss

4. Change to the /build/egcs directory to con�gure the compiler:

/source/egcs-1.1b/configure --verbose --target=m68k-rtems \

--prefix=/gcc-m68k --with-gnu-as --with-gnu-ld \

--with-newlib

Replace m68k-rtems with the target con�guration of your choice. See Section 3.10 [Running

the bit Script], page 12 for a list of the targets available.

5. Compile the toolset as follows:

Chapter 7: Using MS-Windows as a Development Host 29

make cross

You must do a make cross (not a simple make) to insure that the di�erent packages are

built in the correct order. Making the compiler can take several hours even on fairly fast

machines, beware.

6. Install with the following command:

make -k install

7. Just as with binutils package, a problem with the gnu info package not building correctly

requires that you use -k to keep going.

make -k install

With any luck, at this point you having a working cross-compiler. So as Geo�roy said:

That's it! Celebrate!

30 Getting Started with RTEMS for C/C++ Users

i

Table of Contents

1 Introduction . 1

1.1 Real-Time Embedded Systems . 1

1.2 Cross Development . 2

1.3 Resources on the Internet . 3

1.3.1 RTEMS Mailing List . 3

1.3.2 CrossGCC Mailing List . 3

1.3.3 EGCS Mailing List . 3

2 Requirements . 5

2.1 GNU makeinfo Version Requirements . 5

3 Building the GNU C/C++ Cross Compiler Toolset
. 7

3.1 Create the Archive and Build Directories . 7

3.2 Get All the Pieces . 7

3.3 Unarchiving the Tools . 8

3.4 Host Speci�c Notes . 9

3.4.1 Solaris 2.x . 9

3.4.2 Linux . 9

3.4.2.1 Broken install Program . 9

3.5 Reading the Tools Documentation . 10

3.6 Apply RTEMS Patch to EGCS . 10

3.7 Apply RTEMS Patch to binutils . 10

3.8 Apply RTEMS Patch to newlib . 10

3.9 Localizing the Con�guration . 11

3.10 Running the bit Script. 12

4 Building RTEMS . 15

4.1 Unpack the RTEMS Source . 15

4.2 Add <INSTALL POINT>/bin to Executable PATH 15

4.3 Verifying the Operation of the Cross Toolset . 15

4.4 Generate RTEMS for a Speci�c Target and BSP 15

4.4.1 Using the bit rtems Script . 16

4.4.2 Using the RTEMS con�gure Script Directly 16

5 Building the Sample Application 19

5.1 Unpack the Sample Application . 19

ii Getting Started with RTEMS for C/C++ Users

5.2 Set the Environment Variable RTEMS MAKEFILE PATH 19

5.3 Build the Sample Application . 19

5.4 Application Executable . 19

6 Building the GNU Debugger . 21

6.1 Unarchive the gdb Distribution . 21

6.2 Apply RTEMS Patch to GDB . 21

6.3 Using the bit gdb script . 21

6.4 Using the gdb con�gure Script Directly . 22

6.4.1 GDB with Sparc Instruction Simulation (SIS) 22

6.4.2 GDB with PowerPC Instruction Simulator 23

6.4.3 GDB for DINK32 . 23

7 Using MS-Windows as a Development Host 25

7.1 Version Information . 25

7.2 MS-Windows Host Speci�c Requirements . 25

7.2.1 Unzipping Archives . 25

7.2.2 Text Editor . 25

7.2.3 Bug in Patch Utility . 26

7.2.4 Files Needed . 26

7.2.5 System Requirements . 26

7.3 Installing Cygwin32 B19 . 26

7.4 Installing binutils . 27

7.5 Installing EGCS AND NEWLIB. 28

