
RTEMS C User's Guide

Edition 4.0.0, for RTEMS 4.0.0

October 1998

On-Line Applications Research Corporation

On-Line Applications Research Corporation

TEXinfo 1.1.1.1

COPYRIGHT c
 1988 - 1998.

On-Line Applications Research Corporation (OAR).

The authors have used their best e�orts in preparing this material. These e�orts include the

development, research, and testing of the theories and programs to determine their e�ectiveness.

No warranty of any kind, expressed or implied, with regard to the software or the material contained

in this document is provided. No liability arising out of the application or use of any product

described in this document is assumed. The authors reserve the right to revise this material and to

make changes from time to time in the content hereof without obligation to notify anyone of such

revision or changes.

Any inquiries concerning RTEMS, its related support components, or its documentation should be

directed to either:

On-Line Applications Research Corporation

4910-L Corporate Drive

Huntsville, AL 35805

VOICE: (256) 722-9985

FAX: (256) 722-0985

EMAIL: rtems@OARcorp.com

Preface 1

Preface

In recent years, the cost required to develop a software product has increased signi�cantly while the

target hardware costs have decreased. Now a larger portion of money is expended in developing,

using, and maintaining software. The trend in computing costs is the complete dominance of soft-

ware over hardware costs. Because of this, it is necessary that formal disciplines be established to

increase the probability that software is characterized by a high degree of correctness, maintainabil-

ity, and portability. In addition, these disciplines must promote practices that aid in the consistent

and orderly development of a software system within schedule and budgetary constraints. To be

e�ective, these disciplines must adopt standards which channel individual software e�orts toward

a common goal.

The push for standards in the software development �eld has been met with various degrees of

success. The Microprocessor Operating Systems Interfaces (MOSI) e�ort has experienced only

limited success. As popular as the UNIX operating system has grown, the attempt to develop a

standard interface de�nition to allow portable application development has only recently begun

to produce the results needed in this area. Unfortunately, very little e�ort has been expended to

provide standards addressing the needs of the real-time community. Several organizations have

addressed this need during recent years.

The Real Time Executive Interface De�nition (RTEID) was developed by Motorola with techni-

cal input from Software Components Group. RTEID was adopted by the VMEbus International

Trade Association (VITA) as a baseline draft for their proposed standard multiprocessor, real-time

executive interface, Open Real-Time Kernel Interface De�nition (ORKID). These two groups are

currently working together with the IEEE P1003.4 committee to insure that the functionality of

their proposed standards is adopted as the real-time extensions to POSIX.

This emerging standard de�nes an interface for the development of real-time software to ease the

writing of real-time application programs that are directly portable across multiple real-time execu-

tive implementations. This interface includes both the source code interfaces and run-time behavior

as seen by a real-time application. It does not include the details of how a kernel implements these

functions. The standard's goal is to serve as a complete de�nition of external interfaces so that

application code that conforms to these interfaces will execute properly in all real-time executive

environments. With the use of a standards compliant executive, routines that acquire memory

blocks, create and manage message queues, establish and use semaphores, and send and receive

signals need not be redeveloped for a di�erent real-time environment as long as the new environ-

ment is compliant with the standard. Software developers need only concentrate on the hardware

dependencies of the real-time system. Furthermore, most hardware dependencies for real-time

applications can be localized to the device drivers.

A compliant executive provides simple and
exible real-time multiprocessing. It easily lends itself

to both tightly-coupled and loosely-coupled con�gurations (depending on the system hardware

con�guration). Objects such as tasks, queues, events, signals, semaphores, and memory blocks can

2 RTEMS C User's Guide

be designated as global objects and accessed by any task regardless of which processor the object

and the accessing task reside.

The acceptance of a standard for real-time executives will produce the same advantages enjoyed

from the push for UNIX standardization by AT&T's System V Interface De�nition and IEEE's

POSIX e�orts. A compliant multiprocessing executive will allow close coupling between UNIX sys-

tems and real-time executives to provide the many bene�ts of the UNIX development environment

to be applied to real-time software development. Together they provide the necessary laboratory en-

vironment to implement real-time, distributed, embedded systems using a wide variety of computer

architectures.

A study was completed in 1988, within the Research, Development, and Engineering Center, U.S.

Army Missile Command, which compared the various aspects of the Ada programming language

as they related to the application of Ada code in distributed and/or multiple processing systems.

Several critical conclusions were derived from the study. These conclusions have a major impact on

the way the Army develops application software for embedded applications. These impacts apply

to both in-house software development and contractor developed software.

A conclusion of the analysis, which has been previously recognized by other agencies attempting to

utilize Ada in a distributed or multiprocessing environment, is that the Ada programming language

does not adequately support multiprocessing. Ada does provide a mechanism for multi-tasking,

however, this capability exists only for a single processor system. The language also does not have

inherent capabilities to access global named variables,
ags or program code. These critical features

are essential in order for data to be shared between processors. However, these drawbacks do have

workarounds which are sometimes awkward and defeat the intent of software maintainability and

portability goals.

Another conclusion drawn from the analysis, was that the run time executives being delivered with

the Ada compilers were too slow and ine�cient to be used in modern missile systems. A run time

executive is the core part of the run time system code, or operating system code, that controls task

scheduling, input/output management and memory management. Traditionally, whenever e�cient

executive (also known as kernel) code was required by the application, the user developed in-house

software. This software was usually written in assembly language for optimization.

Because of this shortcoming in the Ada programming language, software developers in research and

development and contractors for project managed systems, are mandated by technology to purchase

and utilize o�-the-shelf third party kernel code. The contractor, and eventually the Government,

must pay a licensing fee for every copy of the kernel code used in an embedded system.

The main drawback to this development environment is that the Government does not own, nor

has the right to modify code contained within the kernel. V&V techniques in this situation are

more di�cult than if the complete source code were available. Responsibility for system failures

due to faulty software is yet another area to be resolved under this environment.

Preface 3

The Guidance and Control Directorate began a software development e�ort to address these prob-

lems. A project to develop an experimental run time kernel was begun that will eliminate the

major drawbacks of the Ada programming language mentioned above. The Real Time Executive

for Multiprocessor Systems (RTEMS) provides full capabilities for management of tasks, interrupts,

time, and multiple processors in addition to those features typical of generic operating systems.

The code is Government owned, so no licensing fees are necessary. RTEMS has been implemented

in both the Ada and C programming languages. It has been ported to the following processor

families:

� Intel i80386 and above

� Intel i80960

� Motorola MC68xxx

� Motorola MC683xx

� MIPS

� PowerPC

� SPARC

� Hewlett Packard PA-RISC

� Hitach SH

� AMD A29K

� UNIX

Support for other processor families, including RISC, CISC, and DSP, is planned. Since almost

all of RTEMS is written in a high level language, ports to additional processor families require

minimal e�ort.

RTEMS multiprocessor support is capable of handling either homogeneous or heterogeneous sys-

tems. The kernel automatically compensates for architectural di�erences (byte swapping, etc.)

between processors. This allows a much easier transition from one processor family to another

without a major system redesign.

Since the proposed standards are still in draft form, RTEMS cannot and does not claim compliance.

However, the status of the standard is being carefully monitored to guarantee that RTEMS provides

the functionality speci�ed in the standard. Once approved, RTEMS will be made compliant.

This document is a detailed users guide for a functionally compliant real-time multiprocessor exec-

utive. It describes the user interface and run-time behavior of Release {No value for \RELEASE"}

of the C interface to RTEMS.

4 RTEMS C User's Guide

Chapter 1: Overview 5

1 Overview

1.1 Introduction

RTEMS, Real-Time Executive for Multiprocessor Systems, is a real-time executive (kernel) which

provides a high performance environment for embedded military applications including the following

features:

� multitasking capabilities

� homogeneous and heterogeneous multiprocessor systems

� event-driven, priority-based, preemptive scheduling

� optional rate monotonic scheduling

� intertask communication and synchronization

� priority inheritance

� responsive interrupt management

� dynamic memory allocation

� high level of user con�gurability

This manual describes the usage of RTEMS for applications written in the C programming lan-

guage. Those implementation details that are processor dependent are provided in the Applications

Supplement documents. A supplement document which addresses speci�c architectural issues that

a�ect RTEMS is provided for each processor type that is supported.

1.2 Real-time Application Systems

Real-time application systems are a special class of computer applications. They have a complex set

of characteristics that distinguish them from other software problems. Generally, they must adhere

to more rigorous requirements. The correctness of the system depends not only on the results of

computations, but also on the time at which the results are produced. The most important and

complex characteristic of real-time application systems is that they must receive and respond to a

set of external stimuli within rigid and critical time constraints referred to as deadlines. Systems

can be buried by an avalanche of interdependent, asynchronous or cyclical event streams.

Deadlines can be further characterized as either hard or soft based upon the value of the results

when produced after the deadline has passed. A deadline is hard if the results have no value or if

their use will result in a catastrophic event. In contrast, results which are produced after a soft

deadline may have some value.

Another distinguishing requirement of real-time application systems is the ability to coordinate or

manage a large number of concurrent activities. Since software is a synchronous entity, this presents

special problems. One instruction follows another in a repeating synchronous cycle. Even though

6 RTEMS C User's Guide

mechanisms have been developed to allow for the processing of external asynchronous events, the

software design e�orts required to process and manage these events and tasks are growing more

complicated.

The design process is complicated further by spreading this activity over a set of processors instead

of a single processor. The challenges associated with designing and building real-time application

systems become very complex when multiple processors are involved. New requirements such as

interprocessor communication channels and global resources that must be shared between compet-

ing processors are introduced. The rami�cations of multiple processors complicate each and every

characteristic of a real-time system.

1.3 Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a cornerstone on which to

build the application system. A real-time multitasking executive allows an application to be cast

into a set of logical, autonomous processes or tasks which become quite manageable. Each task

is internally synchronous, but di�erent tasks execute independently, resulting in an asynchronous

processing stream. Tasks can be dynamically paused for many reasons resulting in a di�erent

task being allowed to execute for a period of time. The executive also provides an interface to

other system components such as interrupt handlers and device drivers. System components may

request the executive to allocate and coordinate resources, and to wait for and trigger synchronizing

conditions. The executive system calls e�ectively extend the CPU instruction set to support e�cient

multitasking. By causing tasks to travel through well-de�ned state transitions, system calls permit

an application to demand-switch between tasks in response to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now asynchronously

switch between independent streams of execution, directly responding to external stimuli as they

occur. This allows the system design to meet critical performance speci�cations which are typically

measured by guaranteed response time and transaction throughput. The multiprocessor extensions

of RTEMS provide the features necessary to manage the extra requirements introduced by a system

distributed across several processors. It removes the physical barriers of processor boundaries

from the world of the system designer, enabling more critical aspects of the system to receive the

required attention. Such a system, based on an e�cient real-time, multiprocessor executive, is a

more realistic model of the outside world or environment for which it is designed. As a result, the

system will always be more logical, e�cient, and reliable.

By using the directives provided by RTEMS, the real-time applications developer is freed from the

problem of controlling and synchronizing multiple tasks and processors. In addition, one need not

develop, test, debug, and document routines to manage memory, pass messages, or provide mutual

exclusion. The developer is then able to concentrate solely on the application. By using standard

software components, the time and cost required to develop sophisticated real-time applications is

signi�cantly reduced.

Chapter 1: Overview 7

1.4 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two critical layers of typical

real-time systems. As shown in the following �gure, RTEMS serves as a bu�er between the project

dependent application code and the target hardware. Most hardware dependencies for real-time

applications can be localized to the low level device drivers. The RTEMS I/O interface manager

provides an e�cient tool for incorporating these hardware dependencies into the system while

simultaneously providing a general mechanism to the application code that accesses them. A well

designed real-time system can bene�t from this architecture by building a rich library of standard

application components which can be used repeatedly in other real-time projects.

Application Dependent Software

Standard Application Components

Device RTEMS
Drivers

Target Hardware

1.5 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered components that work in harmony to provide a set of

services to a real-time application system. The executive interface presented to the application

is formed by grouping directives into logical sets called resource managers. Functions utilized by

multiple managers such as scheduling, dispatching, and object management are provided in the

executive core. The executive core depends on a small set of CPU dependent routines. Together

these components provide a powerful run time environment that promotes the development of

e�cient real-time application systems. The following �gure illustrates this organization:

+---+

| RTEMS Executive Interface |

+---+

| RTEMS Core |

+---+

| CPU Dependent Code |

+---+

Subsequent chapters present a detailed description of the capabilities provided by each of the

following RTEMS managers:

8 RTEMS C User's Guide

� initialization

� task

� interrupt

� clock

� timer

� semaphore

� message

� event

� signal

� partition

� region

� dual ported memory

� I/O

� fatal error

� rate monotonic

� user extensions

� multiprocessing

1.6 User Customization and Extensibility

As thirty-two bit microprocessors have decreased in cost, they have become increasingly common

in a variety of embedded systems. A wide range of custom and general-purpose processor boards

are based on various thirty-two bit processors. RTEMS was designed to make no assumptions

concerning the characteristics of individual microprocessor families or of speci�c support hardware.

In addition, RTEMS allows the system developer a high degree of freedom in customizing and

extending its features.

RTEMS assumes the existence of a supported microprocessor and su�cient memory for both

RTEMS and the real-time application. Board dependent components such as clocks, interrupt

controllers, or I/O devices can be easily integrated with RTEMS. The customization and extensi-

bility features allow RTEMS to e�ciently support as many environments as possible.

1.7 Portability

The issue of portability was the major factor in the creation of RTEMS. Since RTEMS is designed to

isolate the hardware dependencies in the speci�c board support packages, the real-time application

should be easily ported to any other processor. The use of RTEMS allows the development of real-

time applications which can be completely independent of a particular microprocessor architecture.

Chapter 1: Overview 9

1.8 Memory Requirements

Since memory is a critical resource in many real-time embedded systems, RTEMS was speci�cally

designed to allow unused managers to be excluded from the run-time environment. This allows the

application designer the
exibility to tailor RTEMS to most e�ciently meet system requirements

while still satisfying even the most stringent memory constraints. As a result, the size of the

RTEMS executive is application dependent. A worksheet is provided in the Memory Requirements

chapter of the Applications Supplement document for a speci�c target processor. The worksheet

is used to calculate the memory requirements of a custom RTEMS run-time environment. The

following managers may be optionally excluded:

� clock

� timer

� semaphore

� message

� event

� signal

� partition

� region

� dual ported memory

� I/O

� rate monotonic

� fatal error

� multiprocessing

RTEMS utilizes memory for both code and data space. Although RTEMS' data space must be in

RAM, its code space can be located in either ROM or RAM.

1.9 Audience

This manual was written for experienced real-time software developers. Although some background

is provided, it is assumed that the reader is familiar with the concepts of task management as well

as intertask communication and synchronization. Since directives, user related data structures,

and examples are presented in C, a basic understanding of the C programming language is required

to fully understand the material presented. However, because of the similarity of the Ada and C

RTEMS implementations, users will �nd that the use and behavior of the two implementations

is very similar. A working knowledge of the target processor is helpful in understanding some of

RTEMS' features. A thorough understanding of the executive cannot be obtained without studying

the entire manual because many of RTEMS' concepts and features are interrelated. Experienced

RTEMS users will �nd that the manual organization facilitates its use as a reference document.

10 RTEMS C User's Guide

1.10 Conventions

The following conventions are used in this manual:

� Signi�cant words or phrases as well as all directive names are printed in bold type.

� Items in bold capital letters are constants de�ned by RTEMS. Each language interface

provided by RTEMS includes a �le containing the standard set of constants, data types,

and structure de�nitions which can be incorporated into the user application.

� A number of type de�nitions are provided by RTEMS and can be found in rtems.h.

� The characters "0x" preceding a number indicates that the number is in hexadecimal format.

Any other numbers are assumed to be in decimal format.

1.11 Manual Organization

This �rst chapter has presented the introductory and background material for the RTEMS exec-

utive. The remaining chapters of this manual present a detailed description of RTEMS and the

environment, including run time behavior, it creates for the user.

A chapter is dedicated to each manager and provides a detailed discussion of each RTEMS manager

and the directives which it provides. The presentation format for each directive includes the

following sections:

� Calling sequence

� Directive status codes

� Description

� Notes

The following provides an overview of the remainder of this manual:

Chapter 2 Key Concepts: presents an introduction to the ideas which are common

across multiple RTEMS managers.

Chapter 3: Initialization Manager: describes the functionality and directives provided

by the Initialization Manager.

Chapter 4: Task Manager: describes the functionality and directives provided by the

Task Manager.

Chapter 5: Interrupt Manager: describes the functionality and directives provided by

the Interrupt Manager.

Chapter 6: Clock Manager: describes the functionality and directives provided by the

Clock Manager.

Chapter 7 Timer Manager: describes the functionality and directives provided by the

Timer Manager.

Chapter 1: Overview 11

Chapter 8: Semaphore Manager: describes the functionality and directives provided by

the Semaphore Manager.

Chapter 9: Message Manager: describes the functionality and directives provided by the

Message Manager.

Chapter 10: Event Manager: describes the functionality and directives provided by the

Event Manager.

Chapter 11: Signal Manager: describes the functionality and directives provided by the

Signal Manager.

Chapter 12: Partition Manager: describes the functionality and directives provided by

the Partition Manager.

Chapter 13: Region Manager: describes the functionality and directives provided by the

Region Manager.

Chapter 14: Dual-Ported Memory Manager: describes the functionality and directives

provided by the Dual-Ported Memory Manager.

Chapter 15: I/O Manager: describes the functionality and directives provided by the I/O

Manager.

Chapter 16: Fatal Error Manager: describes the functionality and directives provided by

the Fatal Error Manager.

Chapter 17: Scheduling Concepts: details the RTEMS scheduling algorithm and task

state transitions.

Chapter 18: Rate Monotonic Manager: describes the functionality and directives pro-

vided by the Rate Monotonic Manager.

Chapter 19: Board Support Packages: de�nes the functionality required of user-supplied

board support packages.

Chapter 20: User Extensions: shows the user how to extend RTEMS to incorporate cus-

tom features.

Chapter 21: Con�guring a System: details the process by which one tailors RTEMS for

a particular single-processor or multiprocessor application.

Chapter 22: Multiprocessing Manager: presents a conceptual overview of the multipro-

cessing capabilities provided by RTEMS as well as describing the Multi-

processing Communications Interface Layer and Multiprocessing Manager

directives.

Chapter 23: Directive Status Codes: provides a de�nition of each of the directive status

codes referenced in this manual.

Chapter 24: Example Application: provides a template for simple RTEMS applications.

Chapter 25: Glossary: de�nes terms used throughout this manual.

12 RTEMS C User's Guide

Chapter 2: Key Concepts 13

2 Key Concepts

2.1 Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful concepts. These

concepts must be understood before the application developer can e�ciently utilize RTEMS. The

purpose of this chapter is to familiarize one with these concepts.

2.2 Objects

RTEMS provides directives which can be used to dynamically create, delete, and manipulate a

set of prede�ned object types. These types include tasks, message queues, semaphores, memory

regions, memory partitions, timers, ports, and rate monotonic periods. The object-oriented nature

of RTEMS encourages the creation of modular applications built upon re-usable "building block"

routines.

All objects are created on the local node as required by the application and have an RTEMS

assigned ID. All objects have a user-assigned name. Although a relationship exists between an

object's name and its RTEMS assigned ID, the name and ID are not identical. Object names are

completely arbitrary and selected by the user as a meaningful "tag" which may commonly re
ect

the object's use in the application. Conversely, object IDs are designed to facilitate e�cient object

manipulation by the executive.

An object name is an unsigned thirty-two bit entity associated with the object by the user. Although

not required by RTEMS, object names are typically composed of four ASCII characters which help

identify that object. For example, a task which causes a light to blink might be called "LITE".

Utilities are provided to build an object name from four ASCII characters and to decompose an

object name into four ASCII characters. However, it is not required that the application use ASCII

characters to build object names. For example, if an application requires one-hundred tasks, it

would be di�cult to assign meaningful ASCII names to each task. A more convenient approach

would be to name them the binary values one through one-hundred, respectively.

14 RTEMS C User's Guide

An object ID is a unique unsigned thirty-two bit entity composed of three parts: object class, node,

and index. The most signi�cant six bits are the object class. The next ten bits are the number

of the node on which this object was created. The node number is always one (1) in a single

processor system. The least signi�cant sixteen bits form an identi�er within a particular object

type. This identi�er, called the object index, ranges in value from 1 to the maximum number of

objects con�gured for this object type.

31 26 25 16 15 0

Class Node Index

The three components of an object ID make it possible to quickly locate any object in even the

most complicated multiprocessor system. Object ID's are associated with an object by RTEMS

when the object is created and the corresponding ID is returned by the appropriate object create

directive. The object ID is required as input to all directives involving objects, except those which

create an object or obtain the ID of an object.

The object identi�cation directives can be used to dynamically obtain a particular object's ID given

its name. This mapping is accomplished by searching the name table associated with this object

type. If the name is non-unique, then the ID associated with the �rst occurrence of the name will

be returned to the application. Since object IDs are returned when the object is created, the object

identi�cation directives are not necessary in a properly designed single processor application.

An object control block is a data structure de�ned by RTEMS which contains the information

necessary to manage a particular object type. For e�ciency reasons, the format of each object

type's control block is di�erent. However, many of the �elds are similar in function. The number

of each type of control block is application dependent and determined by the values speci�ed in

the user's Con�guration Table. An object control block is allocated at object create time and freed

when the object is deleted. With the exception of user extension routines, object control blocks

are not directly manipulated by user applications.

2.3 Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution threads to communicate

and synchronize with each other is imperative. A real-time executive should provide an application

with the following capabilities:

� Data transfer between cooperating tasks

� Data transfer between tasks and ISRs

� Synchronization of cooperating tasks

Chapter 2: Key Concepts 15

� Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication and/or synchroniza-

tion. However, managers dedicated speci�cally to communication and synchronization provide well

established mechanisms which directly map to the application's varying needs. This level of
exibil-

ity allows the application designer to match the features of a particular manager with the complexity

of communication and synchronization required. The following managers were speci�cally designed

for communication and synchronization:

� Semaphore

� Message Queue

� Event

� Signal

The semaphore manager supports mutual exclusion involving the synchronization of access to one

or more shared user resources. Binary semaphores may utilize the optional priority inheritance

algorithm to avoid the problem of priority inversion. The message manager supports both com-

munication and synchronization, while the event manager primarily provides a high performance

synchronization mechanism. The signal manager supports only asynchronous communication and

is typically used for exception handling.

2.4 Time

The development of responsive real-time applications requires an understanding of how RTEMS

maintains and supports time-related operations. The basic unit of time in RTEMS is known

as a tick. The frequency of clock ticks is completely application dependent and determines the

granularity and accuracy of all interval and calendar time operations.

By tracking time in units of ticks, RTEMS is capable of supporting interval timing functions such

as task delays, timeouts, timeslicing, the delayed execution of timer service routines, and the rate

monotonic scheduling of tasks. An interval is de�ned as a number of ticks relative to the current

time. For example, when a task delays for an interval of ten ticks, it is implied that the task will

not execute until ten clock ticks have occurred.

A characteristic of interval timing is that the actual interval period may be a fraction of a tick less

than the interval requested. This occurs because the time at which the delay timer is set up occurs

at some time between two clock ticks. Therefore, the �rst countdown tick occurs in less than the

complete time interval for a tick. This can be a problem if the clock granularity is large.

The rate monotonic scheduling algorithm is a hard real-time scheduling methodology. This method-

ology provides rules which allows one to guarantee that a set of independent periodic tasks will

always meet their deadlines { even under transient overload conditions. The rate monotonic man-

ager provides directives built upon the Clock Manager's interval timer support routines.

16 RTEMS C User's Guide

Interval timing is not su�cient for the many applications which require that time be kept in wall

time or true calendar form. Consequently, RTEMS maintains the current date and time. This

allows selected time operations to be scheduled at an actual calendar date and time. For example,

a task could request to delay until midnight on New Year's Eve before lowering the ball at Times

Square.

Obviously, the directives which use intervals or wall time cannot operate without some external

mechanism which provides a periodic clock tick. This clock tick is typically provided by a real time

clock or counter/timer device.

2.5 Memory Management

RTEMS memory management facilities can be grouped into two classes: dynamic memory allo-

cation and address translation. Dynamic memory allocation is required by applications whose

memory requirements vary through the application's course of execution. Address translation is

needed by applications which share memory with another CPU or an intelligent Input/Output

processor. The following RTEMS managers provide facilities to manage memory:

� Region

� Partition

� Dual Ported Memory

RTEMS memory management features allow an application to create simple memory pools of �xed

size bu�ers and/or more complex memory pools of variable size segments. The partition manager

provides directives to manage and maintain pools of �xed size entities such as resource control

blocks. Alternatively, the region manager provides a more general purpose memory allocation

scheme that supports variable size blocks of memory which are dynamically obtained and freed

by the application. The dual-ported memory manager provides executive support for address

translation between internal and external dual-ported RAM address space.

Chapter 3: Initialization Manager 17

3 InitializationManager

3.1 Introduction

The initialization manager is responsible for initiating and shutting down RTEMS. Initiating

RTEMS involves creating and starting all con�gured initialization tasks, and for invoking the

initialization routine for each user-supplied device driver. In a multiprocessor con�guration, this

manager also initializes the interprocessor communications layer. The directives provided by the

initialization manager are:

� rtems_initialize_executive - Initialize RTEMS

� rtems_initialize_executive_early - Initialize RTEMS and do NOT Start Multitasking

� rtems_initialize_executive_late - Complete Initialization and Start Multitasking

� rtems_shutdown_executive - Shutdown RTEMS

3.2 Background

3.2.1 Initialization Tasks

Initialization task(s) are the mechanism by which RTEMS transfers initial control to the user's

application. Initialization tasks di�er from other application tasks in that they are de�ned in the

User Initialization Tasks Table and automatically created and started by RTEMS as part of its

initialization sequence. Since the initialization tasks are scheduled using the same algorithm as all

other RTEMS tasks, they must be con�gured at a priority and mode which will insure that they

will complete execution before other application tasks execute. Although there is no upper limit

on the number of initialization tasks, an application is required to de�ne at least one.

A typical initialization task will create and start the static set of application tasks. It may also create

any other objects used by the application. Initialization tasks which only perform initialization

should delete themselves upon completion to free resources for other tasks. Initialization tasks

may transform themselves into a "normal" application task. This transformation typically involves

changing priority and execution mode. RTEMS does not automatically delete the initialization

tasks.

3.2.2 The System Initialization Task

The System Initialization Task is responsible for initializing all device drivers. As a result, this

task has a higher priority than all other tasks to insure that no application tasks executes until all

device drivers are initialized. After device initialization in a single processor system, this task will

delete itself.

18 RTEMS C User's Guide

The System Initialization Task must have enough stack space to successfully execute the initial-

ization routines for all device drivers and, in multiprocessor con�gurations, the Multiprocessor

Communications Interface Layer initialization routine. The CPU Con�guration Table contains a

�eld which allows the application or BSP to increase the default amount of stack space allocated

for this task.

In multiprocessor con�gurations, the System Initialization Task does not delete itself after initializ-

ing the device drivers. Instead it transforms itself into the Multiprocessing Server which initializes

the Multiprocessor Communications Interface Layer, veri�es multiprocessor system consistency,

and processes all requests from remote nodes.

3.2.3 The Idle Task

The Idle Task is the lowest priority task in a system and executes only when no other task is ready

to execute. This task consists of an in�nite loop and will be preempted when any other task is

made ready to execute.

3.2.4 Initialization Manager Failure

The fatal error occurred directive will be called from rtems_initialize_executive for any of the

following reasons:

� If either the Con�guration Table or the CPU Dependent Information Table is not provided.

� If the starting address of the RTEMS RAM Workspace, supplied by the application in the

Con�guration Table, is NULL or is not aligned on a four-byte boundary.

� If the size of the RTEMS RAM Workspace is not large enough to initialize and con�gure

the system.

� If the interrupt stack size speci�ed is too small.

� If multiprocessing is con�gured and the node entry in the Multiprocessor Con�guration

Table is not between one and the maximum nodes entry.

� If a multiprocessor system is being con�gured and no Multiprocessor Communications In-

terface is speci�ed.

� If no user initialization tasks are con�gured. At least one initialization task must be con-

�gured to allow RTEMS to pass control to the application at the end of the executive

initialization sequence.

� If any of the user initialization tasks cannot be created or started successfully.

3.3 Operations

Chapter 3: Initialization Manager 19

3.3.1 Initializing RTEMS

The rtems_initialize_executive directive is called by the board support package at the com-

pletion of its initialization sequence. RTEMS assumes that the board support package successfully

completed its initialization activities. The rtems_initialize_executive directive completes the

initialization sequence by performing the following actions:

� Initializing internal RTEMS variables;

� Allocating system resources;

� Creating and starting the System Initialization Task;

� Creating and starting the Idle Task;

� Creating and starting the user initialization task(s); and

� Initiating multitasking.

This directive MUST be called before any other RTEMS directives. The e�ect of calling any RTEMS

directives before rtems_initialize_executive is unpredictable. Many of RTEMS actions during

initialization are based upon the contents of the Con�guration Table and CPU Dependent Infor-

mation Table. For more information regarding the format and contents of these tables, please refer

to the chapter Con�guring a System.

The �nal step in the initialization sequence is the initiation of multitasking. When the scheduler

and dispatcher are enabled, the highest priority, ready task will be dispatched to run. Control will

not be returned to the board support package after multitasking is enabled until rtems_shutdown_

executive the directive is called.

The rtems_initialize_executive directive provides a conceptually simple way to initialize

RTEMS. However, in certain cases, this mechanism cannot be used. The rtems_initialize_

executive_early and rtems_initialize_executive_late directives are provided as an alterna-

tive mechanism for initializing RTEMS. The rtems_initialize_executive_early directive re-

turns to the caller BEFORE initiating multitasking. The rtems_initialize_executive_late

directive is invoked to start multitasking. It is critical that only one of the RTEMS initialization

sequences be used in an application.

3.3.2 Shutting Down RTEMS

The rtems_shutdown_executive directive is invoked by the application to end multitasking and

return control to the board support package. The board support package resumes execution at the

code immediately following the invocation of the rtems_initialize_executive directive.

3.4 Directives

This section details the initialization manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

20 RTEMS C User's Guide

3.4.1 INITIALIZE EXECUTIVE - Initialize RTEMS

CALLING SEQUENCE:

void rtems_initialize_executive(

rtems_configuration_table *configuration_table,

rtems_cpu_table *cpu_table

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called when the board support package has completed its initialization to allow

RTEMS to initialize the application environment based upon the information in the Con�guration

Table, CPU Dependent Information Table, User Initialization Tasks Table, Device Driver Table,

User Extension Table, Multiprocessor Con�guration Table, and the Multiprocessor Communica-

tions Interface (MPCI) Table. This directive starts multitasking and does not return to the caller

until the rtems_shutdown_executive directive is invoked.

NOTES:

This directive MUST be the �rst RTEMS directive called and it DOES NOT RETURN to the

caller until the rtems_shutdown_executive is invoked.

This directive causes all nodes in the system to verify that certain con�guration parameters are the

same as those of the local node. If an inconsistency is detected, then a fatal error is generated.

The application must use only one of the two initialization sequences: rtems_initialize_

executive or rtems_initialize_executive_early and rtems_initialize_executive_late.

The rtems_initialize_executive directive is logically equivalent to invoking rtems_

initialize_executive_early and rtems_initialize_executive_late with no intervening ac-

tions.

Chapter 3: Initialization Manager 21

3.4.2 INITIALIZE EXECUTIVE EARLY - Initialize RTEMS and do
NOT Start Multitasking

CALLING SEQUENCE:

rtems_interrupt_level rtems_initialize_executive_early(

rtems_configuration_table *configuration_table,

rtems_cpu_table *cpu_table

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called when the board support package has completed its initialization to allow

RTEMS to initialize the application environment based upon the information in the Con�gura-

tion Table, CPU Dependent Information Table, User Initialization Tasks Table, Device Driver

Table, User Extension Table, Multiprocessor Con�guration Table, and the Multiprocessor Commu-

nications Interface (MPCI) Table. This directive returns to the caller after completing the basic

RTEMS initialization but before multitasking is initiated. The interrupt level in place when the

directive is invoked is returned to the caller. This interrupt level should be the same one passed to

rtems_initialize_executive_late.

NOTES:

The application must use only one of the two initialization sequences: rtems_initialize_

executive or rtems_nitialize_executive_early and rtems_nitialize_executive_late.

22 RTEMS C User's Guide

3.4.3 INITIALIZE EXECUTIVE LATE - Complete Initialization and
Start Multitasking

CALLING SEQUENCE:

void rtems_initialize_executive_late(

rtems_interrupt_level bsp_level

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called after the rtems_initialize_executive_early directive has been called to

complete the RTEMS initialization sequence and initiate multitasking. The interrupt level returned

by the rtems_initialize_executive_early directive should be in bsp level and this value is

restored as part of this directive returning to the caller after the rtems_shutdown_executive

directive is invoked.

NOTES:

This directive MUST be the second RTEMS directive called and it DOES NOT RETURN to the

caller until the rtems_shutdown_executive is invoked.

This directive causes all nodes in the system to verify that certain con�guration parameters are the

same as those of the local node. If an inconsistency is detected, then a fatal error is generated.

The application must use only one of the two initialization sequences: rtems_initialize_

executive or rtems_nitialize_executive_early and rtems_initialize_executive_late.

Chapter 3: Initialization Manager 23

3.4.4 SHUTDOWN EXECUTIVE - Shutdown RTEMS

CALLING SEQUENCE:

void rtems_shutdown_executive(

rtems_unsigned32 result

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is called when the application wishes to shutdown RTEMS and return control to the

board support package. The board support package resumes execution at the code immediately

following the invocation of the rtems_initialize_executive directive.

NOTES:

This directive MUST be the last RTEMS directive invoked by an application and it DOES NOT

RETURN to the caller.

This directive should not be invoked until the executive has successfully completed initialization.

24 RTEMS C User's Guide

Chapter 4: Task Manager 25

4 TaskManager

4.1 Introduction

The task manager provides a comprehensive set of directives to create, delete, and administer tasks.

The directives provided by the task manager are:

� rtems_task_create - Create a task

� rtems_task_ident - Get ID of a task

� rtems_task_start - Start a task

� rtems_task_restart - Restart a task

� rtems_task_delete - Delete a task

� rtems_task_suspend - Suspend a task

� rtems_task_resume - Resume a task

� rtems_task_set_priority - Set task priority

� rtems_task_mode - Change current task's mode

� rtems_task_get_note - Get task notepad entry

� rtems_task_set_note - Set task notepad entry

� rtems_task_wake_after - Wake up after interval

� rtems_task_wake_when - Wake up when speci�ed

4.2 Background

4.2.1 Task De�nition

Many de�nitions of a task have been proposed in computer literature. Unfortunately, none of these

de�nitions encompasses all facets of the concept in a manner which is operating system independent.

Several of the more common de�nitions are provided to enable each user to select a de�nition which

best matches their own experience and understanding of the task concept:

� a "dispatchable" unit.

� an entity to which the processor is allocated.

� an atomic unit of a real-time, multiprocessor system.

� single threads of execution which concurrently compete for resources.

� a sequence of closely related computations which can execute concurrently with other com-

putational sequences.

From RTEMS' perspective, a task is the smallest thread of execution which can compete on its

own for system resources. A task is manifested by the existence of a task control block (TCB).

26 RTEMS C User's Guide

4.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS de�ned data structure which contains all the infor-

mation that is pertinent to the execution of a task. During system initialization, RTEMS reserves

a TCB for each task con�gured. A TCB is allocated upon creation of the task and is returned to

the TCB free list upon deletion of the task.

The TCB's elements are modi�ed as a result of system calls made by the application in response

to external and internal stimuli. TCBs are the only RTEMS internal data structure that can be

accessed by an application via user extension routines. The TCB contains a task's name, ID,

current priority, current and starting states, execution mode, set of notepad locations, TCB user

extension pointer, scheduling control structures, as well as data required by a blocked task.

A task's context is stored in the TCB when a task switch occurs. When the task regains control of

the processor, its context is restored from the TCB. When a task is restarted, the initial state of

the task is restored from the starting context area in the task's TCB.

4.2.3 Task States

A task may exist in one of the following �ve states:

� executing - Currently scheduled to the CPU

� ready - May be scheduled to the CPU

� blocked - Unable to be scheduled to the CPU

� dormant - Created task that is not started

� non-existent - Uncreated or deleted task

An active task may occupy the executing, ready, blocked or dormant state, otherwise the task is

considered non-existent. One or more tasks may be active in the system simultaneously. Multiple

tasks communicate, synchronize, and compete for system resources with each other via system calls.

The multiple tasks appear to execute in parallel, but actually each is dispatched to the CPU for

periods of time determined by the RTEMS scheduling algorithm. The scheduling of a task is based

on its current state and priority.

4.2.4 Task Priority

A task's priority determines its importance in relation to the other tasks executing on the same

processor. RTEMS supports 255 levels of priority ranging from 1 to 255. Tasks of numerically

smaller priority values are more important tasks than tasks of numerically larger priority values.

For example, a task at priority level 5 is of higher privilege than a task at priority level 10. There

is no limit to the number of tasks assigned to the same priority.

Each task has a priority associated with it at all times. The initial value of this priority is assigned

at task creation time. The priority of a task may be changed at any subsequent time.

Chapter 4: Task Manager 27

Priorities are used by the scheduler to determine which ready task will be allowed to execute. In

general, the higher the logical priority of a task, the more likely it is to receive processor execution

time.

4.2.5 Task Mode

A task's mode is a combination of the following four components:

� preemption

� ASR processing

� timeslicing

� interrupt level

It is used to modify RTEMS' scheduling process and to alter the execution environment of the task.

The preemption component allows a task to determine when control of the processor is relinquished.

If preemption is disabled (RTEMS_NO_PREEMPT), the task will retain control of the processor as long

as it is in the executing state { even if a higher priority task is made ready. If preemption is enabled

(RTEMS_PREEMPT) and a higher priority task is made ready, then the processor will be taken away

from the current task immediately and given to the higher priority task.

The timeslicing component is used by the RTEMS scheduler to determine how the processor is

allocated to tasks of equal priority. If timeslicing is enabled (RTEMS_TIMESLICE), then RTEMS

will limit the amount of time the task can execute before the processor is allocated to another

ready task of equal priority. The length of the timeslice is application dependent and speci�ed in

the Con�guration Table. If timeslicing is disabled (RTEMS_NO_TIMESLICE), then the task will be

allowed to execute until a task of higher priority is made ready. If RTEMS_NO_PREEMPT is selected,

then the timeslicing component is ignored by the scheduler.

The asynchronous signal processing component is used to determine when received signals are to

be processed by the task. If signal processing is enabled (RTEMS_ASR), then signals sent to the task

will be processed the next time the task executes. If signal processing is disabled (RTEMS_NO_ASR),

then all signals received by the task will remain posted until signal processing is enabled. This

component a�ects only tasks which have established a routine to process asynchronous signals.

The interrupt level component is used to determine which interrupts will be enabled when the task

is executing. RTEMS_INTERRUPT_LEVEL(n) speci�es that the task will execute at interrupt level n.

� RTEMS_PREEMPT - enable preemption (default)

� RTEMS_NO_PREEMPT - disable preemption

� RTEMS_NO_TIMESLICE - disable timeslicing (default)

� RTEMS_TIMESLICE - enable timeslicing

� RTEMS_ASR - enable ASR processing (default)

� RTEMS_NO_ASR - disable ASR processing

28 RTEMS C User's Guide

� RTEMS_INTERRUPT_LEVEL(0) - enable all interrupts (default)

� RTEMS_INTERRUPT_LEVEL(n) - execute at interrupt level n

4.2.6 Accessing Task Arguments

All RTEMS tasks are invoked with a single argument which is speci�ed when they are started or

restarted. The argument is commonly used to communicate startup information to the task. The

simplest manner in which to de�ne a task which accesses it argument is:

rtems_task user_task(

rtems_task_argument argument

);

Application tasks requiring more information may view this single argument as an index into an

array of parameter blocks.

4.2.7 Floating Point Considerations

Creating a task with the RTEMS_FLOATING_POINT
ag results in additional memory being allocated

for the TCB to store the state of the numeric coprocessor during task switches. This additional

memory isNOT allocated for RTEMS_NO_FLOATING_POINT tasks. Saving and restoring the context of

a RTEMS_FLOATING_POINT task takes longer than that of a RTEMS_NO_FLOATING_POINT task because

of the relatively large amount of time required for the numeric coprocessor to save or restore its

computational state.

Since RTEMS was designed speci�cally for embedded military applications which are
oating point

intensive, the executive is optimized to avoid unnecessarily saving and restoring the state of the

numeric coprocessor. The state of the numeric coprocessor is only saved when a RTEMS_FLOATING_

POINT task is dispatched and that task was not the last task to utilize the coprocessor. In a system

with only one RTEMS_FLOATING_POINT task, the state of the numeric coprocessor will never be

saved or restored.

Although the overhead imposed by RTEMS_FLOATING_POINT tasks is minimal, some applications

may wish to completely avoid the overhead associated with RTEMS_FLOATING_POINT tasks and still

utilize a numeric coprocessor. By preventing a task from being preempted while performing a

sequence of
oating point operations, a RTEMS_NO_FLOATING_POINT task can utilize the numeric

coprocessor without incurring the overhead of a RTEMS_FLOATING_POINT context switch. This

approach also avoids the allocation of a
oating point context area. However, if this approach is

taken by the application designer, NO tasks should be created as RTEMS_FLOATING_POINT tasks.

Otherwise, the
oating point context will not be correctly maintained because RTEMS assumes

that the state of the numeric coprocessor will not be altered by RTEMS_NO_FLOATING_POINT tasks.

If the supported processor type does not have hardware
oating capabilities or a standard nu-

meric coprocessor, RTEMS will not provide built-in support for hardware
oating point on that

processor. In this case, all tasks are considered RTEMS_NO_FLOATING_POINT whether created as

Chapter 4: Task Manager 29

RTEMS_FLOATING_POINT or RTEMS_NO_FLOATING_POINT tasks. A
oating point emulation software

library must be utilized for
oating point operations.

On some processors, it is possible to disable the
oating point unit dynamically. If this capability

is supported by the target processor, then RTEMS will utilize this capability to enable the
oating

point unit only for tasks which are created with the RTEMS_FLOATING_POINT attribute. The conse-

quence of a RTEMS_NO_FLOATING_POINT task attempting to access the
oating point unit is CPU

dependent but will generally result in an exception condition.

4.2.8 Building a Task's Attribute Set

In general, an attribute set is built by a bitwise OR of the desired components. The set of valid

task attribute components is listed below:

� RTEMS_NO_FLOATING_POINT - does not use coprocessor (default)

� RTEMS_FLOATING_POINT - uses numeric coprocessor

� RTEMS_LOCAL - local task (default)

� RTEMS_GLOBAL - global task

Attribute values are speci�cally designed to be mutually exclusive, therefore bitwise OR and ad-

dition operations are equivalent as long as each attribute appears exactly once in the component

list. A component listed as a default is not required to appear in the component list, although

it is a good programming practice to specify default components. If all defaults are desired, then

RTEMS_DEFAULT_ATTRIBUTES should be used.

This example demonstrates the attribute set parameter needed to create a local task which utilizes

the numeric coprocessor. The attribute set parameter could be RTEMS_FLOATING_POINT or RTEMS_

LOCAL | RTEMS_FLOATING_POINT. The attribute set parameter can be set to RTEMS_FLOATING_

POINT because RTEMS_LOCAL is the default for all created tasks. If the task were global and used the

numeric coprocessor, then the attribute set parameter would be RTEMS_GLOBAL | RTEMS_FLOATING_

POINT.

4.2.9 Building a Mode and Mask

In general, a mode and its corresponding mask is built by a bitwise OR of the desired components.

The set of valid mode constants and each mode's corresponding mask constant is listed below:

� RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption

� RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption

� RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing

� RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing

� RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing

30 RTEMS C User's Guide

� RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing

� RTEMS_INTERRUPT_LEVEL(0) is masked by RTEMS_INTERRUPT_MASK and enables all inter-

rupts

� RTEMS_INTERRUPT_LEVEL(n) is masked by RTEMS_INTERRUPT_MASK and sets interrupts level

n

Mode values are speci�cally designed to be mutually exclusive, therefore bitwise OR and addition

operations are equivalent as long as each mode appears exactly once in the component list. A mode

component listed as a default is not required to appear in the mode component list, although it is

a good programming practice to specify default components. If all defaults are desired, the mode

RTEMS_DEFAULT_MODES and the mask RTEMS_ALL_MODE_MASKS should be used.

The following example demonstrates the mode and mask parameters used with the rtems_task_

mode directive to place a task at interrupt level 3 and make it non-preemptible. The mode should be

set to RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT to indicate the desired preemption mode

and interrupt level, while the mask parameter should be set to RTEMS_INTERRUPT_MASK | RTEMS_

NO_PREEMPT_MASK to indicate that the calling task's interrupt level and preemption mode are being

altered.

4.3 Operations

4.3.1 Creating Tasks

The rtems_task_create directive creates a task by allocating a task control block, assigning the

task a user-speci�ed name, allocating it a stack and
oating point context area, setting a user-

speci�ed initial priority, setting a user-speci�ed initial mode, and assigning it a task ID. Newly

created tasks are initially placed in the dormant state. All RTEMS tasks execute in the most

privileged mode of the processor.

4.3.2 Obtaining Task IDs

When a task is created, RTEMS generates a unique task ID and assigns it to the created task until

it is deleted. The task ID may be obtained by either of two methods. First, as the result of an

invocation of the rtems_task_create directive, the task ID is stored in a user provided location.

Second, the task ID may be obtained later using the rtems_task_ident directive. The task ID is

used by other directives to manipulate this task.

4.3.3 Starting and Restarting Tasks

The rtems_task_start directive is used to place a dormant task in the ready state. This enables

the task to compete, based on its current priority, for the processor and other system resources.

Chapter 4: Task Manager 31

Any actions, such as suspension or change of priority, performed on a task prior to starting it are

nulli�ed when the task is started.

With the rtems_task_start directive the user speci�es the task's starting address and argument.

The argument is used to communicate some startup information to the task. As part of this

directive, RTEMS initializes the task's stack based upon the task's initial execution mode and start

address. The starting argument is passed to the task in accordance with the target processor's

calling convention.

The rtems_task_restart directive restarts a task at its initial starting address with its original

priority and execution mode, but with a possibly di�erent argument. The new argument may

be used to distinguish between the original invocation of the task and subsequent invocations.

The task's stack and control block are modi�ed to re
ect their original creation values. Although

references to resources that have been requested are cleared, resources allocated by the task are

NOT automatically returned to RTEMS. A task cannot be restarted unless it has previously been

started (i.e. dormant tasks cannot be restarted). All restarted tasks are placed in the ready state.

4.3.4 Suspending and Resuming Tasks

The rtems_task_suspend directive is used to place either the caller or another task into a sus-

pended state. The task remains suspended until a rtems_task_resume directive is issued. This

implies that a task may be suspended as well as blocked waiting either to acquire a resource or for

the expiration of a timer.

The rtems_task_resume directive is used to remove another task from the suspended state. If

the task is not also blocked, resuming it will place it in the ready state, allowing it to once again

compete for the processor and resources. If the task was blocked as well as suspended, this directive

clears the suspension and leaves the task in the blocked state.

Suspending a task which is already suspended or resuming a task which is not suspended is con-

sidered an error.

4.3.5 Delaying the Currently Executing Task

The rtems_task_wake_after directive creates a sleep timer which allows a task to go to sleep for

a speci�ed interval. The task is blocked until the delay interval has elapsed, at which time the

task is unblocked. A task calling the rtems_task_wake_after directive with a delay interval of

RTEMS_YIELD_PROCESSOR ticks will yield the processor to any other ready task of equal or greater

priority and remain ready to execute.

The rtems_task_wake_when directive creates a sleep timer which allows a task to go to sleep until

a speci�ed date and time. The calling task is blocked until the speci�ed date and time has occurred,

at which time the task is unblocked.

32 RTEMS C User's Guide

4.3.6 Changing Task Priority

The rtems_task_set_priority directive is used to obtain or change the current priority of either

the calling task or another task. If the new priority requested is RTEMS_CURRENT_PRIORITY or the

task's actual priority, then the current priority will be returned and the task's priority will remain

unchanged. If the task's priority is altered, then the task will be scheduled according to its new

priority.

The rtems_task_restart directive resets the priority of a task to its original value.

4.3.7 Changing Task Mode

The rtems_task_mode directive is used to obtain or change the current execution mode of the

calling task. A task's execution mode is used to enable preemption, timeslicing, ASR processing,

and to set the task's interrupt level.

The rtems_task_restart directive resets the mode of a task to its original value.

4.3.8 Notepad Locations

RTEMS provides sixteen notepad locations for each task. Each notepad location may contain a

note consisting of four bytes of information. RTEMS provides two directives, rtems_task_set_

note and rtems_task_get_note, that enable a user to access and change the notepad locations.

The rtems_task_set_note directive enables the user to set a task's notepad entry to a speci�ed

note. The rtems_task_get_note directive allows the user to obtain the note contained in any one

of the sixteen notepads of a speci�ed task.

4.3.9 Task Deletion

RTEMS provides the rtems_task_delete directive to allow a task to delete itself or any other task.

This directive removes all RTEMS references to the task, frees the task's control block, removes it

from resource wait queues, and deallocates its stack as well as the optional
oating point context.

The task's name and ID become inactive at this time, and any subsequent references to either of

them is invalid. In fact, RTEMS may reuse the task ID for another task which is created later in

the application.

Unexpired delay timers (i.e. those used by rtems_task_wake_after and rtems_task_wake_when)

and timeout timers associated with the task are automatically deleted, however, other resources

dynamically allocated by the task are NOT automatically returned to RTEMS. Therefore, before

a task is deleted, all of its dynamically allocated resources should be deallocated by the user. This

may be accomplished by instructing the task to delete itself rather than directly deleting the task.

Other tasks may instruct a task to delete itself by sending a "delete self" message, event, or signal,

or by restarting the task with special arguments which instruct the task to delete itself.

Chapter 4: Task Manager 33

4.4 Directives

This section details the task manager's directives. A subsection is dedicated to each of this man-

ager's directives and describes the calling sequence, related constants, usage, and status codes.

34 RTEMS C User's Guide

4.4.1 TASK CREATE - Create a task

CALLING SEQUENCE:

rtems_status_code rtems_task_create(

rtems_name name,

rtems_task_priority initial_priority,

rtems_unsigned32 stack_size,

rtems_mode initial_modes,

rtems_attribute attribute_set,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task created successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_INVALID_SIZE - stack too small

RTEMS_INVALID_PRIORITY - invalid task priority

RTEMS_MP_NOT_CONFIGURED - multiprocessing not con�gured

RTEMS_TOO_MANY - too many tasks created

RTEMS_UNSATISFIED - not enough memory for stack/FP context

RTEMS_TOO_MANY - too many global objects

DESCRIPTION:

This directive creates a task which resides on the local node. It allocates and initializes a TCB,

a stack, and an optional
oating point context area. The mode parameter contains values which

sets the task's initial execution mode. The RTEMS_FLOATING_POINT attribute should be speci�ed if

the created task is to use a numeric coprocessor. For performance reasons, it is recommended that

tasks not using the numeric coprocessor should specify the RTEMS_NO_FLOATING_POINT attribute.

If the RTEMS_GLOBAL attribute is speci�ed, the task can be accessed from remote nodes. The task

id, returned in id, is used in other task related directives to access the task. When created, a

task is placed in the dormant state and can only be made ready to execute using the directive

rtems_task_start.

NOTES:

This directive will not cause the calling task to be preempted.

Valid task priorities range from a high of 1 to a low of 255.

RTEMS supports a maximum of 256 interrupt levels which are mapped onto the interrupt levels

actually supported by the target processor.

Chapter 4: Task Manager 35

The requested stack size should be at least RTEMS_MINIMUM_STACK_SIZE bytes. The value of RTEMS_

MINIMUM_STACK_SIZE is processor dependent. Application developers should consider the stack

usage of the device drivers when calculating the stack size required for tasks which utilize the

driver.

The following task attribute constants are de�ned by RTEMS:

� RTEMS_NO_FLOATING_POINT - does not use coprocessor (default)

� RTEMS_FLOATING_POINT - uses numeric coprocessor

� RTEMS_LOCAL - local task (default)

� RTEMS_GLOBAL - global task

The following task mode constants are de�ned by RTEMS:

� RTEMS_PREEMPT - enable preemption (default)

� RTEMS_NO_PREEMPT - disable preemption

� RTEMS_NO_TIMESLICE - disable timeslicing (default)

� RTEMS_TIMESLICE - enable timeslicing

� RTEMS_ASR - enable ASR processing (default)

� RTEMS_NO_ASR - disable ASR processing

� RTEMS_INTERRUPT_LEVEL(0) - enable all interrupts (default)

� RTEMS_INTERRUPT_LEVEL(n) - execute at interrupt level n

Tasks should not be made global unless remote tasks must interact with them. This avoids the

system overhead incurred by the creation of a global task. When a global task is created, the task's

name and id must be transmitted to every node in the system for insertion in the local copy of the

global object table.

The total number of global objects, including tasks, is limited by the maximum global objects �eld

in the Con�guration Table.

36 RTEMS C User's Guide

4.4.2 TASK IDENT - Get ID of a task

CALLING SEQUENCE:

rtems_status_code rtems_task_ident(

rtems_name name,

rtems_unsigned32 node,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task identi�ed successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_INVALID_NODE - invalid node id

DESCRIPTION:

This directive obtains the task id associated with the task name speci�ed in name. A task may

obtain its own id by specifying RTEMS_SELF or its own task name in name. If the task name is not

unique, then the task id returned will match one of the tasks with that name. However, this task

id is not guaranteed to correspond to the desired task. The task id, returned in id, is used in other

task related directives to access the task.

NOTES:

This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched

�rst. All other nodes are searched with the lowest numbered node searched �rst.

If node is a valid node number which does not represent the local node, then only the tasks exported

by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the

global object table.

Chapter 4: Task Manager 37

4.4.3 TASK START - Start a task

CALLING SEQUENCE:

rtems_status_code rtems_task_start(

rtems_id id,

rtems_task_entry entry_point,

rtems_task_argument argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - ask started successfully

RTEMS_INVALID_ADDRESS - invalid task entry point

RTEMS_INVALID_ID - invalid task id

RTEMS_INCORRECT_STATE - task not in the dormant state

RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task

DESCRIPTION:

This directive readies the task, speci�ed by tid, for execution based on the priority and execution

mode speci�ed when the task was created. The starting address of the task is given in entry point.

The task's starting argument is contained in argument. This argument can be a single value or

used as an index into an array of parameter blocks.

NOTES:

The calling task will be preempted if its preemption mode is enabled and the task being started

has a higher priority.

Any actions performed on a dormant task such as suspension or change of priority are nulli�ed

when the task is initiated via the rtems_task_start directive.

38 RTEMS C User's Guide

4.4.4 TASK RESTART - Restart a task

CALLING SEQUENCE:

rtems_status_code rtems_task_restart(

rtems_id id,

rtems_task_argument argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task restarted successfully

RTEMS_INVALID_ID - task id invalid

RTEMS_INCORRECT_STATE - task never started

RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task

DESCRIPTION:

This directive resets the task speci�ed by id to begin execution at its original starting address. The

task's priority and execution mode are set to the original creation values. If the task is currently

blocked, RTEMS automatically makes the task ready. A task can be restarted from any state,

except the dormant state.

The task's starting argument is contained in argument. This argument can be a single value or an

index into an array of parameter blocks. This new argument may be used to distinguish between

the initial rtems_task_start of the task and any ensuing calls to rtems_task_restart of the task.

This can be bene�cial in deleting a task. Instead of deleting a task using the rtems_task_delete

directive, a task can delete another task by restarting that task, and allowing that task to release

resources back to RTEMS and then delete itself.

NOTES:

If id is RTEMS_SELF, the calling task will be restarted and will not return from this directive.

The calling task will be preempted if its preemption mode is enabled and the task being restarted

has a higher priority.

The task must reside on the local node, even if the task was created with the RTEMS_GLOBAL option.

Chapter 4: Task Manager 39

4.4.5 TASK DELETE - Delete a task

CALLING SEQUENCE:

rtems_status_code rtems_task_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task restarted successfully

RTEMS_INVALID_ID - task id invalid

RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task

DESCRIPTION:

This directive deletes a task, either the calling task or another task, as speci�ed by id. RTEMS stops

the execution of the task and reclaims the stack memory, any allocated delay or timeout timers,

the TCB, and, if the task is RTEMS_FLOATING_POINT, its
oating point context area. RTEMS does

not reclaim the following resources: region segments, partition bu�ers, semaphores, timers, or rate

monotonic periods.

NOTES:

A task is responsible for releasing its resources back to RTEMS before deletion. To insure proper

deallocation of resources, a task should not be deleted unless it is unable to execute or does not hold

any RTEMS resources. If a task holds RTEMS resources, the task should be allowed to deallocate

its resources before deletion. A task can be directed to release its resources and delete itself by

restarting it with a special argument or by sending it a message, an event, or a signal.

Deletion of the current task (RTEMS_SELF) will force RTEMS to select another task to execute.

When a global task is deleted, the task id must be transmitted to every node in the system for

deletion from the local copy of the global object table.

The task must reside on the local node, even if the task was created with the RTEMS_GLOBAL option.

40 RTEMS C User's Guide

4.4.6 TASK SUSPEND - Suspend a task

CALLING SEQUENCE:

rtems_status_code rtems_task_suspend(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task restarted successfully

RTEMS_INVALID_ID - task id invalid

RTEMS_ALREADY_SUSPENDED - task already suspended

DESCRIPTION:

This directive suspends the task speci�ed by id from further execution by placing it in the suspended

state. This state is additive to any other blocked state that the task may already be in. The task

will not execute again until another task issues the rtems_task_resume directive for this task and

any blocked state has been removed.

NOTES:

The requesting task can suspend itself by specifying RTEMS_SELF as id. In this case, the task will

be suspended and a successful return code will be returned when the task is resumed.

Suspending a global task which does not reside on the local node will generate a request to the

remote node to suspend the speci�ed task.

If the task speci�ed by id is already suspended, then the RTEMS_ALREADY_SUSPENDED status code

is returned.

Chapter 4: Task Manager 41

4.4.7 TASK RESUME - Resume a task

CALLING SEQUENCE:

rtems_status_code rtems_task_resume(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task restarted successfully

RTEMS_INVALID_ID - task id invalid

RTEMS_INCORRECT_STATE - task not suspended

DESCRIPTION:

This directive removes the task speci�ed by id from the suspended state. If the task is in the ready

state after the suspension is removed, then it will be scheduled to run. If the task is still in a

blocked state after the suspension is removed, then it will remain in that blocked state.

NOTES:

The running task may be preempted if its preemption mode is enabled and the local task being

resumed has a higher priority.

Resuming a global task which does not reside on the local node will generate a request to the

remote node to resume the speci�ed task.

If the task speci�ed by id is not suspended, then the RTEMS_INCORRECT_STATE status code is

returned.

42 RTEMS C User's Guide

4.4.8 TASK SET PRIORITY - Set task priority

CALLING SEQUENCE:

rtems_status_code rtems_task_set_priority(

rtems_id id,

rtems_task_priority new_priority,

rtems_task_priority *old_priority

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task priority set successfully

RTEMS_INVALID_ID - invalid task id

RTEMS_INVALID_PRIORITY - invalid task priority

DESCRIPTION:

This directive manipulates the priority of the task speci�ed by id. An id of RTEMS_SELF is used

to indicate the calling task. When new priority is not equal to RTEMS_CURRENT_PRIORITY, the

speci�ed task's previous priority is returned in old priority. When new priority is RTEMS_CURRENT_

PRIORITY, the speci�ed task's current priority is returned in old priority. Valid priorities range

from a high of 1 to a low of 255.

NOTES:

The calling task may be preempted if its preemption mode is enabled and it lowers its own priority

or raises another task's priority.

Setting the priority of a global task which does not reside on the local node will generate a request

to the remote node to change the priority of the speci�ed task.

If the task speci�ed by id is currently holding any binary semaphores which use the priority inheri-

tance algorithm, then the task's priority cannot be lowered immediately. If the task's priority were

lowered immediately, then priority inversion results. The requested lowering of the task's priority

will occur when the task has released all priority inheritance binary semaphores. The task's priority

can be increased regardless of the task's use of priority inheritance binary semaphores.

Chapter 4: Task Manager 43

4.4.9 TASK MODE - Change current task's mode

CALLING SEQUENCE:

rtems_status_code rtems_task_mode(

rtems_mode mode_set,

rtems_mode mask,

rtems_mode *previous_mode_set

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task mode set successfully

DESCRIPTION:

This directive manipulates the execution mode of the calling task. A task's execution mode enables

and disables preemption, timeslicing, asynchronous signal processing, as well as specifying the

current interrupt level. To modify an execution mode, the mode class(es) to be changed must be

speci�ed in the mask parameter and the desired mode(s) must be speci�ed in the mode parameter.

NOTES:

The calling task will be preempted if it enables preemption and a higher priority task is ready to

run.

Enabling timeslicing has no e�ect if preemption is enabled.

A task can obtain its current execution mode, without modifying it, by calling this directive with

a mask value of RTEMS_CURRENT_MODE.

To temporarily disable the processing of a valid ASR, a task should call this directive with the

RTEMS_NO_ASR indicator speci�ed in mode.

The set of task mode constants and each mode's corresponding mask constant is provided in the

following table:

� RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption

� RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption

� RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing

� RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing

� RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing

� RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing

44 RTEMS C User's Guide

� RTEMS_INTERRUPT_LEVEL(0) is masked by RTEMS_INTERRUPT_MASK and enables all inter-

rupts

� RTEMS_INTERRUPT_LEVEL(n) is masked by RTEMS_INTERRUPT_MASK and sets interrupts level

n

Chapter 4: Task Manager 45

4.4.10 TASK GET NOTE - Get task notepad entry

CALLING SEQUENCE:

rtems_status_code rtems_task_get_note(

rtems_id id,

rtems_unsigned32 notepad,

rtems_unsigned32 *note

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - note obtained successfully

RTEMS_INVALID_ID - invalid task id

RTEMS_INVALID_NUMBER - invalid notepad location

DESCRIPTION:

This directive returns the note contained in the notepad location of the task speci�ed by id.

NOTES:

This directive will not cause the running task to be preempted.

If id is set to RTEMS_SELF, the calling task accesses its own notepad.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_0 through

RTEMS_NOTEPAD_15.

Getting a note of a global task which does not reside on the local node will generate a request to

the remote node to obtain the notepad entry of the speci�ed task.

46 RTEMS C User's Guide

4.4.11 TASK SET NOTE - Set task notepad entry

CALLING SEQUENCE:

rtems_status_code rtems_task_set_note(

rtems_id id,

rtems_unsigned32 notepad,

rtems_unsigned32 note

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - task's note set successfully

RTEMS_INVALID_ID - invalid task id

RTEMS_INVALID_NUMBER - invalid notepad location

DESCRIPTION:

This directive sets the notepad entry for the task speci�ed by id to the value note.

NOTES:

If id is set to RTEMS_SELF, the calling task accesses its own notepad locations.

This directive will not cause the running task to be preempted.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_0 through

RTEMS_NOTEPAD_15.

Setting a notepad location of a global task which does not reside on the local node will generate a

request to the remote node to set the speci�ed notepad entry.

Chapter 4: Task Manager 47

4.4.12 TASK WAKE AFTER - Wake up after interval

CALLING SEQUENCE:

rtems_status_code rtems_task_wake_after(

rtems_interval ticks

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - always successful

DESCRIPTION:

This directive blocks the calling task for the speci�ed number of system clock ticks. When the

requested interval has elapsed, the task is made ready. The rtems_clock_tick directive automat-

ically updates the delay period.

NOTES:

Setting the system date and time with the rtems_clock_set directive has no e�ect on a rtems_

task_wake_after blocked task.

A task may give up the processor and remain in the ready state by specifying a value of RTEMS_

YIELD_PROCESSOR in ticks.

The maximum timer interval that can be speci�ed is the maximum value which can be represented

by the rtems unsigned32 type.

A clock tick is required to support the functionality of this directive.

48 RTEMS C User's Guide

4.4.13 TASK WAKE WHEN - Wake up when speci�ed

CALLING SEQUENCE:

rtems_status_code rtems_task_wake_when(

rtems_time_of_day *time_buffer

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - awakened at date/time successfully

INVALID_TIME_OF_DAY - invalid time bu�er

RTEMS_NOT_DEFINED - system date and time is not set

DESCRIPTION:

This directive blocks a task until the date and time speci�ed in time bu�er. At the requested date

and time, the calling task will be unblocked and made ready to execute.

NOTES:

The ticks portion of time bu�er structure is ignored. The timing granularity of this directive is a

second.

A clock tick is required to support the functionality of this directive.

Chapter 5: Interrupt Manager 49

5 InterruptManager

5.1 Introduction

Any real-time executive must provide a mechanism for quick response to externally generated

interrupts to satisfy the critical time constraints of the application. The interrupt manager provides

this mechanism for RTEMS. This manager permits quick interrupt response times by providing the

critical ability to alter task execution which allows a task to be preempted upon exit from an ISR.

The interrupt manager includes the following directive:

� rtems_interrupt_catch - Establish an ISR

� rtems_interrupt_disable - Disable Interrupts

� rtems_interrupt_enable - Enable Interrupts

� rtems_interrupt_flash - Flash Interrupt

� rtems_interrupt_is_in_progress - Is an ISR in Progress

5.2 Background

5.2.1 Processing an Interrupt

The interrupt manager allows the application to connect a function to a hardware interrupt vector.

When an interrupt occurs, the processor will automatically vector to RTEMS. RTEMS saves and

restores all registers which are not preserved by the normal C calling convention for the target

processor and invokes the user's ISR. The user's ISR is responsible for processing the interrupt,

clearing the interrupt if necessary, and device speci�c manipulation.

The rtems_interrupt_catch directive connects a procedure to an interrupt vector. The interrupt

service routine is assumed to abide by these conventions and have a prototype similar to the

following:

rtems_isr user_isr(

rtems_vector_number vector

);

The vector number argument is provided by RTEMS to allow the application to identify the in-

terrupt source. This could be used to allow a single routine to service interrupts from multiple

instances of the same device. For example, a single routine could service interrupts from multiple

serial ports and use the vector number to identify which port requires servicing.

To minimize the masking of lower or equal priority level interrupts, the ISR should perform the

minimum actions required to service the interrupt. Other non-essential actions should be handled

by application tasks. Once the user's ISR has completed, it returns control to the RTEMS interrupt

50 RTEMS C User's Guide

manager which will perform task dispatching and restore the registers saved before the ISR was

invoked.

The RTEMS interrupt manager guarantees that proper task scheduling and dispatching are per-

formed at the conclusion of an ISR. A system call made by the ISR may have readied a task

of higher priority than the interrupted task. Therefore, when the ISR completes, the postponed

dispatch processing must be performed. No dispatch processing is performed as part of directives

which have been invoked by an ISR.

Applications must adhere to the following rule if proper task scheduling and dispatching is to be

performed:

The interrupt manager must be used for all ISRs which may be interrupted by the highest

priority ISR which invokes an RTEMS directive.

Consider a processor which allows a numerically low interrupt level to interrupt a numerically

greater interrupt level. In this example, if an RTEMS directive is used in a level 4 ISR, then all

ISRs which execute at levels 0 through 4 must use the interrupt manager.

Interrupts are nested whenever an interrupt occurs during the execution of another ISR. RTEMS

supports e�cient interrupt nesting by allowing the nested ISRs to terminate without performing

any dispatch processing. Only when the outermost ISR terminates will the postponed dispatching

occur.

5.2.2 RTEMS Interrupt Levels

Many processors support multiple interrupt levels or priorities. The exact number of interrupt

levels is processor dependent. RTEMS internally supports 256 interrupt levels which are mapped

to the processor's interrupt levels. For speci�c information on the mapping between RTEMS and

the target processor's interrupt levels, refer to the Interrupt Processing chapter of the Applications

Supplement document for a speci�c target processor.

5.2.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When these

sections are encountered, RTEMS disables all maskable interrupts before the execution of the

section and restores them to the previous level upon completion of the section. RTEMS has been

optimized to insure that interrupts are disabled for a minimum length of time. The maximum length

of time interrupts are disabled by RTEMS is processor dependent and is detailed in the Timing

Speci�cation chapter of the Applications Supplement document for a speci�c target processor.

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level MUST

NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results may occur due

to the inability of RTEMS to protect its critical sections. However, ISRs that make no system calls

may safely execute as non-maskable interrupts.

Chapter 5: Interrupt Manager 51

5.3 Operations

5.3.1 Establishing an ISR

The rtems_interrupt_catch directive establishes an ISR for the system. The address of the ISR

and its associated CPU vector number are speci�ed to this directive. This directive installs the

RTEMS interrupt wrapper in the processor's Interrupt Vector Table and the address of the user's

ISR in the RTEMS' Vector Table. This directive returns the previous contents of the speci�ed

vector in the RTEMS' Vector Table.

5.3.2 Directives Allowed from an ISR

Using the interrupt manager insures that RTEMS knows when a directive is being called from

an ISR. The ISR may then use system calls to synchronize itself with an application task. The

synchronization may involve messages, events or signals being passed by the ISR to the desired

task. Directives invoked by an ISR must operate only on objects which reside on the local node.

The following is a list of RTEMS system calls that may be made from an ISR:

� Task Management

- task get note, task set note, task suspend, task resume

� Clock Management

- clock get, clock tick

� Message, Event, and Signal Management

- message queue send, message queue urgent

- event send

- signal send

� Semaphore Management

- semaphore release

� Dual-Ported Memory Management

- port external to internal, port internal to external

� IO Management

- io initialize, io open, io close, io read, io write, io control

� Fatal Error Management

- fatal error occurred

� Multiprocessing

- multiprocessing announce

52 RTEMS C User's Guide

5.4 Directives

This section details the interrupt manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

Chapter 5: Interrupt Manager 53

5.4.1 INTERRUPT CATCH - Establish an ISR

CALLING SEQUENCE:

rtems_status_code rtems_interrupt_catch(

rtems_isr_entry new_isr_handler,

rtems_vector_number vector,

rtems_isr_entry *old_isr_handler

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - ISR established successfully

RTEMS_INVALID_NUMBER - illegal vector number

RTEMS_INVALID_ADDRESS - illegal ISR entry point or invalid old isr handler

DESCRIPTION:

This directive establishes an interrupt service routine (ISR) for the speci�ed interrupt vector num-

ber. The new_isr_handler parameter speci�es the entry point of the ISR. The entry point of the

previous ISR for the speci�ed vector is returned in old_isr_handler.

NOTES:

This directive will not cause the calling task to be preempted.

54 RTEMS C User's Guide

5.4.2 INTERRUPT DISABLE - Disable Interrupts

CALLING SEQUENCE:

void rtems_interrupt_disable(

rtems_isr_level level

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive disables all maskable interrupts and returns the previous level. A later invocation

of the rtems_interrupt_enable directive should be used to restore the interrupt level.

NOTES:

This directive will not cause the calling task to be preempted.

This directive is implemented as a macro which modi�es the level parameter.

Chapter 5: Interrupt Manager 55

5.4.3 INTERRUPT ENABLE - Enable Interrupts

CALLING SEQUENCE:

void rtems_interrupt_enable(

rtems_isr_level level

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive enables maskable interrupts to the level which was returned by a previous call

to rtems_interrupt_disable. Immediately prior to invoking this directive, maskable interrupts

should be disabled by a call to rtems_interrupt_disable and will be enabled when this directive

returns to the caller.

NOTES:

This directive will not cause the calling task to be preempted.

56 RTEMS C User's Guide

5.4.4 INTERRUPT FLASH - Flash Interrupts

CALLING SEQUENCE:

void rtems_interrupt_flash(

rtems_isr_level level

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive temporarily enables maskable interrupts to the level which was returned by a

previous call to rtems_interrupt_disable. Immediately prior to invoking this directive, maskable

interrupts should be disabled by a call to rtems_interrupt_disable and will be redisabled when

this directive returns to the caller.

NOTES:

This directive will not cause the calling task to be preempted.

Chapter 5: Interrupt Manager 57

5.4.5 INTERRUPT IS IN PROGRESS - Is an ISR in Progress

CALLING SEQUENCE:

rtems_boolean rtems_interrupt_is_in_progress(void);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive returns TRUE if the processor is currently servicing an interrupt and FALSE otherwise.

A return value of TRUE indicates that the caller is an interrupt service routine, NOT a task. The

directives available to an interrupt service routine are restricted.

NOTES:

This directive will not cause the calling task to be preempted.

58 RTEMS C User's Guide

Chapter 6: Clock Manager 59

6 ClockManager

6.1 Introduction

The clock manager provides support for time of day and other time related capabilities. The

directives provided by the clock manager are:

� rtems_clock_set - Set system date and time

� rtems_clock_get - Get system date and time information

� rtems_clock_tick - Announce a clock tick

6.2 Background

6.2.1 Required Support

For the features provided by the clock manager to be utilized, periodic timer interrupts are required.

Therefore, a real-time clock or hardware timer is necessary to create the timer interrupts. The

rtems_clock_tick directive is normally called by the timer ISR to announce to RTEMS that a

system clock tick has occurred. Elapsed time is measured in ticks. A tick is de�ned to be an

integral number of microseconds which is speci�ed by the user in the Con�guration Table.

6.2.2 Time and Date Data Structures

The clock facilities of the clock manager operate upon calendar time. These directives utilize the

following date and time structure for the native time and date format:

struct rtems_tod_control {

rtems_unsigned32 year; /* greater than 1987 */

rtems_unsigned32 month; /* 1 - 12 */

rtems_unsigned32 day; /* 1 - 31 */

rtems_unsigned32 hour; /* 0 - 23 */

rtems_unsigned32 minute; /* 0 - 59 */

rtems_unsigned32 second; /* 0 - 59 */

rtems_unsigned32 ticks; /* elapsed between seconds */

};

typedef struct rtems_tod_control rtems_time_of_day;

The native date and time format is the only format supported when setting the system date and

time using the rtems_clock_get directive. Some applications expect to operate on a "UNIX-style"

date and time data structure. The rtems_clock_get directive can optionally return the current

date and time in the following structure:

60 RTEMS C User's Guide

typedef struct {

rtems_unsigned32 seconds; /* seconds since RTEMS epoch*/

rtems_unsigned32 microseconds; /* since last second */

} rtems_clock_time_value;

The seconds �eld in this structure is the number of seconds since the RTEMS epoch of January 1,

1988.

6.2.3 Clock Tick and Timeslicing

Timeslicing is a task scheduling discipline in which tasks of equal priority are executed for a speci�c

period of time before control of the CPU is passed to another task. It is also sometimes referred

to as the automatic round-robin scheduling algorithm. The length of time allocated to each task is

known as the quantum or timeslice.

The system's timeslice is de�ned as an integral number of ticks, and is speci�ed in the Con�guration

Table. The timeslice is de�ned for the entire system of tasks, but timeslicing is enabled and disabled

on a per task basis.

The rtems_clock_tick directive implements timeslicing by decrementing the running task's time-

remaining counter when both timeslicing and preemption are enabled. If the task's timeslice has

expired, then that task will be preempted if there exists a ready task of equal priority.

6.2.4 Delays

A sleep timer allows a task to delay for a given interval or up until a given time, and then wake

and continue execution. This type of timer is created automatically by the rtems_task_wake_

after and rtems_task_wake_when directives and, as a result, does not have an RTEMS ID. Once

activated, a sleep timer cannot be explicitly deleted. Each task may activate one and only one

sleep timer at a time.

6.2.5 Timeouts

Timeouts are a special type of timer automatically created when the timeout option is used on the

rtems_message_queue_receive, rtems_event_receive, rtems_semaphore_obtain and rtems_

region_get_segment directives. Each task may have one and only one timeout active at a time.

When a timeout expires, it unblocks the task with a timeout status code.

6.3 Operations

6.3.1 Announcing a Tick

RTEMS provides the rtems_clock_tick directive which is called from the user's real-time clock

ISR to inform RTEMS that a tick has elapsed. The tick frequency value, de�ned in microseconds,

Chapter 6: Clock Manager 61

is a con�guration parameter found in the Con�guration Table. RTEMS divides one million mi-

croseconds (one second) by the number of microseconds per tick to determine the number of calls to

the rtems_clock_tick directive per second. The frequency of rtems_clock_tick calls determines

the resolution (granularity) for all time dependent RTEMS actions. For example, calling rtems_

clock_tick ten times per second yields a higher resolution than calling rtems_clock_tick two

times per second. The rtems_clock_tick directive is responsible for maintaining both calendar

time and the dynamic set of timers.

6.3.2 Setting the Time

The rtems_clock_set directive allows a task or an ISR to set the date and time maintained by

RTEMS. If setting the date and time causes any outstanding timers to pass their deadline, then

the expired timers will be �red during the invocation of the rtems_clock_set directive.

6.3.3 Obtaining the Time

The rtems_clock_get directive allows a task or an ISR to obtain the current date and time or

date and time related information. The current date and time can be returned in either native

or UNIX-style format. Additionally, the application can obtain date and time related information

such as the number of seconds since the RTEMS epoch, the number of ticks since the executive was

initialized, and the number of ticks per second. The information returned by the rtems_clock_get

directive is dependent on the option selected by the caller. The following options are available:

� RTEMS_CLOCK_GET_TOD - obtain native style date and time

� RTEMS_CLOCK_GET_TIME_VALUE - obtain UNIX-style date and time

� RTEMS_CLOCK_GET_TICKS_SINCE_BOOT - obtain number of ticks since RTEMS was initialized

� RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH - obtain number of seconds since RTEMS epoch

� RTEMS_CLOCK_GET_TICKS_PER_SECOND - obtain number of clock ticks per second

Calendar time operations will return an error code if invoked before the date and time have been

set.

6.4 Directives

This section details the clock manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

62 RTEMS C User's Guide

6.4.1 CLOCK SET - Set system date and time

CALLING SEQUENCE:

rtems_status_code rtems_clock_set(

rtems_time_of_day *time_buffer

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - date and time set successfully

INVALID_TIME_OF_DAY - invalid time of day

DESCRIPTION:

This directive sets the system date and time. The date, time, and ticks in the time bu�er structure

are all range-checked, and an error is returned if any one is out of its valid range.

NOTES:

Years before 1988 are invalid.

The system date and time are based on the con�gured tick rate (number of microseconds in a tick).

Setting the time forward may cause a higher priority task, blocked waiting on a speci�c time, to

be made ready. In this case, the calling task will be preempted after the next clock tick.

Re-initializing RTEMS causes the system date and time to be reset to an uninitialized state.

Another call to rtems_clock_set is required to re-initialize the system date and time to application

speci�c speci�cations.

Chapter 6: Clock Manager 63

6.4.2 CLOCK GET - Get system date and time information

CALLING SEQUENCE:

rtems_status_code rtems_clock_get(

rtems_clock_get_options option,

void *time_buffer

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - current time obtained successfully

RTEMS_NOT_DEFINED - system date and time is not set

DESCRIPTION:

This directive obtains the system date and time. If the caller is attempting to obtain the date and

time (i.e. option is set to either RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH, RTEMS_CLOCK_GET_TOD,

or RTEMS_CLOCK_GET_TIME_VALUE) and the date and time has not been set with a previous call to

rtems_clock_set, then the RTEMS_NOT_DEFINED status code is returned. The caller can always

obtain the number of ticks per second (option is RTEMS_CLOCK_GET_TICKS_PER_SECOND) and the

number of ticks since the executive was initialized option is RTEMS_CLOCK_GET_TICKS_SINCE_BOOT).

The data type expected for time bu�er is indicated below:

� RTEMS_CLOCK_GET_TOD - (rtems time of day *)

� RTEMS_CLOCK_GET_TIME_VALUE - (rtems clock time value *)

� RTEMS_CLOCK_GET_TICKS_SINCE_BOOT - (rtems interval *)

� RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH - (rtems interval *)

� RTEMS_CLOCK_GET_TICKS_PER_SECOND - (rtems interval *)

NOTES:

This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re-initializing RTEMS causes the

system date and time to be reset to an uninitialized state. Another call to rtems_clock_set is

required to re-initialize the system date and time to application speci�c speci�cations.

64 RTEMS C User's Guide

6.4.3 CLOCK TICK - Announce a clock tick

CALLING SEQUENCE:

rtems_status_code rtems_clock_tick(void);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - current time obtained successfully

DESCRIPTION:

This directive announces to RTEMS that a system clock tick has occurred. The directive is usually

called from the timer interrupt ISR of the local processor. This directive maintains the system date

and time, decrements timers for delayed tasks, timeouts, rate monotonic periods, and implements

timeslicing.

NOTES:

This directive is typically called from an ISR.

The microseconds per tick and ticks per timeslice parameters in the Con�guration Table contain

the number of microseconds per tick and number of ticks per timeslice, respectively.

Chapter 7: Timer Manager 65

7 TimerManager

7.1 Introduction

The timer manager provides support for timer facilities. The directives provided by the timer

manager are:

� rtems_timer_create - Create a timer

� rtems_timer_ident - Get ID of a timer

� rtems_timer_cancel - Cancel a timer

� rtems_timer_delete - Delete a timer

� rtems_timer_fire_after - Fire timer after interval

� rtems_timer_fire_when - Fire timer when speci�ed

� rtems_timer_reset - Reset an interval timer

7.2 Background

7.2.1 Required Support

A clock tick is required to support the functionality provided by this manager.

7.2.2 Timers

A timer is an RTEMS object which allows the application to schedule operations to occur at speci�c

times in the future. User supplied timer service routines are invoked by the rtems_clock_tick

directive when the timer �res. Timer service routines may perform any operations or directives

which normally would be performed by the application code which invoked the rtems_clock_tick

directive.

The timer can be used to implement watchdog routines which only �re to denote that an application

error has occurred. The timer is reset at speci�c points in the application to insure that the

watchdog does not �re. Thus, if the application does not reset the watchdog timer, then the timer

service routine will �re to indicate that the application has failed to reach a reset point. This use

of a timer is sometimes referred to as a "keep alive" or a "deadman" timer.

7.2.3 Timer Service Routines

The timer service routine should adhere to C calling conventions and have a prototype similar to

the following:

66 RTEMS C User's Guide

rtems_timer_service_routine user_routine(

rtems_id timer_id,

void *user_data

);

Where the timer id parameter is the RTEMS object ID of the timer which is being �red and

user data is a pointer to user-de�ned information which may be utilized by the timer service routine.

The argument user data may be NULL.

7.3 Operations

7.3.1 Creating a Timer

The rtems_timer_create directive creates a timer by allocating a Timer Control Block (TMCB),

assigning the timer a user-speci�ed name, and assigning it a timer ID. Newly created timers do not

have a timer service routine associated with them and are not active.

7.3.2 Obtaining Timer IDs

When a timer is created, RTEMS generates a unique timer ID and assigns it to the created timer

until it is deleted. The timer ID may be obtained by either of two methods. First, as the result

of an invocation of the rtems_timer_create directive, the timer ID is stored in a user provided

location. Second, the timer ID may be obtained later using the rtems_timer_ident directive. The

timer ID is used by other directives to manipulate this timer.

7.3.3 Initiating an Interval Timer

The rtems_timer_fire_after directive initiates a timer to �re a user provided timer service

routine after the speci�ed number of clock ticks have elapsed. When the interval has elapsed, the

timer service routine will be invoked from the rtems_clock_tick directive.

7.3.4 Initiating a Time of Day Timer

The rtems_timer_fire_when directive initiates a timer to �re a user provided timer service routine

when the speci�ed time of day has been reached. When the interval has elapsed, the timer service

routine will be invoked from the rtems_clock_tick directive.

7.3.5 Canceling a Timer

The rtems_timer_cancel directive is used to halt the speci�ed timer. Once canceled, the timer

service routine will not �re unless the timer is reinitiated. The timer can be reinitiated using the

rtems_timer_reset, rtems_timer_fire_after, and rtems_timer_fire_when directives.

Chapter 7: Timer Manager 67

7.3.6 Resetting a Timer

The rtems_timer_reset directive is used to restore an interval timer initiated by a previous invo-

cation of rtems_timer_fire_after to its original interval length. If the timer has not been used or

the last usage of this timer was by a rtems_timer_fire_when directive, then an error is returned.

The timer service routine is not changed or �red by this directive.

7.3.7 Deleting a Timer

The rtems_timer_delete directive is used to delete a timer. If the timer is running and has not

expired, the timer is automatically canceled. The timer's control block is returned to the TMCB

free list when it is deleted. A timer can be deleted by a task other than the task which created the

timer. Any subsequent references to the timer's name and ID are invalid.

7.4 Directives

This section details the timer manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

68 RTEMS C User's Guide

7.4.1 TIMER CREATE - Create a timer

CALLING SEQUENCE:

rtems_status_code rtems_timer_create(

rtems_name name,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - timer created successfully

RTEMS_INVALID_NAME - invalid timer name

RTEMS_TOO_MANY - too many timers created

DESCRIPTION:

This directive creates a timer. The assigned timer id is returned in id. This id is used to access

the timer with other timer manager directives. For control and maintenance of the timer, RTEMS

allocates a TMCB from the local TMCB free pool and initializes it.

NOTES:

This directive will not cause the calling task to be preempted.

Chapter 7: Timer Manager 69

7.4.2 TIMER IDENT - Get ID of a timer

CALLING SEQUENCE:

rtems_status_code rtems_timer_ident(

rtems_name name,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - timer identi�ed successfully

RTEMS_INVALID_NAME - timer name not found

DESCRIPTION:

This directive obtains the timer id associated with the timer name to be acquired. If the timer

name is not unique, then the timer id will match one of the timers with that name. However, this

timer id is not guaranteed to correspond to the desired timer. The timer id is used to access this

timer in other timer related directives.

NOTES:

This directive will not cause the running task to be preempted.

70 RTEMS C User's Guide

7.4.3 TIMER CANCEL - Cancel a timer

CALLING SEQUENCE:

rtems_status_code rtems_timer_cancel(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - timer canceled successfully

RTEMS_INVALID_ID - invalid timer id

DESCRIPTION:

This directive cancels the timer id. This timer will be reinitiated by the next invocation of rtems_

timer_reset, rtems_timer_fire_after, or rtems_timer_fire_when with id.

NOTES:

This directive will not cause the running task to be preempted.

Chapter 7: Timer Manager 71

7.4.4 TIMER DELETE - Delete a timer

CALLING SEQUENCE:

rtems_status_code rtems_timer_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - timer deleted successfully

RTEMS_INVALID_ID - invalid timer id

DESCRIPTION:

This directive deletes the timer speci�ed by id. If the timer is running, it is automatically canceled.

The TMCB for the deleted timer is reclaimed by RTEMS.

NOTES:

This directive will not cause the running task to be preempted.

A timer can be deleted by a task other than the task which created the timer.

72 RTEMS C User's Guide

7.4.5 TIMER FIRE AFTER - Fire timer after interval

CALLING SEQUENCE:

rtems_status_code rtems_timer_fire_after(

rtems_id id,

rtems_interval ticks,

rtems_timer_service_routine_entry routine,

void *user_data

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - timer initiated successfully

RTEMS_INVALID_ID - invalid timer id

RTEMS_INVALID_NUMBER - invalid interval

DESCRIPTION:

This directive initiates the timer speci�ed by id. If the timer is running, it is automatically canceled

before being initiated. The timer is scheduled to �re after an interval ticks clock ticks has passed.

When the timer �res, the timer service routine routine will be invoked with the argument user data.

NOTES:

This directive will not cause the running task to be preempted.

Chapter 7: Timer Manager 73

7.4.6 TIMER FIRE WHEN - Fire timer when speci�ed

CALLING SEQUENCE:

rtems_status_code rtems_timer_fire_when(

rtems_id id,

rtems_time_of_day *wall_time,

rtems_timer_service_routine_entry routine,

void *user_data

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - timer initiated successfully

RTEMS_INVALID_ID - invalid timer id

RTEMS_NOT_DEFINED - system date and time is not set

RTEMS_INVALID_CLOCK - invalid time of day

DESCRIPTION:

This directive initiates the timer speci�ed by id. If the timer is running, it is automatically canceled

before being initiated. The timer is scheduled to �re at the time of day speci�ed by wall time. When

the timer �res, the timer service routine routine will be invoked with the argument user data.

NOTES:

This directive will not cause the running task to be preempted.

74 RTEMS C User's Guide

7.4.7 TIMER RESET - Reset an interval timer

CALLING SEQUENCE:

rtems_status_code rtems_timer_reset(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - timer reset successfully

RTEMS_INVALID_ID - invalid timer id

RTEMS_NOT_DEFINED - attempted to reset a when or newly created timer

DESCRIPTION:

This directive resets the timer associated with id. This timer must have been previously initiated

with a rtems_timer_fire_after directive. If active the timer is canceled, after which the timer

is reinitiated using the same interval and timer service routine which the original rtems_timer_

fire_after directive used.

NOTES:

If the timer has not been used or the last usage of this timer was by a rtems_timer_fire_when

directive, then the RTEMS_NOT_DEFINED error is returned.

Restarting a cancelled after timer results in the timer being reinitiated with its previous timer

service routine and interval.

This directive will not cause the running task to be preempted.

Chapter 8: Semaphore Manager 75

8 SemaphoreManager

8.1 Introduction

The semaphore manager utilizes standard Dijkstra counting semaphores to provide synchronization

and mutual exclusion capabilities. The directives provided by the semaphore manager are:

� rtems_semaphore_create - Create a semaphore

� rtems_semaphore_ident - Get ID of a semaphore

� rtems_semaphore_delete - Delete a semaphore

� rtems_semaphore_obtain - Acquire a semaphore

� rtems_semaphore_release - Release a semaphore

8.2 Background

A semaphore can be viewed as a protected variable whose value can be modi�ed only with the

rtems_semaphore_create, rtems_semaphore_obtain, and rtems_semaphore_release directives.

RTEMS supports both binary and counting semaphores. A binary semaphore is restricted to values

of zero or one, while a counting semaphore can assume any non-negative integer value.

A binary semaphore can be used to control access to a single resource. In particular, it can be used

to enforce mutual exclusion for a critical section in user code. In this instance, the semaphore would

be created with an initial count of one to indicate that no task is executing the critical section of

code. Upon entry to the critical section, a task must issue the rtems_semaphore_obtain directive

to prevent other tasks from entering the critical section. Upon exit from the critical section, the task

must issue the rtems_semaphore_release directive to allow another task to execute the critical

section.

A counting semaphore can be used to control access to a pool of two or more resources. For example,

access to three printers could be administered by a semaphore created with an initial count of three.

When a task requires access to one of the printers, it issues the rtems_semaphore_obtain directive

to obtain access to a printer. If a printer is not currently available, the task can wait for a printer

to become available or return immediately. When the task has completed printing, it should issue

the rtems_semaphore_release directive to allow other tasks access to the printer.

Task synchronization may be achieved by creating a semaphore with an initial count of zero. One

task waits for the arrival of another task by issuing a rtems_semaphore_obtain directive when

it reaches a synchronization point. The other task performs a corresponding rtems_semaphore_

release operation when it reaches its synchronization point, thus unblocking the pending task.

76 RTEMS C User's Guide

8.2.1 Nested Resource Access

Deadlock occurs when a task owning a binary semaphore attempts to acquire that same semaphore

and blocks as result. Since the semaphore is allocated to a task, it cannot be deleted. Therefore,

the task that currently holds the semaphore and is also blocked waiting for that semaphore will

never execute again.

RTEMS addresses this problem by allowing the task holding the binary semaphore to obtain the

same binary semaphore multiple times in a nested manner. Each rtems_semaphore_obtain must

be accompanied with a rtems_semaphore_release. The semaphore will only be made available

for acquisition by other tasks when the outermost rtems_semaphore_obtain is matched with a

rtems_semaphore_release.

8.2.2 Priority Inversion

Priority inversion is a form of inde�nite postponement which is common in multitasking, preemptive

executives with shared resources. Priority inversion occurs when a high priority tasks requests access

to shared resource which is currently allocated to low priority task. The high priority task must

block until the low priority task releases the resource. This problem is exacerbated when the low

priority task is prevented from executing by one or more medium priority tasks. Because the low

priority task is not executing, it cannot complete its interaction with the resource and release that

resource. The high priority task is e�ectively prevented from executing by lower priority tasks.

8.2.3 Priority Inheritance

Priority inheritance is an algorithm that calls for the lower priority task holding a resource to have

its priority increased to that of the highest priority task blocked waiting for that resource. Each

time a task blocks attempting to obtain the resource, the task holding the resource may have its

priority increased.

RTEMS supports priority inheritance for local, binary semaphores that use the priority task wait

queue blocking discipline. When a task of higher priority than the task holding the semaphore

blocks, the priority of the task holding the semaphore is increased to that of the blocking task.

When the task holding the task completely releases the binary semaphore (i.e. not for a nested

release), the holder's priority is restored to the value it had before any higher priority was inherited.

The RTEMS implementation of the priority inheritance algorithm takes into account the scenario in

which a task holds more than one binary semaphore. The holding task will execute at the priority

of the higher of the highest ceiling priority or at the priority of the highest priority task blocked

waiting for any of the semaphores the task holds. Only when the task releases ALL of the binary

semaphores it holds will its priority be restored to the normal value.

Chapter 8: Semaphore Manager 77

8.2.4 Priority Ceiling

Priority ceiling is an algorithm that calls for the lower priority task holding a resource to have

its priority increased to that of the highest priority task which will EVER block waiting for that

resource. This algorithm addresses the problem of priority inversion although it avoids the possi-

bility of changing the priority of the task holding the resource multiple times. The priority ceiling

algorithm will only change the priority of the task holding the resource a maximum of one time.

The ceiling priority is set at creation time and must be the priority of the highest priority task

which will ever attempt to acquire that semaphore.

RTEMS supports priority ceiling for local, binary semaphores that use the priority task wait queue

blocking discipline. When a task of lower priority than the ceiling priority successfully obtains the

semaphore, its priority is raised to the ceiling priority. When the task holding the task completely

releases the binary semaphore (i.e. not for a nested release), the holder's priority is restored to the

value it had before any higher priority was put into e�ect.

The need to identify the highest priority task which will attempt to obtain a particular semaphore

can be a di�cult task in a large, complicated system. Although the priority ceiling algorithm is

more e�cient than the priority inheritance algorithm with respect to the maximum number of task

priority changes which may occur while a task holds a particular semaphore, the priority inheritance

algorithm is more forgiving in that it does not require this apriori information.

The RTEMS implementation of the priority ceiling algorithm takes into account the scenario in

which a task holds more than one binary semaphore. The holding task will execute at the priority

of the higher of the highest ceiling priority or at the priority of the highest priority task blocked

waiting for any of the semaphores the task holds. Only when the task releases ALL of the binary

semaphores it holds will its priority be restored to the normal value.

8.2.5 Building a Semaphore's Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The

following table lists the set of valid semaphore attributes:

� RTEMS_FIFO - tasks wait by FIFO (default)

� RTEMS_PRIORITY - tasks wait by priority

� RTEMS_BINARY_SEMAPHORE - restrict values to 0 and 1 (default)

� RTEMS_COUNTING_SEMAPHORE - no restriction on values

� RTEMS_NO_INHERIT_PRIORITY - do not use priority inheritance (default)

� RTEMS_INHERIT_PRIORITY - use priority inheritance

� RTEMS_PRIORITY_CEILING - use priority ceiling

� RTEMS_NO_PRIORITY_CEILING - do not use priority ceiling (default)

� RTEMS_LOCAL - local task (default)

78 RTEMS C User's Guide

� RTEMS_GLOBAL - global task

Attribute values are speci�cally designed to be mutually exclusive, therefore bitwise OR and ad-

dition operations are equivalent as long as each attribute appears exactly once in the component

list. An attribute listed as a default is not required to appear in the attribute list, although it is a

good programming practice to specify default attributes. If all defaults are desired, the attribute

RTEMS_DEFAULT_ATTRIBUTES should be speci�ed on this call.

This example demonstrates the attribute set parameter needed to create a local semaphore with

the task priority waiting queue discipline. The attribute set parameter passed to the rtems_

semaphore_create directive could be either RTEMS_PRIORITY or RTEMS_LOCAL | RTEMS_PRIORITY.

The attribute set parameter can be set to RTEMS_PRIORITY because RTEMS_LOCAL is the default

for all created tasks. If a similar semaphore were to be known globally, then the attribute set

parameter would be RTEMS_GLOBAL | RTEMS_PRIORITY.

8.2.6 Building a SEMAPHORE OBTAIN Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid

options for the rtems_semaphore_obtain directive are listed in the following table:

� RTEMS_WAIT - task will wait for semaphore (default)

� RTEMS_NO_WAIT - task should not wait

Option values are speci�cally designed to be mutually exclusive, therefore bitwise OR and addition

operations are equivalent as long as each attribute appears exactly once in the component list. An

option listed as a default is not required to appear in the list, although it is a good programming

practice to specify default options. If all defaults are desired, the option RTEMS_DEFAULT_OPTIONS

should be speci�ed on this call.

This example demonstrates the option parameter needed to poll for a semaphore. The option

parameter passed to the rtems_semaphore_obtain directive should be RTEMS_NO_WAIT.

8.3 Operations

8.3.1 Creating a Semaphore

The rtems_semaphore_create directive creates a binary or counting semaphore with a user-

speci�ed name as well as an initial count. If a binary semaphore is created with a count of zero (0)

to indicate that it has been allocated, then the task creating the semaphore is considered the current

holder of the semaphore. At create time the method for ordering waiting tasks in the semaphore's

task wait queue (by FIFO or task priority) is speci�ed. Additionally, the priority inheritance or

priority ceiling algorithm may be selected for local, binary semaphores that use the priority task

wait queue blocking discipline. If the priority ceiling algorithm is selected, then the highest priority

Chapter 8: Semaphore Manager 79

of any task which will attempt to obtain this semaphore must be speci�ed. RTEMS allocates a

Semaphore Control Block (SMCB) from the SMCB free list. This data structure is used by RTEMS

to manage the newly created semaphore. Also, a unique semaphore ID is generated and returned

to the calling task.

8.3.2 Obtaining Semaphore IDs

When a semaphore is created, RTEMS generates a unique semaphore ID and assigns it to the created

semaphore until it is deleted. The semaphore ID may be obtained by either of two methods. First,

as the result of an invocation of the rtems_semaphore_create directive, the semaphore ID is stored

in a user provided location. Second, the semaphore ID may be obtained later using the rtems_

semaphore_ident directive. The semaphore ID is used by other semaphore manager directives to

access this semaphore.

8.3.3 Acquiring a Semaphore

The rtems_semaphore_obtain directive is used to acquire the speci�ed semaphore. A simpli�ed

version of the rtems_semaphore_obtain directive can be described as follows:

if semaphore's count is greater than zero

then decrement semaphore's count

else wait for release of semaphore

return SUCCESSFUL

When the semaphore cannot be immediately acquired, one of the following situations applies:

� By default, the calling task will wait forever to acquire the semaphore.

� Specifying RTEMS_NO_WAIT forces an immediate return with an error status code.

� Specifying a timeout limits the interval the task will wait before returning with an error

status code.

If the task waits to acquire the semaphore, then it is placed in the semaphore's task wait queue

in either FIFO or task priority order. If the task blocked waiting for a binary semaphore using

priority inheritance and the task's priority is greater than that of the task currently holding the

semaphore, then the holding task will inherit the priority of the blocking task. All tasks waiting

on a semaphore are returned an error code when the semaphore is deleted.

When a task successfully obtains a semaphore using priority ceiling and the priority ceiling for this

semaphore is greater than that of the holder, then the holder's priority will be elevated.

8.3.4 Releasing a Semaphore

The rtems_semaphore_release directive is used to release the speci�ed semaphore. A simpli�ed

version of the rtems_semaphore_release directive can be described as follows:

80 RTEMS C User's Guide

if no tasks are waiting on this semaphore

then increment semaphore's count

else assign semaphore to a waiting task

return SUCCESSFUL

If this is the outermost release of a binary semaphore that uses priority inheritance or priority

ceiling and the task does not currently hold any other binary semaphores, then the task performing

the rtems_semaphore_release will have its priority restored to its normal value.

8.3.5 Deleting a Semaphore

The rtems_semaphore_delete directive removes a semaphore from the system and frees its control

block. A semaphore can be deleted by any local task that knows the semaphore's ID. As a result

of this directive, all tasks blocked waiting to acquire the semaphore will be readied and returned

a status code which indicates that the semaphore was deleted. Any subsequent references to the

semaphore's name and ID are invalid.

8.4 Directives

This section details the semaphore manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

Chapter 8: Semaphore Manager 81

8.4.1 SEMAPHORE CREATE - Create a semaphore

CALLING SEQUENCE:

rtems_status_code rtems_semaphore_create(

rtems_name name,

rtems_unsigned32 count,

rtems_attribute attribute_set,

rtems_task_priority priority_ceiling,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - semaphore created successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_TOO_MANY - too many semaphores created

RTEMS_NOT_DEFINED - invalid attribute set

RTEMS_INVALID_NUMBER - invalid starting count for binary semaphore

RTEMS_MP_NOT_CONFIGURED - multiprocessing not con�gured

RTEMS_TOO_MANY - too many global objects

DESCRIPTION:

This directive creates a semaphore which resides on the local node. The created semaphore has

the user-de�ned name speci�ed in name and the initial count speci�ed in count. For control and

maintenance of the semaphore, RTEMS allocates and initializes a SMCB. The RTEMS-assigned

semaphore id is returned in id. This semaphore id is used with other semaphore related directives

to access the semaphore.

Specifying PRIORITY in attribute set causes tasks waiting for a semaphore to be serviced according

to task priority. When FIFO is selected, tasks are serviced in First In-First Out order.

NOTES:

This directive will not cause the calling task to be preempted.

The priority inheritance and priority ceiling algorithms are only supported for local, binary

semaphores that use the priority task wait queue blocking discipline.

The following semaphore attribute constants are de�ned by RTEMS:

� RTEMS_FIFO - tasks wait by FIFO (default)

� RTEMS_PRIORITY - tasks wait by priority

� RTEMS_BINARY_SEMAPHORE - restrict values to 0 and 1 (default)

82 RTEMS C User's Guide

� RTEMS_COUNTING_SEMAPHORE - no restriction on values

� RTEMS_NO_INHERIT_PRIORITY - do not use priority inheritance (default)

� RTEMS_INHERIT_PRIORITY - use priority inheritance

� RTEMS_PRIORITY_CEILING - use priority ceiling

� RTEMS_NO_PRIORITY_CEILING - do not use priority ceiling (default)

� RTEMS_LOCAL - local task (default)

� RTEMS_GLOBAL - global task

Semaphores should not be made global unless remote tasks must interact with the created

semaphore. This is to avoid the system overhead incurred by the creation of a global semaphore.

When a global semaphore is created, the semaphore's name and id must be transmitted to every

node in the system for insertion in the local copy of the global object table.

The total number of global objects, including semaphores, is limited by the maximum global objects

�eld in the Con�guration Table.

Chapter 8: Semaphore Manager 83

8.4.2 SEMAPHORE IDENT - Get ID of a semaphore

CALLING SEQUENCE:

rtems_status_code rtems_semaphore_ident(

rtems_name name,

rtems_unsigned32 node,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - semaphore identi�ed successfully

RTEMS_INVALID_NAME - semaphore name not found

RTEMS_INVALID_NODE - invalid node id

DESCRIPTION:

This directive obtains the semaphore id associated with the semaphore name. If the semaphore

name is not unique, then the semaphore id will match one of the semaphores with that name. How-

ever, this semaphore id is not guaranteed to correspond to the desired semaphore. The semaphore

id is used by other semaphore related directives to access the semaphore.

NOTES:

This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched

�rst. All other nodes are searched with the lowest numbered node searched �rst.

If node is a valid node number which does not represent the local node, then only the semaphores

exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the

global object table.

84 RTEMS C User's Guide

8.4.3 SEMAPHORE DELETE - Delete a semaphore

CALLING SEQUENCE:

rtems_status_code rtems_semaphore_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - semaphore deleted successfully

RTEMS_INVALID_ID - invalid semaphore id

RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot delete remote semaphore

RTEMS_RESOURCE_IN_USE - binary semaphore is in use

DESCRIPTION:

This directive deletes the semaphore speci�ed by id. All tasks blocked waiting to acquire the

semaphore will be readied and returned a status code which indicates that the semaphore was

deleted. The SMCB for this semaphore is reclaimed by RTEMS.

NOTES:

The calling task will be preempted if it is enabled by the task's execution mode and a higher priority

local task is waiting on the deleted semaphore. The calling task will NOT be preempted if all of

the tasks that are waiting on the semaphore are remote tasks.

The calling task does not have to be the task that created the semaphore. Any local task that

knows the semaphore id can delete the semaphore.

When a global semaphore is deleted, the semaphore id must be transmitted to every node in the

system for deletion from the local copy of the global object table.

The semaphore must reside on the local node, even if the semaphore was created with the RTEMS_

GLOBAL option.

Proxies, used to represent remote tasks, are reclaimed when the semaphore is deleted.

Chapter 8: Semaphore Manager 85

8.4.4 SEMAPHORE OBTAIN - Acquire a semaphore

CALLING SEQUENCE:

rtems_status_code rtems_semaphore_obtain(

rtems_id id,

rtems_unsigned32 option_set,

rtems_interval timeout

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - semaphore obtained successfully

RTEMS_UNSATISFIED - semaphore not available

RTEMS_TIMEOUT - timed out waiting for semaphore

RTEMS_OBJECT_WAS_DELETED - semaphore deleted while waiting

RTEMS_INVALID_ID - invalid semaphore id

DESCRIPTION:

This directive acquires the semaphore speci�ed by id. The RTEMS_WAIT and RTEMS_NO_WAIT com-

ponents of the options parameter indicate whether the calling task wants to wait for the semaphore

to become available or return immediately if the semaphore is not currently available. With either

RTEMS_WAIT or RTEMS_NO_WAIT, if the current semaphore count is positive, then it is decremented

by one and the semaphore is successfully acquired by returning immediately with a successful return

code.

If the calling task chooses to return immediately and the current semaphore count is zero or

negative, then a status code is returned indicating that the semaphore is not available. If the

calling task chooses to wait for a semaphore and the current semaphore count is zero or negative,

then it is decremented by one and the calling task is placed on the semaphore's wait queue and

blocked. If the semaphore was created with the RTEMS_PRIORITY attribute, then the calling task is

inserted into the queue according to its priority. However, if the semaphore was created with the

RTEMS_FIFO attribute, then the calling task is placed at the rear of the wait queue. If the binary

semaphore was created with the RTEMS_INHERIT_PRIORITY attribute, then the priority of the task

currently holding the binary semaphore is guaranteed to be greater than or equal to that of the

blocking task. If the binary semaphore was created with the RTEMS_PRIORITY_CEILING attribute,

a task successfully obtains the semaphore, and the priority of that task is greater than the ceiling

priority for this semaphore, then the priority of the task obtaining the semaphore is elevated to

that of the ceiling.

The timeout parameter speci�es the maximum interval the calling task is willing to be blocked

waiting for the semaphore. If it is set to RTEMS_NO_TIMEOUT, then the calling task will wait forever.

If the semaphore is available or the RTEMS_NO_WAIT option component is set, then timeout is ignored.

86 RTEMS C User's Guide

NOTES:

The following semaphore acquisition option constants are de�ned by RTEMS:

� RTEMS_WAIT - task will wait for semaphore (default)

� RTEMS_NO_WAIT - task should not wait

Attempting to obtain a global semaphore which does not reside on the local node will generate a

request to the remote node to access the semaphore. If the semaphore is not available and RTEMS_

NO_WAIT was not speci�ed, then the task must be blocked until the semaphore is released. A proxy

is allocated on the remote node to represent the task until the semaphore is released.

A clock tick is required to support the timeout functionality of this directive.

Chapter 8: Semaphore Manager 87

8.4.5 SEMAPHORE RELEASE - Release a semaphore

CALLING SEQUENCE:

rtems_status_code rtems_semaphore_release(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - semaphore released successfully

RTEMS_INVALID_ID - invalid semaphore id

RTEMS_NOT_OWNER_OF_RESOURCE - calling task does not own semaphore

DESCRIPTION:

This directive releases the semaphore speci�ed by id. The semaphore count is incremented by one.

If the count is zero or negative, then the �rst task on this semaphore's wait queue is removed and

unblocked. The unblocked task may preempt the running task if the running task's preemption

mode is enabled and the unblocked task has a higher priority than the running task.

NOTES:

The calling task may be preempted if it causes a higher priority task to be made ready for execution.

Releasing a global semaphore which does not reside on the local node will generate a request telling

the remote node to release the semaphore.

If the task to be unblocked resides on a di�erent node from the semaphore, then the semaphore

allocation is forwarded to the appropriate node, the waiting task is unblocked, and the proxy used

to represent the task is reclaimed.

The outermost release of a local, binary, priority inheritance or priority ceiling semaphore may

result in the calling task having its priority lowered. This will occur if the calling task holds no

other binary semaphores and it has inherited a higher priority.

88 RTEMS C User's Guide

Chapter 9: Message Manager 89

9 MessageManager

9.1 Introduction

The message manager provides communication and synchronization capabilities using RTEMS mes-

sage queues. The directives provided by the message manager are:

� rtems_message_queue_create - Create a queue

� rtems_message_queue_ident - Get ID of a queue

� rtems_message_queue_delete - Delete a queue

� rtems_message_queue_send - Put message at rear of a queue

� rtems_message_queue_urgent - Put message at front of a queue

� rtems_message_queue_broadcast - Broadcast N messages to a queue

� rtems_message_queue_receive - Receive message from a queue

� rtems_message_queue_get_number_pending - Get number of messages pending on a queue

� rtems_message_queue_flush - Flush all messages on a queue

9.2 Background

9.2.1 Messages

A message is a variable length bu�er where information can be stored to support communication.

The length of the message and the information stored in that message are user-de�ned and can be

actual data, pointer(s), or empty.

9.2.2 Message Queues

A message queue permits the passing of messages among tasks and ISRs. Message queues can

contain a variable number of messages. Normally messages are sent to and received from the queue

in FIFO order using the rtems_message_queue_send directive. However, the rtems_message_

queue_urgent directive can be used to place messages at the head of a queue in LIFO order.

Synchronization can be accomplished when a task can wait for a message to arrive at a queue.

Also, a task may poll a queue for the arrival of a message.

The maximum length message which can be sent is set on a per message queue basis.

9.2.3 Building a Message Queue's Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set

of valid message queue attributes is provided in the following table:

90 RTEMS C User's Guide

� RTEMS_FIFO - tasks wait by FIFO (default)

� RTEMS_PRIORITY - tasks wait by priority

� RTEMS_LOCAL - local message queue (default)

� RTEMS_GLOBAL - global message queue

An attribute listed as a default is not required to appear in the attribute list, although it is a

good programming practice to specify default attributes. If all defaults are desired, the attribute

RTEMS_DEFAULT_ATTRIBUTES should be speci�ed on this call.

This example demonstrates the attribute set parameter needed to create a local message queue with

the task priority waiting queue discipline. The attribute set parameter to the rtems_message_

queue_create directive could be either RTEMS_PRIORITY or RTEMS_LOCAL | RTEMS_PRIORITY. The

attribute set parameter can be set to RTEMS_PRIORITY because RTEMS_LOCAL is the default for all

created message queues. If a similar message queue were to be known globally, then the attribute set

parameter would be RTEMS_GLOBAL | RTEMS_PRIORITY.

9.2.4 Building a MESSAGE QUEUE RECEIVE Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid

options for the rtems_message_queue_receive directive are listed in the following table:

� RTEMS_WAIT - task will wait for a message (default)

� RTEMS_NO_WAIT - task should not wait

An option listed as a default is not required to appear in the option OR list, although it is a good

programming practice to specify default options. If all defaults are desired, the option RTEMS_

DEFAULT_OPTIONS should be speci�ed on this call.

This example demonstrates the option parameter needed to poll for a message to arrive. The option

parameter passed to the rtems_message_queue_receive directive should be RTEMS_NO_WAIT.

9.3 Operations

9.3.1 Creating a Message Queue

The rtems_message_queue_create directive creates a message queue with the user-de�ned name.

The user speci�es the maximum message size and maximum number of messages which can be

placed in the message queue at one time. The user may select FIFO or task priority as the method

for placing waiting tasks in the task wait queue. RTEMS allocates a Queue Control Block (QCB)

from the QCB free list to maintain the newly created queue as well as memory for the message

bu�er pool associated with this message queue. RTEMS also generates a message queue ID which

is returned to the calling task.

Chapter 9: Message Manager 91

For GLOBAL message queues, the maximum message size is e�ectively limited to the longest

message which the MPCI is capable of transmitting.

9.3.2 Obtaining Message Queue IDs

When a message queue is created, RTEMS generates a unique message queue ID. The message

queue ID may be obtained by either of two methods. First, as the result of an invocation of

the rtems_message_queue_create directive, the queue ID is stored in a user provided location.

Second, the queue ID may be obtained later using the rtems_message_queue_ident directive. The

queue ID is used by other message manager directives to access this message queue.

9.3.3 Receiving a Message

The rtems_message_queue_receive directive attempts to retrieve a message from the speci�ed

message queue. If at least one message is in the queue, then the message is removed from the

queue, copied to the caller's message bu�er, and returned immediately along with the length of the

message. When messages are unavailable, one of the following situations applies:

� By default, the calling task will wait forever for the message to arrive.

� Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

� Specifying a timeout limits the period the task will wait before returning with an error

status.

If the task waits for a message, then it is placed in the message queue's task wait queue in either

FIFO or task priority order. All tasks waiting on a message queue are returned an error code when

the message queue is deleted.

9.3.4 Sending a Message

Messages can be sent to a queue with the rtems_message_queue_send and rtems_message_queue_

urgent directives. These directives work identically when tasks are waiting to receive a message.

A task is removed from the task waiting queue, unblocked, and the message is copied to a waiting

task's message bu�er.

When no tasks are waiting at the queue, rtems_message_queue_send places the message at the

rear of the message queue, while rtems_message_queue_urgent places the message at the front of

the queue. The message is copied to a message bu�er from this message queue's bu�er pool and

then placed in the message queue. Neither directive can successfully send a message to a message

queue which has a full queue of pending messages.

9.3.5 Broadcasting a Message

The rtems_message_queue_broadcast directive sends the same message to every task waiting on

the speci�ed message queue as an atomic operation. The message is copied to each waiting task's

92 RTEMS C User's Guide

message bu�er and each task is unblocked. The number of tasks which were unblocked is returned

to the caller.

9.3.6 Deleting a Message Queue

The rtems_message_queue_delete directive removes a message queue from the system and frees

its control block as well as the memory associated with this message queue's message bu�er pool.

A message queue can be deleted by any local task that knows the message queue's ID. As a result of

this directive, all tasks blocked waiting to receive a message from the message queue will be readied

and returned a status code which indicates that the message queue was deleted. Any subsequent

references to the message queue's name and ID are invalid. Any messages waiting at the message

queue are also deleted and deallocated.

9.4 Directives

This section details the message manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

Chapter 9: Message Manager 93

9.4.1 MESSAGE QUEUE CREATE - Create a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_create(

rtems_name name,

rtems_unsigned32 count,

rtems_unsigned32 max_message_size,

rtems_attribute attribute_set,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - queue created successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_INVALID_NUMBER - invalid message count

RTEMS_INVALID_SIZE - invalid message size

RTEMS_TOO_MANY - too many queues created

RTEMS_MP_NOT_CONFIGURED - multiprocessing not con�gured

RTEMS_TOO_MANY - too many global objects

DESCRIPTION:

This directive creates a message queue which resides on the local node with the user-de�ned name

speci�ed in name. For control and maintenance of the queue, RTEMS allocates and initializes a

QCB. Memory is allocated from the RTEMS Workspace for the speci�ed count of messages, each of

max message size bytes in length. The RTEMS-assigned queue id, returned in id, is used to access

the message queue.

Specifying RTEMS_PRIORITY in attribute set causes tasks waiting for a message to be serviced ac-

cording to task priority. When RTEMS_FIFO is speci�ed, waiting tasks are serviced in First In-First

Out order.

NOTES:

This directive will not cause the calling task to be preempted.

The following message queue attribute constants are de�ned by RTEMS:

� RTEMS_FIFO - tasks wait by FIFO (default)

� RTEMS_PRIORITY - tasks wait by priority

� RTEMS_LOCAL - local message queue (default)

� RTEMS_GLOBAL - global message queue

94 RTEMS C User's Guide

Message queues should not be made global unless remote tasks must interact with the created

message queue. This is to avoid the system overhead incurred by the creation of a global mes-

sage queue. When a global message queue is created, the message queue's name and id must be

transmitted to every node in the system for insertion in the local copy of the global object table.

For GLOBAL message queues, the maximum message size is e�ectively limited to the longest

message which the MPCI is capable of transmitting.

The total number of global objects, including message queues, is limited by the maxi-

mum global objects �eld in the con�guration table.

Chapter 9: Message Manager 95

9.4.2 MESSAGE QUEUE IDENT - Get ID of a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_ident(

rtems_name name,

rtems_unsigned32 node,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - queue identi�ed successfully

RTEMS_INVALID_NAME - queue name not found

RTEMS_INVALID_NODE - invalid node id

DESCRIPTION:

This directive obtains the queue id associated with the queue name speci�ed in name. If the queue

name is not unique, then the queue id will match one of the queues with that name. However, this

queue id is not guaranteed to correspond to the desired queue. The queue id is used with other

message related directives to access the message queue.

NOTES:

This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched

�rst. All other nodes are searched with the lowest numbered node searched �rst.

If node is a valid node number which does not represent the local node, then only the message

queues exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the

global object table.

96 RTEMS C User's Guide

9.4.3 MESSAGE QUEUE DELETE - Delete a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - queue deleted successfully

RTEMS_INVALID_ID - invalid queue id

RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot delete remote queue

DESCRIPTION:

This directive deletes the message queue speci�ed by id. As a result of this directive, all tasks

blocked waiting to receive a message from this queue will be readied and returned a status code

which indicates that the message queue was deleted. If no tasks are waiting, but the queue contains

messages, then RTEMS returns these message bu�ers back to the system message bu�er pool. The

QCB for this queue as well as the memory for the message bu�ers is reclaimed by RTEMS.

NOTES:

The calling task will be preempted if its preemption mode is enabled and one or more local tasks

with a higher priority than the calling task are waiting on the deleted queue. The calling task will

NOT be preempted if the tasks that are waiting are remote tasks.

The calling task does not have to be the task that created the queue, although the task and queue

must reside on the same node.

When the queue is deleted, any messages in the queue are returned to the free message bu�er pool.

Any information stored in those messages is lost.

When a global message queue is deleted, the message queue id must be transmitted to every node

in the system for deletion from the local copy of the global object table.

Proxies, used to represent remote tasks, are reclaimed when the message queue is deleted.

Chapter 9: Message Manager 97

9.4.4 MESSAGE QUEUE SEND - Put message at rear of a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_send(

rtems_id id,

void *buffer,

rtems_unsigned32 size

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - message sent successfully

RTEMS_INVALID_ID - invalid queue id

RTEMS_INVALID_SIZE - invalid message size

RTEMS_UNSATISFIED - out of message bu�ers

RTEMS_TOO_MANY - queue's limit has been reached

DESCRIPTION:

This directive sends the message bu�er of size bytes in length to the queue speci�ed by id. If a

task is waiting at the queue, then the message is copied to the waiting task's bu�er and the task

is unblocked. If no tasks are waiting at the queue, then the message is copied to a message bu�er

which is obtained from this message queue's message bu�er pool. The message bu�er is then placed

at the rear of the queue.

NOTES:

The calling task will be preempted if it has preemption enabled and a higher priority task is

unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the local node will generate

a request to the remote node to post the message on the speci�ed message queue.

If the task to be unblocked resides on a di�erent node from the message queue, then the message is

forwarded to the appropriate node, the waiting task is unblocked, and the proxy used to represent

the task is reclaimed.

98 RTEMS C User's Guide

9.4.5 MESSAGE QUEUE URGENT - Put message at front of a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_urgent(

rtems_id id,

void *buffer,

rtems_unsigned32 size

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - message sent successfully

RTEMS_INVALID_ID - invalid queue id

RTEMS_INVALID_SIZE - invalid message size

RTEMS_UNSATISFIED - out of message bu�ers

RTEMS_TOO_MANY - queue's limit has been reached

DESCRIPTION:

This directive sends the message bu�er of size bytes in length to the queue speci�ed by id. If a task

is waiting on the queue, then the message is copied to the task's bu�er and the task is unblocked. If

no tasks are waiting on the queue, then the message is copied to a message bu�er which is obtained

from this message queue's message bu�er pool. The message bu�er is then placed at the front of

the queue.

NOTES:

The calling task will be preempted if it has preemption enabled and a higher priority task is

unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the local node will generate

a request telling the remote node to post the message on the speci�ed message queue.

If the task to be unblocked resides on a di�erent node from the message queue, then the message is

forwarded to the appropriate node, the waiting task is unblocked, and the proxy used to represent

the task is reclaimed.

Chapter 9: Message Manager 99

9.4.6 MESSAGE QUEUE BROADCAST - Broadcast N messages to a
queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_broadcast(

rtems_id id,

void *buffer,

rtems_unsigned32 size,

rtems_unsigned32 *count

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - message broadcasted successfully

RTEMS_INVALID_ID - invalid queue id

RTEMS_INVALID_SIZE - invalid message size

DESCRIPTION:

This directive causes all tasks that are waiting at the queue speci�ed by id to be unblocked and

sent the message contained in bu�er. Before a task is unblocked, the message bu�er of size byes in

length is copied to that task's message bu�er. The number of tasks that were unblocked is returned

in count.

NOTES:

The calling task will be preempted if it has preemption enabled and a higher priority task is

unblocked as the result of this directive.

The execution time of this directive is directly related to the number of tasks waiting on the message

queue, although it is more e�cient than the equivalent number of invocations of rtems_message_

queue_send.

Broadcasting a message to a global message queue which does not reside on the local node will

generate a request telling the remote node to broadcast the message to the speci�ed message queue.

When a task is unblocked which resides on a di�erent node from the message queue, a copy of the

message is forwarded to the appropriate node, the waiting task is unblocked, and the proxy used

to represent the task is reclaimed.

100 RTEMS C User's Guide

9.4.7 MESSAGE QUEUE RECEIVE - Receive message from a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_receive(

rtems_id id,

void *buffer,

rtems_unsigned32 *size,

rtems_unsigned32 option_set,

rtems_interval timeout

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - message received successfully

RTEMS_INVALID_ID - invalid queue id

RTEMS_UNSATISFIED - queue is empty

RTEMS_TIMEOUT - timed out waiting for message

RTEMS_OBJECT_WAS_DELETED - queue deleted while waiting

DESCRIPTION:

This directive receives a message from the message queue speci�ed in id. The RTEMS_WAIT and

RTEMS_NO_WAIT options of the options parameter allow the calling task to specify whether to wait

for a message to become available or return immediately. For either option, if there is at least one

message in the queue, then it is copied to bu�er, size is set to return the length of the message in

bytes, and this directive returns immediately with a successful return code.

If the calling task chooses to return immediately and the queue is empty, then a status code

indicating this condition is returned. If the calling task chooses to wait at the message queue and

the queue is empty, then the calling task is placed on the message wait queue and blocked. If the

queue was created with the RTEMS_PRIORITY option speci�ed, then the calling task is inserted into

the wait queue according to its priority. But, if the queue was created with the RTEMS_FIFO option

speci�ed, then the calling task is placed at the rear of the wait queue.

A task choosing to wait at the queue can optionally specify a timeout value in the timeout param-

eter. The timeout parameter speci�es the maximum interval to wait before the calling task desires

to be unblocked. If it is set to RTEMS_NO_TIMEOUT, then the calling task will wait forever.

NOTES:

The following message receive option constants are de�ned by RTEMS:

� RTEMS_WAIT - task will wait for a message (default)

� RTEMS_NO_WAIT - task should not wait

Chapter 9: Message Manager 101

Receiving a message from a global message queue which does not reside on the local node will

generate a request to the remote node to obtain a message from the speci�ed message queue. If no

message is available and RTEMS_WAIT was speci�ed, then the task must be blocked until a message

is posted. A proxy is allocated on the remote node to represent the task until the message is posted.

A clock tick is required to support the timeout functionality of this directive.

102 RTEMS C User's Guide

9.4.8 MESSAGE QUEUE GET NUMBER PENDING - Get number of
messages pending on a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_get_number_pending(

rtems_id id,

rtems_unsigned32 *count

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - number of messages pending returned successfully

RTEMS_INVALID_ID - invalid queue id

DESCRIPTION:

This directive returns the number of messages pending on this message queue in count. If no

messages are present on the queue, count is set to zero.

NOTES:

Getting the number of pending messages on a global message queue which does not reside on the

local node will generate a request to the remote node to actually obtain the pending message count

for the speci�ed message queue.

Chapter 9: Message Manager 103

9.4.9 MESSAGE QUEUE FLUSH - Flush all messages on a queue

CALLING SEQUENCE:

rtems_status_code rtems_message_queue_flush(

rtems_id id,

rtems_unsigned32 *count

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - message queue
ushed successfully

RTEMS_INVALID_ID - invalid queue id

DESCRIPTION:

This directive removes all pending messages from the speci�ed queue id. The number of messages

removed is returned in count. If no messages are present on the queue, count is set to zero.

NOTES:

Flushing all messages on a global message queue which does not reside on the local node will

generate a request to the remote node to actually
ush the speci�ed message queue.

104 RTEMS C User's Guide

Chapter 10: Event Manager 105

10 EventManager

10.1 Introduction

The event manager provides a high performance method of intertask communication and synchro-

nization. The directives provided by the event manager are:

� rtems_event_send - Send event set to a task

� rtems_event_receive - Receive event condition

10.2 Background

10.2.1 Event Sets

An event
ag is used by a task (or ISR) to inform another task of the occurrence of a signi�cant

situation. Thirty-two event
ags are associated with each task. A collection of one or more event

ags is referred to as an event set. The application developer should remember the following key

characteristics of event operations when utilizing the event manager:

� Events provide a simple synchronization facility.

� Events are aimed at tasks.

� Tasks can wait on more than one event simultaneously.

� Events are independent of one another.

� Events do not hold or transport data.

� Events are not queued. In other words, if an event is sent more than once to a task before

being received, the second and subsequent send operations to that same task have no e�ect.

An event set is posted when it is directed (or sent) to a task. A pending event is an event that

has been posted but not received. An event condition is used to specify the events which the

task desires to receive and the algorithm which will be used to determine when the request is

satis�ed. An event condition is satis�ed based upon one of two algorithms which are selected by

the user. The RTEMS_EVENT_ANY algorithm states that an event condition is satis�ed when at least

a single requested event is posted. The RTEMS_EVENT_ALL algorithm states that an event condition

is satis�ed when every requested event is posted.

10.2.2 Building an Event Set or Condition

An event set or condition is built by a bitwise OR of the desired events. The set of valid events

is RTEMS_EVENT_0 through RTEMS_EVENT_31. If an event is not explicitly speci�ed in the set or

condition, then it is not present. Events are speci�cally designed to be mutually exclusive, therefore

106 RTEMS C User's Guide

bitwise OR and addition operations are equivalent as long as each event appears exactly once in

the event set list.

For example, when sending the event set consisting of RTEMS_EVENT_6, RTEMS_EVENT_15, and

RTEMS_EVENT_31, the event parameter to the rtems_event_send directive should be RTEMS_EVENT_

6 | RTEMS_EVENT_15 | RTEMS_EVENT_31.

10.2.3 Building an EVENT RECEIVE Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid

options for the rtems_event_receive directive are listed in the following table:

� RTEMS_WAIT - task will wait for event (default)

� RTEMS_NO_WAIT - task should not wait

� RTEMS_EVENT_ALL - return after all events (default)

� RTEMS_EVENT_ANY - return after any events

Option values are speci�cally designed to be mutually exclusive, therefore bitwise OR and addition

operations are equivalent as long as each option appears exactly once in the component list. An op-

tion listed as a default is not required to appear in the option list, although it is a good programming

practice to specify default options. If all defaults are desired, the option RTEMS_DEFAULT_OPTIONS

should be speci�ed on this call.

This example demonstrates the option parameter needed to poll for all events in a particular event

condition to arrive. The option parameter passed to the rtems_event_receive directive should be

either RTEMS_EVENT_ALL | RTEMS_NO_WAIT or RTEMS_NO_WAIT. The option parameter can be set

to RTEMS_NO_WAIT because RTEMS_EVENT_ALL is the default condition for rtems_event_receive.

10.3 Operations

10.3.1 Sending an Event Set

The rtems_event_send directive allows a task (or an ISR) to direct an event set to a target task.

Based upon the state of the target task, one of the following situations applies:

� Target Task is Blocked Waiting for Events

- If the waiting task's input event condition is satis�ed, then the task is made ready

for execution.

- If the waiting task's input event condition is not satis�ed, then the event set is

posted but left pending and the task remains blocked.

� Target Task is Not Waiting for Events

- The event set is posted and left pending.

Chapter 10: Event Manager 107

10.3.2 Receiving an Event Set

The rtems_event_receive directive is used by tasks to accept a speci�c input event condition.

The task also speci�es whether the request is satis�ed when all requested events are available or

any single requested event is available. If the requested event condition is satis�ed by pending

events, then a successful return code and the satisfying event set are returned immediately. If the

condition is not satis�ed, then one of the following situations applies:

� By default, the calling task will wait forever for the event condition to be satis�ed.

� Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

� Specifying a timeout limits the period the task will wait before returning with an error

status code.

10.3.3 Determining the Pending Event Set

A task can determine the pending event set by calling the rtems_event_receive directive with a

value of RTEMS_PENDING_EVENTS for the input event condition. The pending events are returned

to the calling task but the event set is left unaltered.

10.3.4 Receiving all Pending Events

A task can receive all of the currently pending events by calling the rtems_event_receive directive

with a value of RTEMS_ALL_EVENTS for the input event condition and RTEMS_NO_WAIT | RTEMS_

EVENT_ANY for the option set. The pending events are returned to the calling task and the event

set is cleared. If no events are pending then the RTEMS_UNSATISFIED status code will be returned.

10.4 Directives

This section details the event manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

108 RTEMS C User's Guide

10.4.1 EVENT SEND - Send event set to a task

CALLING SEQUENCE:

rtems_status_code rtems_event_send (

rtems_id id,

rtems_event_set event_in

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - event set sent successfully

RTEMS_INVALID_ID - invalid task id

DESCRIPTION:

This directive sends an event set, event in, to the task speci�ed by id. If a blocked task's input

event condition is satis�ed by this directive, then it will be made ready. If its input event condition

is not satis�ed, then the events satis�ed are updated and the events not satis�ed are left pending.

If the task speci�ed by id is not blocked waiting for events, then the events sent are left pending.

NOTES:

Specifying RTEMS_SELF for id results in the event set being sent to the calling task.

Identical events sent to a task are not queued. In other words, the second, and subsequent, posting

of an event to a task before it can perform an rtems_event_receive has no e�ect.

The calling task will be preempted if it has preemption enabled and a higher priority task is

unblocked as the result of this directive.

Sending an event set to a global task which does not reside on the local node will generate a request

telling the remote node to send the event set to the appropriate task.

Chapter 10: Event Manager 109

10.4.2 EVENT RECEIVE - Receive event condition

CALLING SEQUENCE:

rtems_status_code rtems_event_receive (

rtems_event_set event_in,

rtems_option option_set,

rtems_interval ticks,

rtems_event_set *event_out

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - event received successfully

RTEMS_UNSATISFIED - input event not satis�ed (RTEMS_NO_WAIT)

RTEMS_TIMEOUT - timed out waiting for event

DESCRIPTION:

This directive attempts to receive the event condition speci�ed in event in. If event in is set

to RTEMS_PENDING_EVENTS, then the current pending events are returned in event out and left

pending. The RTEMS_WAIT and RTEMS_NO_WAIT options in the option set parameter are used to

specify whether or not the task is willing to wait for the event condition to be satis�ed. RTEMS_

EVENT_ANY and RTEMS_EVENT_ALL are used in the option set parameter are used to specify whether

a single event or the complete event set is necessary to satisfy the event condition. The event out

parameter is returned to the calling task with the value that corresponds to the events in event in

that were satis�ed.

If pending events satisfy the event condition, then event out is set to the satis�ed events and the

pending events in the event condition are cleared. If the event condition is not satis�ed and RTEMS_

NO_WAIT is speci�ed, then event out is set to the currently satis�ed events. If the calling task

chooses to wait, then it will block waiting for the event condition.

If the calling task must wait for the event condition to be satis�ed, then the timeout parameter is

used to specify the maximum interval to wait. If it is set to RTEMS_NO_TIMEOUT, then the calling

task will wait forever.

NOTES:

This directive only a�ects the events speci�ed in event in. Any pending events that do not corre-

spond to any of the events speci�ed in event in will be left pending.

The following event receive option constants are de�ned by RTEMS:

� RTEMS_WAIT task will wait for event (default)

110 RTEMS C User's Guide

� RTEMS_NO_WAIT task should not wait

� RTEMS_EVENT_ALL return after all events (default)

� RTEMS_EVENT_ANY return after any events

A clock tick is required to support the functionality of this directive.

Chapter 11: Signal Manager 111

11 SignalManager

11.1 Introduction

The signal manager provides the capabilities required for asynchronous communication. The direc-

tives provided by the signal manager are:

� rtems_signal_catch - Establish an ASR

� rtems_signal_send - Send signal set to a task

11.2 Background

11.2.1 Signal Manager De�nitions

The signal manager allows a task to optionally de�ne an asynchronous signal routine (ASR). An

ASR is to a task what an ISR is to an application's set of tasks. When the processor is interrupted,

the execution of an application is also interrupted and an ISR is given control. Similarly, when a

signal is sent to a task, that task's execution path will be "interrupted" by the ASR. Sending a

signal to a task has no e�ect on the receiving task's current execution state.

A signal
ag is used by a task (or ISR) to inform another task of the occurrence of a signi�cant

situation. Thirty-two signal
ags are associated with each task. A collection of one or more signals

is referred to as a signal set. A signal set is posted when it is directed (or sent) to a task. A pending

signal is a signal that has been sent to a task with a valid ASR, but has not been processed by that

task's ASR.

11.2.2 A Comparison of ASRs and ISRs

The format of an ASR is similar to that of an ISR with the following exceptions:

� ISRs are scheduled by the processor hardware. ASRs are scheduled by RTEMS.

� ISRs do not execute in the context of a task and may invoke only a subset of directives.

ASRs execute in the context of a task and may execute any directive.

� When an ISR is invoked, it is passed the vector number as its argument. When an ASR is

invoked, it is passed the signal set as its argument.

� An ASR has a task mode which can be di�erent from that of the task. An ISR does not

execute as a task and, as a result, does not have a task mode.

11.2.3 Building a Signal Set

A signal set is built by a bitwise OR of the desired signals. The set of valid signals is RTEMS_SIGNAL_

0 through RTEMS_SIGNAL_31. If a signal is not explicitly speci�ed in the signal set, then it is not

112 RTEMS C User's Guide

present. Signal values are speci�cally designed to be mutually exclusive, therefore bitwise OR and

addition operations are equivalent as long as each signal appears exactly once in the component

list.

This example demonstrates the signal parameter used when sending the signal set consisting of

RTEMS_SIGNAL_6, RTEMS_SIGNAL_15, and RTEMS_SIGNAL_31. The signal parameter provided to the

rtems_signal_send directive should be RTEMS_SIGNAL_6 | RTEMS_SIGNAL_15 | RTEMS_SIGNAL_

31.

11.2.4 Building an ASR's Mode

In general, an ASR's mode is built by a bitwise OR of the desired mode components. The set of

valid mode components is the same as those allowed with the task create and task mode directives.

A complete list of mode options is provided in the following table:

� RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption

� RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption

� RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing

� RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing

� RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing

� RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing

� RTEMS_INTERRUPT_LEVEL(0) is masked by RTEMS_INTERRUPT_MASK and enables all inter-

rupts

� RTEMS_INTERRUPT_LEVEL(n) is masked by RTEMS_INTERRUPT_MASK and sets interrupts level

n

Mode values are speci�cally designed to be mutually exclusive, therefore bitwise OR and addition

operations are equivalent as long as each mode appears exactly once in the component list. A

mode component listed as a default is not required to appear in the mode list, although it is a

good programming practice to specify default components. If all defaults are desired, the mode

DEFAULT MODES should be speci�ed on this call.

This example demonstrates the mode parameter used with the rtems_signal_catch to establish

an ASR which executes at interrupt level three and is non-preemptible. The mode should be set

to RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT to indicate the desired processor mode and

interrupt level.

11.3 Operations

Chapter 11: Signal Manager 113

11.3.1 Establishing an ASR

The rtems_signal_catch directive establishes an ASR for the calling task. The address of the ASR

and its execution mode are speci�ed to this directive. The ASR's mode is distinct from the task's

mode. For example, the task may allow preemption, while that task's ASR may have preemption

disabled. Until a task calls rtems_signal_catch the �rst time, its ASR is invalid, and no signal

sets can be sent to the task.

A task may invalidate its ASR and discard all pending signals by calling rtems_signal_catchwith

a value of NULL for the ASR's address. When a task's ASR is invalid, new signal sets sent to this

task are discarded.

A task may disable ASR processing (RTEMS_NO_ASR) via the task mode directive. When a task's

ASR is disabled, the signals sent to it are left pending to be processed later when the ASR is

enabled.

Any directive that can be called from a task can also be called from an ASR. A task is only allowed

one active ASR. Thus, each call to rtems_signal_catch replaces the previous one.

Normally, signal processing is disabled for the ASR's execution mode, but if signal processing is

enabled for the ASR, the ASR must be reentrant.

11.3.2 Sending a Signal Set

The rtems_signal_send directive allows both tasks and ISRs to send signals to a target task. The

target task and a set of signals are speci�ed to the rtems_signal_send directive. The sending of

a signal to a task has no e�ect on the execution state of that task. If the task is not the currently

running task, then the signals are left pending and processed by the task's ASR the next time the

task is dispatched to run. The ASR is executed immediately before the task is dispatched. If the

currently running task sends a signal to itself or is sent a signal from an ISR, its ASR is immediately

dispatched to run provided signal processing is enabled.

If an ASR with signals enabled is preempted by another task or an ISR and a new signal set is

sent, then a new copy of the ASR will be invoked, nesting the preempted ASR. Upon completion

of processing the new signal set, control will return to the preempted ASR. In this situation, the

ASR must be reentrant.

Like events, identical signals sent to a task are not queued. In other words, sending the same signal

multiple times to a task (without any intermediate signal processing occurring for the task), has

the same result as sending that signal to that task once.

11.3.3 Processing an ASR

Asynchronous signals were designed to provide the capability to generate software interrupts. The

processing of software interrupts parallels that of hardware interrupts. As a result, the di�erences

114 RTEMS C User's Guide

between the formats of ASRs and ISRs is limited to the meaning of the single argument passed to

an ASR. The ASR should have the following calling sequence and adhere to C calling conventions:

rtems_asr user_routine(

rtems_signal_set signals

);

When the ASR returns to RTEMS the mode and execution path of the interrupted task (or ASR)

is restored to the context prior to entering the ASR.

11.4 Directives

This section details the signal manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

Chapter 11: Signal Manager 115

11.4.1 SIGNAL CATCH - Establish an ASR

CALLING SEQUENCE:

rtems_status_code rtems_signal_catch(

rtems_asr_entry asr_handler,

rtems_mode mode

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - always successful

DESCRIPTION:

This directive establishes an asynchronous signal routine (ASR) for the calling task. The asr handler

parameter speci�es the entry point of the ASR. If asr handler is NULL, the ASR for the calling

task is invalidated and all pending signals are cleared. Any signals sent to a task with an invalid

ASR are discarded. The mode parameter speci�es the execution mode for the ASR. This execution

mode supersedes the task's execution mode while the ASR is executing.

NOTES:

This directive will not cause the calling task to be preempted.

The following task mode constants are de�ned by RTEMS:

� RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption

� RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption

� RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing

� RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing

� RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing

� RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing

� RTEMS_INTERRUPT_LEVEL(0) is masked by RTEMS_INTERRUPT_MASK and enables all inter-

rupts

� RTEMS_INTERRUPT_LEVEL(n) is masked by RTEMS_INTERRUPT_MASK and sets interrupts level

n

116 RTEMS C User's Guide

11.4.2 SIGNAL SEND - Send signal set to a task

CALLING SEQUENCE:

rtems_status_code rtems_signal_send(

rtems_id id,

rtems_signal_set signal_set

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - signal sent successfully

RTEMS_INVALID_ID - task id invalid

RTEMS_NOT_DEFINED - ASR invalid

DESCRIPTION:

This directive sends a signal set to the task speci�ed in id. The signal set parameter contains the

signal set to be sent to the task.

If a caller sends a signal set to a task with an invalid ASR, then an error code is returned to the

caller. If a caller sends a signal set to a task whose ASR is valid but disabled, then the signal set

will be caught and left pending for the ASR to process when it is enabled. If a caller sends a signal

set to a task with an ASR that is both valid and enabled, then the signal set is caught and the

ASR will execute the next time the task is dispatched to run.

NOTES:

Sending a signal set to a task has no e�ect on that task's state. If a signal set is sent to a blocked

task, then the task will remain blocked and the signals will be processed when the task becomes

the running task.

Sending a signal set to a global task which does not reside on the local node will generate a request

telling the remote node to send the signal set to the speci�ed task.

Chapter 12: Partition Manager 117

12 PartitionManager

12.1 Introduction

The partition manager provides facilities to dynamically allocate memory in �xed-size units. The

directives provided by the partition manager are:

� rtems_partition_create - Create a partition

� rtems_partition_ident - Get ID of a partition

� rtems_partition_delete - Delete a partition

� rtems_partition_get_buffer - Get bu�er from a partition

� rtems_partition_return_buffer - Return bu�er to a partition

12.2 Background

12.2.1 Partition Manager De�nitions

A partition is a physically contiguous memory area divided into �xed-size bu�ers that can be

dynamically allocated and deallocated.

Partitions are managed and maintained as a list of bu�ers. Bu�ers are obtained from the front of

the partition's free bu�er chain and returned to the rear of the same chain. When a bu�er is on the

free bu�er chain, RTEMS uses eight bytes of each bu�er as the free bu�er chain. When a bu�er

is allocated, the entire bu�er is available for application use. Therefore, modifying memory that

is outside of an allocated bu�er could destroy the free bu�er chain or the contents of an adjacent

allocated bu�er.

12.2.2 Building a Partition's Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set

of valid partition attributes is provided in the following table:

� RTEMS_LOCAL - local task (default)

� RTEMS_GLOBAL - global task

Attribute values are speci�cally designed to be mutually exclusive, therefore bitwise OR and ad-

dition operations are equivalent as long as each attribute appears exactly once in the component

list. An attribute listed as a default is not required to appear in the attribute list, although it is a

good programming practice to specify default attributes. If all defaults are desired, the attribute

RTEMS_DEFAULT_ATTRIBUTES should be speci�ed on this call. The attribute set parameter should

be RTEMS_GLOBAL to indicate that the partition is to be known globally.

118 RTEMS C User's Guide

12.3 Operations

12.3.1 Creating a Partition

The rtems_partition_create directive creates a partition with a user-speci�ed name. The par-

tition's name, starting address, length and bu�er size are all speci�ed to the rtems_partition_

create directive. RTEMS allocates a Partition Control Block (PTCB) from the PTCB free list.

This data structure is used by RTEMS to manage the newly created partition. The number of

bu�ers in the partition is calculated based upon the speci�ed partition length and bu�er size, and

returned to the calling task along with a unique partition ID.

12.3.2 Obtaining Partition IDs

When a partition is created, RTEMS generates a unique partition ID and assigned it to the created

partition until it is deleted. The partition ID may be obtained by either of two methods. First,

as the result of an invocation of the rtems_partition_create directive, the partition ID is stored

in a user provided location. Second, the partition ID may be obtained later using the rtems_

partition_ident directive. The partition ID is used by other partition manager directives to

access this partition.

12.3.3 Acquiring a Bu�er

A bu�er can be obtained by calling the rtems_partition_get_buffer directive. If a bu�er is

available, then it is returned immediately with a successful return code. Otherwise, an unsuccessful

return code is returned immediately to the caller. Tasks cannot block to wait for a bu�er to become

available.

12.3.4 Releasing a Bu�er

Bu�ers are returned to a partition's free bu�er chain with the rtems_partition_return_buffer

directive. This directive returns an error status code if the returned bu�er was not previously

allocated from this partition.

12.3.5 Deleting a Partition

The rtems_partition_delete directive allows a partition to be removed and returned to RTEMS.

When a partition is deleted, the PTCB for that partition is returned to the PTCB free list. A

partition with bu�ers still allocated cannot be deleted. Any task attempting to do so will be

returned an error status code.

Chapter 12: Partition Manager 119

12.4 Directives

This section details the partition manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

120 RTEMS C User's Guide

12.4.1 PARTITION CREATE - Create a partition

CALLING SEQUENCE:

rtems_status_code rtems_partition_create(

rtems_name name,

void *starting_address,

rtems_unsigned32 length,

rtems_unsigned32 buffer_size,

rtems_attribute attribute_set,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - partition created successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_TOO_MANY - too many partitions created

RTEMS_INVALID_ADDRESS - address not on four byte boundary

RTEMS_INVALID_SIZE - length or bu�er size is 0

RTEMS_INVALID_SIZE - length is less than the bu�er size

RTEMS_INVALID_SIZE - bu�er size not a multiple of 4

RTEMS_MP_NOT_CONFIGURED - multiprocessing not con�gured

RTEMS_TOO_MANY - too many global objects

DESCRIPTION:

This directive creates a partition of �xed size bu�ers from a physically contiguous memory space

which starts at starting address and is length bytes in size. Each allocated bu�er is to be of

bu�er length in bytes. The assigned partition id is returned in id. This partition id is used to

access the partition with other partition related directives. For control and maintenance of the

partition, RTEMS allocates a PTCB from the local PTCB free pool and initializes it.

NOTES:

This directive will not cause the calling task to be preempted.

The starting address and bu�er size parameters must be multiples of four.

Memory from the partition is not used by RTEMS to store the Partition Control Block.

The following partition attribute constants are de�ned by RTEMS:

� RTEMS_LOCAL - local task (default)

� RTEMS_GLOBAL - global task

Chapter 12: Partition Manager 121

The PTCB for a global partition is allocated on the local node. The memory space used for the

partition must reside in shared memory. Partitions should not be made global unless remote tasks

must interact with the partition. This is to avoid the overhead incurred by the creation of a global

partition. When a global partition is created, the partition's name and id must be transmitted to

every node in the system for insertion in the local copy of the global object table.

The total number of global objects, including partitions, is limited by the maximum global objects

�eld in the Con�guration Table.

122 RTEMS C User's Guide

12.4.2 PARTITION IDENT - Get ID of a partition

CALLING SEQUENCE:

rtems_status_code rtems_partition_ident(

rtems_name name,

rtems_unsigned32 node,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - partition identi�ed successfully

RTEMS_INVALID_NAME - partition name not found

RTEMS_INVALID_NODE - invalid node id

DESCRIPTION:

This directive obtains the partition id associated with the partition name. If the partition name is

not unique, then the partition id will match one of the partitions with that name. However, this

partition id is not guaranteed to correspond to the desired partition. The partition id is used with

other partition related directives to access the partition.

NOTES:

This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched

�rst. All other nodes are searched with the lowest numbered node searched �rst.

If node is a valid node number which does not represent the local node, then only the partitions

exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the

global object table.

Chapter 12: Partition Manager 123

12.4.3 PARTITION DELETE - Delete a partition

CALLING SEQUENCE:

rtems_status_code rtems_partition_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - partition deleted successfully

RTEMS_INVALID_ID - invalid partition id

RTEMS_RESOURCE_IN_USE - bu�ers still in use

RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot delete remote partition

DESCRIPTION:

This directive deletes the partition speci�ed by id. The partition cannot be deleted if any of its

bu�ers are still allocated. The PTCB for the deleted partition is reclaimed by RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the partition. Any local task that knows

the partition id can delete the partition.

When a global partition is deleted, the partition id must be transmitted to every node in the system

for deletion from the local copy of the global object table.

The partition must reside on the local node, even if the partition was created with the RTEMS_GLOBAL

option.

124 RTEMS C User's Guide

12.4.4 PARTITION GET BUFFER - Get bu�er from a partition

CALLING SEQUENCE:

rtems_status_code rtems_partition_get_buffer(

rtems_id id,

void **buffer

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - bu�er obtained successfully

RTEMS_INVALID_ID - invalid partition id

RTEMS_UNSATISFIED - all bu�ers are allocated

DESCRIPTION:

This directive allows a bu�er to be obtained from the partition speci�ed in id. The address of the

allocated bu�er is returned in bu�er.

NOTES:

This directive will not cause the running task to be preempted.

All bu�ers begin on a four byte boundary.

A task cannot wait on a bu�er to become available.

Getting a bu�er from a global partition which does not reside on the local node will generate a

request telling the remote node to allocate a bu�er from the speci�ed partition.

Chapter 12: Partition Manager 125

12.4.5 PARTITION RETURN BUFFER - Return bu�er to a partition

CALLING SEQUENCE:

rtems_status_code rtems_partition_return_buffer(

rtems_id id,

void *buffer

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - bu�er returned successfully

RTEMS_INVALID_ID - invalid partition id

RTEMS_INVALID_ADDRESS - bu�er address not in partition

DESCRIPTION:

This directive returns the bu�er speci�ed by bu�er to the partition speci�ed by id.

NOTES:

This directive will not cause the running task to be preempted.

Returning a bu�er to a global partition which does not reside on the local node will generate a

request telling the remote node to return the bu�er to the speci�ed partition.

126 RTEMS C User's Guide

Chapter 13: Region Manager 127

13 RegionManager

13.1 Introduction

The region manager provides facilities to dynamically allocate memory in variable sized units. The

directives provided by the region manager are:

� rtems_region_create - Create a region

� rtems_region_ident - Get ID of a region

� rtems_region_delete - Delete a region

� rtems_region_extend - Add memory to a region

� rtems_region_get_segment - Get segment from a region

� rtems_region_return_segment - Return segment to a region

� rtems_region_get_segment_size - Obtain size of a segment

13.2 Background

13.2.1 Region Manager De�nitions

A region makes up a physically contiguous memory space with user-de�ned boundaries from which

variable-sized segments are dynamically allocated and deallocated. A segment is a variable size

section of memory which is allocated in multiples of a user-de�ned page size. This page size is

required to be a multiple of four greater than or equal to four. For example, if a request for a

350-byte segment is made in a region with 256-byte pages, then a 512-byte segment is allocated.

Regions are organized as doubly linked chains of variable sized memory blocks. Memory requests

are allocated using a �rst-�t algorithm. If available, the requester receives the number of bytes

requested (rounded up to the next page size). RTEMS requires some overhead from the region's

memory for each segment that is allocated. Therefore, an application should only modify the

memory of a segment that has been obtained from the region. The application should NOT modify

the memory outside of any obtained segments and within the region's boundaries while the region

is currently active in the system.

Upon return to the region, the free block is coalesced with its neighbors (if free) on both sides to

produce the largest possible unused block.

13.2.2 Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set

of valid region attributes is provided in the following table:

� RTEMS_FIFO - tasks wait by FIFO (default)

128 RTEMS C User's Guide

� RTEMS_PRIORITY - tasks wait by priority

Attribute values are speci�cally designed to be mutually exclusive, therefore bitwise OR and ad-

dition operations are equivalent as long as each attribute appears exactly once in the component

list. An attribute listed as a default is not required to appear in the attribute list, although it is a

good programming practice to specify default attributes. If all defaults are desired, the attribute

RTEMS_DEFAULT_ATTRIBUTES should be speci�ed on this call.

This example demonstrates the attribute set parameter needed to create a region with the task pri-

ority waiting queue discipline. The attribute set parameter to the rtems_region_create directive

should be RTEMS_PRIORITY.

13.2.3 Building an Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid

options for the rtems_region_get_segment directive are listed in the following table:

� RTEMS_WAIT - task will wait for semaphore (default)

� RTEMS_NO_WAIT - task should not wait

Option values are speci�cally designed to be mutually exclusive, therefore bitwise OR and addition

operations are equivalent as long as each option appears exactly once in the component list. An op-

tion listed as a default is not required to appear in the option list, although it is a good programming

practice to specify default options. If all defaults are desired, the option RTEMS_DEFAULT_OPTIONS

should be speci�ed on this call.

This example demonstrates the option parameter needed to poll for a segment. The option param-

eter passed to the rtems_region_get_segment directive should be RTEMS_NO_WAIT.

13.3 Operations

13.3.1 Creating a Region

The rtems_region_create directive creates a region with the user-de�ned name. The user may

select FIFO or task priority as the method for placing waiting tasks in the task wait queue. RTEMS

allocates a Region Control Block (RNCB) from the RNCB free list to maintain the newly created

region. RTEMS also generates a unique region ID which is returned to the calling task.

It is not possible to calculate the exact number of bytes available to the user since RTEMS requires

overhead for each segment allocated. For example, a region with one segment that is the size of

the entire region has more available bytes than a region with two segments that collectively are the

size of the entire region. This is because the region with one segment requires only the overhead

for one segment, while the other region requires the overhead for two segments.

Chapter 13: Region Manager 129

Due to automatic coalescing, the number of segments in the region dynamically changes. Therefore,

the total overhead required by RTEMS dynamically changes.

13.3.2 Obtaining Region IDs

When a region is created, RTEMS generates a unique region ID and assigns it to the created region

until it is deleted. The region ID may be obtained by either of two methods. First, as the result

of an invocation of the rtems_region_create directive, the region ID is stored in a user provided

location. Second, the region ID may be obtained later using the rtems_region_ident directive.

The region ID is used by other region manager directives to access this region.

13.3.3 Adding Memory to a Region

The rtems_region_extend directive may be used to add memory to an existing region. The caller

speci�es the size in bytes and starting address of the memory being added.

NOTE: Please see the release notes or RTEMS source code for information regarding restrictions

on the location of the memory being added in relation to memory already in the region.

13.3.4 Acquiring a Segment

The rtems_region_get_segment directive attempts to acquire a segment from a speci�ed region.

If the region has enough available free memory, then a segment is returned successfully to the caller.

When the segment cannot be allocated, one of the following situations applies:

� By default, the calling task will wait forever to acquire the segment.

� Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

� Specifying a timeout limits the interval the task will wait before returning with an error

status code.

If the task waits for the segment, then it is placed in the region's task wait queue in either FIFO

or task priority order. All tasks waiting on a region are returned an error when the message queue

is deleted.

13.3.5 Releasing a Segment

When a segment is returned to a region by the rtems_region_return_segment directive, it is

merged with its unallocated neighbors to form the largest possible segment. The �rst task on the

wait queue is examined to determine if its segment request can now be satis�ed. If so, it is given a

segment and unblocked. This process is repeated until the �rst task's segment request cannot be

satis�ed.

130 RTEMS C User's Guide

13.3.6 Obtaining the Size of a Segment

The rtems_region_get_segment_size directive returns the size in bytes of the speci�ed segment.

The size returned includes any "extra" memory included in the segment because of rounding up to

a page size boundary.

13.3.7 Deleting a Region

A region can be removed from the system and returned to RTEMS with the rtems_region_delete

directive. When a region is deleted, its control block is returned to the RNCB free list. A region

with segments still allocated is not allowed to be deleted. Any task attempting to do so will be

returned an error. As a result of this directive, all tasks blocked waiting to obtain a segment from

the region will be readied and returned a status code which indicates that the region was deleted.

13.4 Directives

This section details the region manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

Chapter 13: Region Manager 131

13.4.1 REGION CREATE - Create a region

CALLING SEQUENCE:

rtems_status_code rtems_region_create(

rtems_name name,

void *starting_address,

rtems_unsigned32 length,

rtems_unsigned32 page_size,

rtems_attribute attribute_set,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - region created successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_INVALID_ADDRESS - address not on four byte boundary

RTEMS_TOO_MANY - too many regions created

RTEMS_INVALID_SIZE - invalid page size

DESCRIPTION:

This directive creates a region from a physically contiguous memory space which starts at start-

ing address and is length bytes long. Segments allocated from the region will be a multiple of

page size bytes in length. The assigned region id is returned in id. This region id is used as an

argument to other region related directives to access the region.

For control and maintenance of the region, RTEMS allocates and initializes an RNCB from the

RNCB free pool. Thus memory from the region is not used to store the RNCB. However, some

overhead within the region is required by RTEMS each time a segment is constructed in the region.

Specifying RTEMS_PRIORITY in attribute set causes tasks waiting for a segment to be serviced

according to task priority. Specifying RTEMS_FIFO in attribute set or selecting RTEMS_DEFAULT_

ATTRIBUTES will cause waiting tasks to be serviced in First In-First Out order.

The starting address parameter must be aligned on a four byte boundary. The page size parameter

must be a multiple of four greater than or equal to four.

NOTES:

This directive will not cause the calling task to be preempted.

The following region attribute constants are de�ned by RTEMS:

� RTEMS_FIFO - tasks wait by FIFO (default)

132 RTEMS C User's Guide

� RTEMS_PRIORITY - tasks wait by priority

Chapter 13: Region Manager 133

13.4.2 REGION IDENT - Get ID of a region

CALLING SEQUENCE:

rtems_status_code rtems_region_ident(

rtems_name name,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - region identi�ed successfully

RTEMS_INVALID_NAME - region name not found

DESCRIPTION:

This directive obtains the region id associated with the region name to be acquired. If the region

name is not unique, then the region id will match one of the regions with that name. However, this

region id is not guaranteed to correspond to the desired region. The region id is used to access this

region in other region manager directives.

NOTES:

This directive will not cause the running task to be preempted.

134 RTEMS C User's Guide

13.4.3 REGION DELETE - Delete a region

CALLING SEQUENCE:

rtems_status_code rtems_region_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - region deleted successfully

RTEMS_INVALID_ID - invalid region id

RTEMS_RESOURCE_IN_USE - segments still in use

DESCRIPTION:

This directive deletes the region speci�ed by id. The region cannot be deleted if any of its segments

are still allocated. The RNCB for the deleted region is reclaimed by RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the region. Any local task that knows

the region id can delete the region.

Chapter 13: Region Manager 135

13.4.4 REGION EXTEND - Add memory to a region

CALLING SEQUENCE:

rtems_status_code rtems_region_extend(

rtems_id id,

void *starting_address,

rtems_unsigned32 length

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - region extended successfully

RTEMS_INVALID_ID - invalid region id

RTEMS_INVALID_ADDRESS - invalid address of area to add

DESCRIPTION:

This directive adds the memory which starts at starting address for length bytes to the region

speci�ed by id.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the region. Any local task that knows

the region id can extend the region.

136 RTEMS C User's Guide

13.4.5 REGION GET SEGMENT - Get segment from a region

CALLING SEQUENCE:

rtems_status_code rtems_region_get_segment(

rtems_id id,

rtems_unsigned32 size,

rtems_option option_set,

rtems_interval timeout,

void **segment

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - segment obtained successfully

RTEMS_INVALID_ID - invalid region id

RTEMS_INVALID_SIZE - request is for zero bytes or exceeds the size of maximum segment which is

possible for this region

RTEMS_UNSATISFIED - segment of requested size not available

RTEMS_TIMEOUT - timed out waiting for segment

RTEMS_OBJECT_WAS_DELETED - semaphore deleted while waiting

DESCRIPTION:

This directive obtains a variable size segment from the region speci�ed by id. The address of the

allocated segment is returned in segment. The RTEMS_WAIT and RTEMS_NO_WAIT components of

the options parameter are used to specify whether the calling tasks wish to wait for a segment to

become available or return immediately if no segment is available. For either option, if a su�ciently

sized segment is available, then the segment is successfully acquired by returning immediately with

the RTEMS_SUCCESSFUL status code.

If the calling task chooses to return immediately and a segment large enough is not available, then

an error code indicating this fact is returned. If the calling task chooses to wait for the segment and

a segment large enough is not available, then the calling task is placed on the region's segment wait

queue and blocked. If the region was created with the RTEMS_PRIORITY option, then the calling

task is inserted into the wait queue according to its priority. However, if the region was created

with the RTEMS_FIFO option, then the calling task is placed at the rear of the wait queue.

The timeout parameter speci�es the maximum interval that a task is willing to wait to obtain a

segment. If timeout is set to RTEMS_NO_TIMEOUT, then the calling task will wait forever.

Chapter 13: Region Manager 137

NOTES:

The actual length of the allocated segment may be larger than the requested size because a segment

size is always a multiple of the region's page size.

The following segment acquisition option constants are de�ned by RTEMS:

� RTEMS_WAIT - task will wait for semaphore (default)

� RTEMS_NO_WAIT - task should not wait

A clock tick is required to support the timeout functionality of this directive.

138 RTEMS C User's Guide

13.4.6 REGION RETURN SEGMENT - Return segment to a region

CALLING SEQUENCE:

rtems_status_code rtems_region_return_segment(

rtems_id id,

void *segment

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - segment returned successfully

RTEMS_INVALID_ID - invalid region id

RTEMS_INVALID_ADDRESS - segment address not in region

DESCRIPTION:

This directive returns the segment speci�ed by segment to the region speci�ed by id. The returned

segment is merged with its neighbors to form the largest possible segment. The �rst task on the

wait queue is examined to determine if its segment request can now be satis�ed. If so, it is given a

segment and unblocked. This process is repeated until the �rst task's segment request cannot be

satis�ed.

NOTES:

This directive will cause the calling task to be preempted if one or more local tasks are waiting for

a segment and the following conditions exist:

� a waiting task has a higher priority than the calling task

� the size of the segment required by the waiting task is less than or equal to the size of the

segment returned.

Chapter 13: Region Manager 139

13.4.7 REGION GET SEGMENT SIZE - Obtain size of a segment

CALLING SEQUENCE:

rtems_status_code rtems_region_get_segment_size(

rtems_id id,

void *segment,

rtems_unsigned32 *size

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - segment obtained successfully

RTEMS_INVALID_ID - invalid region id

RTEMS_INVALID_ADDRESS - segment address not in region

DESCRIPTION:

This directive obtains the size in bytes of the speci�ed segment.

NOTES:

The actual length of the allocated segment may be larger than the requested size because a segment

size is always a multiple of the region's page size.

140 RTEMS C User's Guide

Chapter 14: Dual-Ported Memory Manager 141

14 Dual-PortedMemoryManager

14.1 Introduction

The dual-ported memory manager provides a mechanism for converting addresses between inter-

nal and external representations for multiple dual-ported memory areas (DPMA). The directives

provided by the dual-ported memory manager are:

� rtems_port_create - Create a port

� rtems_port_ident - Get ID of a port

� rtems_port_delete - Delete a port

� rtems_port_external_to_internal - Convert external to internal address

� rtems_port_internal_to_external - Convert internal to external address

14.2 Background

A dual-ported memory area (DPMA) is an contiguous block of RAM owned by a particular proces-

sor but which can be accessed by other processors in the system. The owner accesses the memory

using internal addresses, while other processors must use external addresses. RTEMS de�nes a

port as a particular mapping of internal and external addresses.

There are two system con�gurations in which dual-ported memory is commonly found. The �rst is

tightly-coupled multiprocessor computer systems where the dual-ported memory is shared between

all nodes and is used for inter-node communication. The second con�guration is computer systems

with intelligent peripheral controllers. These controllers typically utilize the DPMA for high-

performance data transfers.

14.3 Operations

14.3.1 Creating a Port

The rtems_port_create directive creates a port into a DPMA with the user-de�ned name. The

user speci�es the association between internal and external representations for the port being

created. RTEMS allocates a Dual-Ported Memory Control Block (DPCB) from the DPCB free list

to maintain the newly created DPMA. RTEMS also generates a unique dual-ported memory port

ID which is returned to the calling task. RTEMS does not initialize the dual-ported memory area

or access any memory within it.

142 RTEMS C User's Guide

14.3.2 Obtaining Port IDs

When a port is created, RTEMS generates a unique port ID and assigns it to the created port until

it is deleted. The port ID may be obtained by either of two methods. First, as the result of an

invocation of the rtems_port_create directive, the task ID is stored in a user provided location.

Second, the port ID may be obtained later using the rtems_port_ident directive. The port ID is

used by other dual-ported memory manager directives to access this port.

14.3.3 Converting an Address

The rtems_port_external_to_internal directive is used to convert an address from external to

internal representation for the speci�ed port. The rtems_port_internal_to_external directive

is used to convert an address from internal to external representation for the speci�ed port. If an

attempt is made to convert an address which lies outside the speci�ed DPMA, then the address to

be converted will be returned.

14.3.4 Deleting a DPMA Port

A port can be removed from the system and returned to RTEMS with the rtems_port_delete

directive. When a port is deleted, its control block is returned to the DPCB free list.

14.4 Directives

This section details the dual-ported memory manager's directives. A subsection is dedicated to

each of this manager's directives and describes the calling sequence, related constants, usage, and

status codes.

Chapter 14: Dual-Ported Memory Manager 143

14.4.1 PORT CREATE - Create a port

CALLING SEQUENCE:

rtems_status_code rtems_port_create(

rtems_name name,

void *internal_start,

void *external_start,

rtems_unsigned32 length,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - port created successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_INVALID_ADDRESS - address not on four byte boundary

RTEMS_TOO_MANY - too many DP memory areas created

DESCRIPTION:

This directive creates a port which resides on the local node for the speci�ed DPMA. The assigned

port id is returned in id. This port id is used as an argument to other dual-ported memory manager

directives to convert addresses within this DPMA.

For control and maintenance of the port, RTEMS allocates and initializes an DPCB from the DPCB

free pool. Thus memory from the dual-ported memory area is not used to store the DPCB.

NOTES:

The internal address and external address parameters must be on a four byte boundary.

This directive will not cause the calling task to be preempted.

144 RTEMS C User's Guide

14.4.2 PORT IDENT - Get ID of a port

CALLING SEQUENCE:

rtems_status_code rtems_port_ident(

rtems_name name,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - port identi�ed successfully

RTEMS_INVALID_NAME - port name not found

DESCRIPTION:

This directive obtains the port id associated with the speci�ed name to be acquired. If the port

name is not unique, then the port id will match one of the DPMAs with that name. However, this

port id is not guaranteed to correspond to the desired DPMA. The port id is used to access this

DPMA in other dual-ported memory area related directives.

NOTES:

This directive will not cause the running task to be preempted.

Chapter 14: Dual-Ported Memory Manager 145

14.4.3 PORT DELETE - Delete a port

CALLING SEQUENCE:

rtems_status_code rtems_port_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - port deleted successfully

RTEMS_INVALID_ID - invalid port id

DESCRIPTION:

This directive deletes the dual-ported memory area speci�ed by id. The DPCB for the deleted

dual-ported memory area is reclaimed by RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the port. Any local task that knows the

port id can delete the port.

146 RTEMS C User's Guide

14.4.4 PORT EXTERNAL TO INTERNAL - Convert external to
internal address

CALLING SEQUENCE:

rtems_status_code rtems_port_external_to_internal(

rtems_id id,

void *external,

void **internal

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - always successful

DESCRIPTION:

This directive converts a dual-ported memory address from external to internal representation for

the speci�ed port. If the given external address is invalid for the speci�ed port, then the internal

address is set to the given external address.

NOTES:

This directive is callable from an ISR.

This directive will not cause the calling task to be preempted.

Chapter 14: Dual-Ported Memory Manager 147

14.4.5 PORT INTERNAL TO EXTERNAL - Convert internal to
external address

CALLING SEQUENCE:

rtems_status_code rtems_port_internal_to_external(

rtems_id id,

void *internal,

void **external

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - always successful

DESCRIPTION:

This directive converts a dual-ported memory address from internal to external representation so

that it can be passed to owner of the DPMA represented by the speci�ed port. If the given internal

address is an invalid dual-ported address, then the external address is set to the given internal

address.

NOTES:

This directive is callable from an ISR.

This directive will not cause the calling task to be preempted.

148 RTEMS C User's Guide

Chapter 15: I/O Manager 149

15 I/OManager

15.1 Introduction

The input/output interface manager provides a well-de�ned mechanism for accessing device drivers

and a structured methodology for organizing device drivers. The directives provided by the I/O

manager are:

� rtems_io_initialize - Initialize a device driver

� rtems_io_register_name - Register a device name

� rtems_io_lookup_name - Look up a device name

� rtems_io_open - Open a device

� rtems_io_close - Close a device

� rtems_io_read - Read from a device

� rtems_io_write - Write to a device

� rtems_io_control - Special device services

15.2 Background

15.2.1 Device Driver Table

Each application utilizing the RTEMS I/O manager must specify the address of a Device Driver

Table in its Con�guration Table. This table contains each device driver's entry points. Each device

driver may contain the following entry points:

� Initialization

� Open

� Close

� Read

� Write

� Control

If the device driver does not support a particular entry point, then that entry in the Con�guration

Table should be NULL. RTEMS will return RTEMS_SUCCESSFUL as the executive's and zero (0) as

the device driver's return code for these device driver entry points.

15.2.2 Major and Minor Device Numbers

Each call to the I/O manager must provide a device's major and minor numbers as arguments. The

major number is the index of the requested driver's entry points in the Device Driver Table, and is

150 RTEMS C User's Guide

used to select a speci�c device driver. The exact usage of the minor number is driver speci�c, but

is commonly used to distinguish between a number of devices controlled by the same driver.

15.2.3 Device Names

The I/O Manager provides facilities to associate a name with a particular device. Directives are

provided to register the name of a device and to look up the major/minor number pair associated

with a device name.

15.2.4 Device Driver Environment

Application developers, as well as device driver developers, must be aware of the following regarding

the RTEMS I/O Manager:

� A device driver routine executes in the context of the invoking task. Thus if the driver

blocks, the invoking task blocks.

� The device driver is free to change the modes of the invoking task, although the driver

should restore them to their original values.

� Device drivers may be invoked from ISRs.

� Only local device drivers are accessible through the I/O manager.

� A device driver routine may invoke all other RTEMS directives, including I/O directives,

on both local and global objects.

Although the RTEMS I/O manager provides a framework for device drivers, it makes no assump-

tions regarding the construction or operation of a device driver.

15.2.5 Device Driver Interface

When an application invokes an I/O manager directive, RTEMS determines which device driver

entry point must be invoked. The information passed by the application to RTEMS is then passed

to the correct device driver entry point. RTEMS will invoke each device driver entry point assuming

it is compatible with the following prototype:

rtems_device_driver io_entry(

rtems_device_major_number major,

rtems_device_minor_number minor,

void *argument_block

);

The format and contents of the parameter block are device driver and entry point dependent.

It is recommended that a device driver avoid generating error codes which con
ict with those used

by application components. A common technique used to generate driver speci�c error codes is to

make the most signi�cant part of the status indicate a driver speci�c code.

Chapter 15: I/O Manager 151

15.2.6 Device Driver Initialization

RTEMS automatically initializes all device drivers when multitasking is initiated via the initial-

ize executive directive. RTEMS initializes the device drivers by invoking each device driver initial-

ization entry point with the following parameters:

major the major device number for this device driver.

minor zero.

argument block will point to the Con�guration Table.

The returned status will be ignored by RTEMS. If the driver cannot successfully initialize the

device, then it should invoke the fatal error occurred directive.

15.3 Operations

15.3.1 Register and Lookup Name

The rtems_io_register directive associates a name with the speci�ed device (i.e. major/minor

number pair). Device names are typically registered as part of the device driver initialization

sequence. The rtems_io_lookup directive is used to determine the major/minor number pair

associated with the speci�ed device name. The use of these directives frees the application from

being dependent on the arbitrary assignment of major numbers in a particular application. No

device naming conventions are dictated by RTEMS.

15.3.2 Accessing an Device Driver

The I/O manager provides directives which enable the application program to utilize device drivers

in a standard manner. There is a direct correlation between the RTEMS I/O manager directives

rtems_io_initialize, rtems_io_open, rtems_io_close, rtems_io_read, rtems_io_write, and

rtems_io_control and the underlying device driver entry points.

15.4 Directives

This section details the I/O manager's directives. A subsection is dedicated to each of this manager's

directives and describes the calling sequence, related constants, usage, and status codes.

152 RTEMS C User's Guide

15.4.1 IO INITIALIZE - Initialize a device driver

CALLING SEQUENCE:

rtems_status_code rtems_io_initialize(

rtems_device_major_number major,

rtems_device_minor_number minor,

void *argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_INVALID_NUMBER - invalid major device number

DESCRIPTION:

This directive calls the device driver initialization routine speci�ed in the Device Driver Table for

this major number. This directive is automatically invoked for each device driver when multitasking

is initiated via the initialize executive directive.

A device driver initialization module is responsible for initializing all hardware and data structures

associated with a device. If necessary, it can allocate memory to be used during other operations.

NOTES:

This directive may or may not cause the calling task to be preempted. This is dependent on the

device driver being initialized.

Chapter 15: I/O Manager 153

15.4.2 IO REGISTER NAME - Register a device

CALLING SEQUENCE:

rtems_status_code rtems_io_register_name(

char *name,

rtems_device_major_number major,

rtems_device_minor_number minor

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_TOO_MANY - too many devices registered

DESCRIPTION:

This directive associates name with the speci�ed major/minor number pair.

NOTES:

This directive will not cause the calling task to be preempted.

154 RTEMS C User's Guide

15.4.3 IO LOOKUP NAME - Lookup a device

CALLING SEQUENCE:

rtems_status_code rtems_io_lookup_name(

const char *name,

rtems_driver_name_t **device_info

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_UNSATISFIED - name not registered

DESCRIPTION:

This directive returns the major/minor number pair associated with the given device name in

device info.

NOTES:

This directive will not cause the calling task to be preempted.

Chapter 15: I/O Manager 155

15.4.4 IO OPEN - Open a device

CALLING SEQUENCE:

rtems_status_code rtems_io_open(

rtems_device_major_number major,

rtems_device_minor_number minor,

void *argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_INVALID_NUMBER - invalid major device number

DESCRIPTION:

This directive calls the device driver open routine speci�ed in the Device Driver Table for this major

number. The open entry point is commonly used by device drivers to provide exclusive access to a

device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is dependent on the

device driver being invoked.

156 RTEMS C User's Guide

15.4.5 IO CLOSE - Close a device

CALLING SEQUENCE:

rtems_status_code rtems_io_close(

rtems_device_major_number major,

rtems_device_minor_number minor,

void *argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_INVALID_NUMBER - invalid major device number

DESCRIPTION:

This directive calls the device driver close routine speci�ed in the Device Driver Table for this

major number. The close entry point is commonly used by device drivers to relinquish exclusive

access to a device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is dependent on the

device driver being invoked.

Chapter 15: I/O Manager 157

15.4.6 IO READ - Read from a device

CALLING SEQUENCE:

rtems_status_code rtems_io_read(

rtems_device_major_number major,

rtems_device_minor_number minor,

void *argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_INVALID_NUMBER - invalid major device number

DESCRIPTION:

This directive calls the device driver read routine speci�ed in the Device Driver Table for this major

number. Read operations typically require a bu�er address as part of the argument parameter block.

The contents of this bu�er will be replaced with data from the device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is dependent on the

device driver being invoked.

158 RTEMS C User's Guide

15.4.7 IO WRITE - Write to a device

CALLING SEQUENCE:

rtems_status_code rtems_io_write(

rtems_device_major_number major,

rtems_device_minor_number minor,

void *argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_INVALID_NUMBER - invalid major device number

DESCRIPTION:

This directive calls the device driver write routine speci�ed in the Device Driver Table for this major

number. Write operations typically require a bu�er address as part of the argument parameter

block. The contents of this bu�er will be sent to the device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is dependent on the

device driver being invoked.

Chapter 15: I/O Manager 159

15.4.8 IO CONTROL - Special device services

CALLING SEQUENCE:

rtems_status_code rtems_io_control(

rtems_device_major_number major,

rtems_device_minor_number minor,

void *argument

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - successfully initialized

RTEMS_INVALID_NUMBER - invalid major device number

DESCRIPTION:

This directive calls the device driver I/O control routine speci�ed in the Device Driver Table for

this major number. The exact functionality of the driver entry called by this directive is driver

dependent. It should not be assumed that the control entries of two device drivers are compatible.

For example, an RS-232 driver I/O control operation may change the baud rate of a serial line,

while an I/O control operation for a
oppy disk driver may cause a seek operation.

NOTES:

This directive may or may not cause the calling task to be preempted. This is dependent on the

device driver being invoked.

160 RTEMS C User's Guide

Chapter 16: Fatal Error Manager 161

16 Fatal ErrorManager

16.1 Introduction

The fatal error manager processes all fatal or irrecoverable errors. The directive provided by the

fatal error manager is:

� rtems_fatal_error_occurred - Invoke the fatal error handler

16.2 Background

The fatal error manager is called upon detection of an irrecoverable error condition by either

RTEMS or the application software. Fatal errors can be detected from three sources:

� the executive (RTEMS)

� user system code

� user application code

RTEMS automatically invokes the fatal error manager upon detection of an error it considers to

be fatal. Similarly, the user should invoke the fatal error manager upon detection of a fatal error.

Each status or dynamic user extension set may include a fatal error handler. The fatal error handler

in the static extension set can be used to provide access to debuggers and monitors which may be

present on the target hardware. If any user-supplied fatal error handlers are installed, the fatal

error manager will invoke them. If no user handlers are con�gured or if all the user handler return

control to the fatal error manager, then the RTEMS default fatal error handler is invoked. If the

default fatal error handler is invoked, then the system state is marked as failed.

Although the precise behavior of the default fatal error handler is processor speci�c, in general,

it will disable all maskable interrupts, place the error code in a known processor dependent place

(generally either on the stack or in a register), and halt the processor. The precise actions of the

RTEMS fatal error are discussed in the Default Fatal Error Processing chapter of the Applications

Supplement document for a speci�c target processor.

16.3 Operations

16.3.1 Announcing a Fatal Error

The rtems_fatal_error_occurred directive is invoked when a fatal error is detected. Before

invoking any user-supplied fatal error handlers or the RTEMS fatal error handler, the rtems_

fatal_error_occurred directive stores useful information in the variable _Internal_errors_

What_happened. This structure contains three pieces of information:

162 RTEMS C User's Guide

� the source of the error (API or executive core),

� whether the error was generated internally by the executive, and a

� a numeric code to indicate the error type.

The error type indicator is dependent on the source of the error and whether or not the error

was internally generated by the executive. If the error was generated from an API, then the error

code will be of that API's error or status codes. The status codes for the RTEMS API are in

c/src/exec/rtems/headers/status.h. Those for the POSIX API can be found in <errno.h>.

The rtems_fatal_error_occurred directive is responsible for invoking an optional user-supplied

fatal error handler and/or the RTEMS fatal error handler. All fatal error handlers are passed an

error code to describe the error detected.

Occasionally, an application requires more sophisticated fatal error processing such as passing

control to a debugger. For these cases, a user-supplied fatal error handler can be speci�ed in the

RTEMS con�guration table. The User Extension Table �eld fatal contains the address of the fatal

error handler to be executed when the rtems_fatal_error_occurred directive is called. If the

�eld is set to NULL or if the con�gured fatal error handler returns to the executive, then the default

handler provided by RTEMS is executed. This default handler will halt execution on the processor

where the error occurred.

16.4 Directives

This section details the fatal error manager's directives. A subsection is dedicated to each of this

manager's directives and describes the calling sequence, related constants, usage, and status codes.

Chapter 16: Fatal Error Manager 163

16.4.1 FATAL ERROR OCCURRED - Invoke the fatal error handler

CALLING SEQUENCE:

void volatile rtems_fatal_error_occurred(

rtems_unsigned32 the_error

);

DIRECTIVE STATUS CODES

NONE

DESCRIPTION:

This directive processes fatal errors. If the FATAL error extension is de�ned in the con�guration

table, then the user-de�ned error extension is called. If con�gured and the provided FATAL error

extension returns, then the RTEMS default error handler is invoked. This directive can be invoked

by RTEMS or by the user's application code including initialization tasks, other tasks, and ISRs.

NOTES:

This directive supports local operations only.

Unless the user-de�ned error extension takes special actions such as restarting the calling task, this

directive WILL NOT RETURN to the caller.

The user-de�ned extension for this directive may wish to initiate a global shutdown.

164 RTEMS C User's Guide

Chapter 17: Scheduling Concepts 165

17 SchedulingConcepts

17.1 Introduction

The concept of scheduling in real-time systems dictates the ability to provide immediate response to

speci�c external events, particularly the necessity of scheduling tasks to run within a speci�ed time

limit after the occurrence of an event. For example, software embedded in life-support systems

used to monitor hospital patients must take instant action if a change in the patient's status is

detected.

The component of RTEMS responsible for providing this capability is appropriately called the

scheduler. The scheduler's sole purpose is to allocate the all important resource of processor time

to the various tasks competing for attention. The RTEMS scheduler allocates the processor using

a priority-based, preemptive algorithm augmented to provide round-robin characteristics within

individual priority groups. The goal of this algorithm is to guarantee that the task which is

executing on the processor at any point in time is the one with the highest priority among all tasks

in the ready state.

There are two common methods of accomplishing the mechanics of this algorithm. Both ways

involve a list or chain of tasks in the ready state. One method is to randomly place tasks in the

ready chain forcing the scheduler to scan the entire chain to determine which task receives the

processor. The other method is to schedule the task by placing it in the proper place on the ready

chain based on the designated scheduling criteria at the time it enters the ready state. Thus, when

the processor is free, the �rst task on the ready chain is allocated the processor. RTEMS schedules

tasks using the second method to guarantee faster response times to external events.

17.2 Scheduling Mechanisms

RTEMS provides four mechanisms which allow the user to impact the task scheduling process:

� user-selectable task priority level

� task preemption control

� task timeslicing control

� manual round-robin selection

Each of these methods provides a powerful capability to customize sets of tasks to satisfy the

unique and particular requirements encountered in custom real-time applications. Although each

mechanism operates independently, there is a precedence relationship which governs the e�ects

of scheduling modi�cations. The evaluation order for scheduling characteristics is always priority,

preemption mode, and timeslicing. When reading the descriptions of timeslicing and manual round-

robin it is important to keep in mind that preemption (if enabled) of a task by higher priority tasks

will occur as required, overriding the other factors presented in the description.

166 RTEMS C User's Guide

17.2.1 Task Priority and Scheduling

The most signi�cant of these mechanisms is the ability for the user to assign a priority level to each

individual task when it is created and to alter a task's priority at run-time. RTEMS provides 255

priority levels. Level 255 is the lowest priority and level 1 is the highest. When a task is added

to the ready chain, it is placed behind all other tasks of the same priority. This rule provides a

round-robin within priority group scheduling characteristic. This means that in a group of equal

priority tasks, tasks will execute in the order they become ready or FIFO order. Even though there

are ways to manipulate and adjust task priorities, the most important rule to remember is:

The RTEMS scheduler will always select the highest priority task that is ready to run when

allocating the processor to a task.

17.2.2 Preemption

Another way the user can alter the basic scheduling algorithm is by manipulating the preemption

mode
ag (RTEMS_PREEMPT_MASK) of individual tasks. If preemption is disabled for a task (RTEMS_

NO_PREEMPT), then the task will not relinquish control of the processor until it terminates, blocks,

or re-enables preemption. Even tasks which become ready to run and possess higher priority levels

will not be allowed to execute. Note that the preemption setting has no e�ect on the manner in

which a task is scheduled. It only applies once a task has control of the processor.

17.2.3 Timeslicing

Timeslicing or round-robin scheduling is an additional method which can be used to alter the

basic scheduling algorithm. Like preemption, timeslicing is speci�ed on a task by task basis using

the timeslicing mode
ag (RTEMS_TIMESLICE_MASK). If timeslicing is enabled for a task (RTEMS_

TIMESLICE), then RTEMS will limit the amount of time the task can execute before the processor

is allocated to another task. Each tick of the real-time clock reduces the currently running task's

timeslice. When the execution time equals the timeslice, RTEMS will dispatch another task of the

same priority to execute. If there are no other tasks of the same priority ready to execute, then

the current task is allocated an additional timeslice and continues to run. Remember that a higher

priority task will preempt the task (unless preemption is disabled) as soon as it is ready to run,

even if the task has not used up its entire timeslice.

17.2.4 Manual Round-Robin

The �nal mechanism for altering the RTEMS scheduling algorithm is called manual round-robin.

Manual round-robin is invoked by using the rtems_task_wake_after directive with a time interval

of RTEMS_YIELD_PROCESSOR. This allows a task to give up the processor and be immediately

returned to the ready chain at the end of its priority group. If no other tasks of the same priority

are ready to run, then the task does not lose control of the processor.

Chapter 17: Scheduling Concepts 167

17.2.5 Dispatching Tasks

The dispatcher is the RTEMS component responsible for allocating the processor to a ready task.

In order to allocate the processor to one task, it must be deallocated or retrieved from the task

currently using it. This involves a concept called a context switch. To perform a context switch,

the dispatcher saves the context of the current task and restores the context of the task which has

been allocated to the processor. Saving and restoring a task's context is the storing/loading of all

the essential information about a task to enable it to continue execution without any e�ects of the

interruption. For example, the contents of a task's register set must be the same when it is given

the processor as they were when it was taken away. All of the information that must be saved or

restored for a context switch is located either in the TCB or on the task's stacks.

Tasks that utilize a numeric coprocessor and are created with the RTEMS_FLOATING_POINT attribute

require additional operations during a context switch. These additional operations are necessary to

save and restore the
oating point context of RTEMS_FLOATING_POINT tasks. To avoid unnecessary

save and restore operations, the state of the numeric coprocessor is only saved when a RTEMS_

FLOATING_POINT task is dispatched and that task was not the last task to utilize the coprocessor.

17.3 Task State Transitions

Tasks in an RTEMS system must always be in one of the �ve allowable task states. These states

are: executing, ready, blocked, dormant, and non-existent.

168 RTEMS C User's Guide

+---+

| Non-existent |

| +---+ |

| | | |

| | | |

| | Creating +---------+ Deleting | |

| | -------------------> | Dormant | -------------------> | |

| | +---------+ | |

| | | | |

| | Starting | | |

| | | | |

| | V Deleting | |

| | +-------> +-------+ -------------------> | |

| | Yielding / +----- | Ready | ------+ | |

| | / / +-------+ <--+ \ | |

| | / / \ \ Blocking | |

| | / / Dispatching Readying \ \ | |

| | / V \ V | |

| | +-----------+ Blocking +---------+ | |

| | | Executing | --------------> | Blocked | | |

| | +-----------+ +---------+ | |

| | | |

| | | |

| +---+ |

| Non-existent |

+---+

A task occupies the non-existent state before a rtems_task_create has been issued on its behalf.

A task enters the non-existent state from any other state in the system when it is deleted with the

rtems_task_delete directive. While a task occupies this state it does not have a TCB or a task

ID assigned to it; therefore, no other tasks in the system may reference this task.

When a task is created via the rtems_task_create directive it enters the dormant state. This

state is not entered through any other means. Although the task exists in the system, it cannot

actively compete for system resources. It will remain in the dormant state until it is started via the

rtems_task_start directive, at which time it enters the ready state. The task is now permitted

to be scheduled for the processor and to compete for other system resources.

A task occupies the blocked state whenever it is unable to be scheduled to run. A running task

may block itself or be blocked by other tasks in the system. The running task blocks itself through

voluntary operations that cause the task to wait. The only way a task can block a task other than

itself is with the rtems_task_suspend directive. A task enters the blocked state due to any of the

following conditions:

� A task issues a rtems_task_suspend directive which blocks either itself or another task in

the system.

� The running task issues a rtems_message_queue_receive directive with the wait option

Chapter 17: Scheduling Concepts 169

and the message queue is empty.

� The running task issues an rtems_event_receive directive with the wait option and the

currently pending events do not satisfy the request.

� The running task issues a rtems_semaphore_obtain directive with the wait option and the

requested semaphore is unavailable.

� The running task issues a rtems_task_wake_after directive which blocks the task for the

given time interval. If the time interval speci�ed is zero, the task yields the processor and

remains in the ready state.

� The running task issues a rtems_task_wake_when directive which blocks the task until the

requested date and time arrives.

� The running task issues a rtems_region_get_segment directive with the wait option and

there is not an available segment large enough to satisfy the task's request.

� The running task issues a rtems_rate_monotonic_period directive and must wait for the

speci�ed rate monotonic period to conclude.

A blocked task may also be suspended. Therefore, both the suspension and the blocking condition

must be removed before the task becomes ready to run again.

A task occupies the ready state when it is able to be scheduled to run, but currently does not have

control of the processor. Tasks of the same or higher priority will yield the processor by either

becoming blocked, completing their timeslice, or being deleted. All tasks with the same priority

will execute in FIFO order. A task enters the ready state due to any of the following conditions:

� A running task issues a rtems_task_resume directive for a task that is suspended and the

task is not blocked waiting on any resource.

� A running task issues a rtems_message_queue_send, rtems_message_queue_broadcast,

or a rtems_message_queue_urgent directive which posts a message to the queue on which

the blocked task is waiting.

� A running task issues an rtems_event_send directive which sends an event condition to a

task which is blocked waiting on that event condition.

� A running task issues a rtems_semaphore_release directive which releases the semaphore

on which the blocked task is waiting.

� A timeout interval expires for a task which was blocked by a call to the rtems_task_wake_

after directive.

� A timeout period expires for a task which blocked by a call to the rtems_task_wake_when

directive.

� A running task issues a rtems_region_return_segment directive which releases a segment

to the region on which the blocked task is waiting and a resulting segment is large enough

to satisfy the task's request.

170 RTEMS C User's Guide

� A rate monotonic period expires for a task which blocked by a call to the rtems_rate_

monotonic_period directive.

� A timeout interval expires for a task which was blocked waiting on a message, event,

semaphore, or segment with a timeout speci�ed.

� A running task issues a directive which deletes a message queue, a semaphore, or a region

on which the blocked task is waiting.

� A running task issues a rtems_task_restart directive for the blocked task.

� The running task, with its preemption mode enabled, may be made ready by issuing any of

the directives that may unblock a task with a higher priority. This directive may be issued

from the running task itself or from an ISR.

A ready task occupies the executing state when it has control of the CPU. A task enters

the executing state due to any of the following conditions:

� The task is the highest priority ready task in the system.

� The running task blocks and the task is next in the scheduling queue. The task may be of

equal priority as in round-robin scheduling or the task may possess the highest priority of

the remaining ready tasks.

� The running task may reenable its preemption mode and a task exists in the ready queue

that has a higher priority than the running task.

� The running task lowers its own priority and another task is of higher priority as a result.

� The running task raises the priority of a task above its own and the running task is in

preemption mode.

Chapter 18: Rate Monotonic Manager 171

18 RateMonotonicManager

18.1 Introduction

The rate monotonic manager provides facilities to implement tasks which execute in a periodic

fashion. The directives provided by the rate monotonic manager are:

� rtems_rate_monotonic_create - Create a rate monotonic period

� rtems_rate_monotonic_ident - Get ID of a period

� rtems_rate_monotonic_cancel - Cancel a period

� rtems_rate_monotonic_delete - Delete a rate monotonic period

� rtems_rate_monotonic_period - Conclude current/Start next period

� rtems_rate_monotonic_get_status - Obtain status information on period

18.2 Background

The rate monotonic manager provides facilities to manage the execution of periodic tasks. This

manager was designed to support application designers who utilize the Rate Monotonic Scheduling

Algorithm (RMS) to insure that their periodic tasks will meet their deadlines, even under transient

overload conditions. Although designed for hard real-time systems, the services provided by the

rate monotonic manager may be used by any application which requires periodic tasks.

18.2.1 Rate Monotonic Manager Required Support

A clock tick is required to support the functionality provided by this manager.

18.2.2 Rate Monotonic Manager De�nitions

A periodic task is one which must be executed at a regular interval. The interval between successive

iterations of the task is referred to as its period. Periodic tasks can be characterized by the length of

their period and execution time. The period and execution time of a task can be used to determine

the processor utilization for that task. Processor utilization is the percentage of processor time

used and can be calculated on a per-task or system-wide basis. Typically, the task's worst-case

execution time will be less than its period. For example, a periodic task's requirements may state

that it should execute for 10 milliseconds every 100 milliseconds. Although the execution time may

be the average, worst, or best case, the worst-case execution time is more appropriate for use when

analyzing system behavior under transient overload conditions.

In contrast, an aperiodic task executes at irregular intervals and has only a soft deadline. In other

words, the deadlines for aperiodic tasks are not rigid, but adequate response times are desirable.

For example, an aperiodic task may process user input from a terminal.

172 RTEMS C User's Guide

Finally, a sporadic task is an aperiodic task with a hard deadline and minimum interarrival time.

The minimum interarrival time is the minimum period of time which exists between successive

iterations of the task. For example, a sporadic task could be used to process the pressing of a �re

button on a joystick. The mechanical action of the �re button insures a minimum time period

between successive activations, but the missile must be launched by a hard deadline.

18.2.3 Rate Monotonic Scheduling Algorithm

The Rate Monotonic Scheduling Algorithm (RMS) is important to real-time systems designers

because it allows one to guarantee that a set of tasks is schedulable. A set of tasks is said to be

schedulable if all of the tasks can meet their deadlines. RMS provides a set of rules which can

be used to perform a guaranteed schedulability analysis for a task set. This analysis determines

whether a task set is schedulable under worst-case conditions and emphasizes the predictability of

the system's behavior. It has been proven that:

RMS is an optimal static priority algorithm for scheduling independent, preemptible, pe-

riodic tasks on a single processor.

RMS is optimal in the sense that if a set of tasks can be scheduled by any static priority algorithm,

then RMS will be able to schedule that task set. RMS bases it schedulability analysis on the

processor utilization level below which all deadlines can be met.

RMS calls for the static assignment of task priorities based upon their period. The shorter a task's

period, the higher its priority. For example, a task with a 1 millisecond period has higher priority

than a task with a 100 millisecond period. If two tasks have the same period, then RMS does not

distinguish between the tasks. However, RTEMS speci�es that when given tasks of equal priority,

the task which has been ready longest will execute �rst. RMS's priority assignment scheme does

not provide one with exact numeric values for task priorities. For example, consider the following

task set and priority assignments:

Task Period Priority

(in milliseconds)

1 100 Low

2 50 Medium

3 50 Medium

4 25 High

RMS only calls for task 1 to have the lowest priority, task 4 to have the highest priority, and tasks

2 and 3 to have an equal priority between that of tasks 1 and 4. The actual RTEMS priorities

assigned to the tasks must only adhere to those guidelines.

Many applications have tasks with both hard and soft deadlines. The tasks with hard deadlines are

typically referred to as the critical task set, with the soft deadline tasks being the non-critical task

Chapter 18: Rate Monotonic Manager 173

set. The critical task set can be scheduled using RMS, with the non-critical tasks not executing

under transient overload, by simply assigning priorities such that the lowest priority critical task

(i.e. longest period) has a higher priority than the highest priority non-critical task. Although

RMS may be used to assign priorities to the non-critical tasks, it is not necessary. In this instance,

schedulability is only guaranteed for the critical task set.

18.2.4 Schedulability Analysis

RMS allows application designers to insure that tasks can meet all deadlines, even under transient

overload, without knowing exactly when any given task will execute by applying proven schedula-

bility analysis rules.

18.2.4.1 Assumptions

The schedulability analysis rules for RMS were developed based on the following assumptions:

� The requests for all tasks for which hard deadlines exist are periodic, with a constant interval

between requests.

� Each task must complete before the next request for it occurs.

� The tasks are independent in that a task does not depend on the initiation or completion

of requests for other tasks.

� The execution time for each task without preemption or interruption is constant and does

not vary.

� Any non-periodic tasks in the system are special. These tasks displace periodic tasks while

executing and do not have hard, critical deadlines.

Once the basic schedulability analysis is understood, some of the above assumptions can be relaxed

and the side-e�ects accounted for.

18.2.4.2 Processor Utilization Rule

The Processor Utilization Rule requires that processor utilization be calculated based upon the

period and execution time of each task. The fraction of processor time spent executing task index

is Time(index) / Period(index). The processor utilization can be calculated as follows:

Utilization = 0

for index = 1 to maximum_tasks

Utilization = Utilization + (Time(index)/Period(index))

To insure schedulability even under transient overload, the processor utilization must adhere to the

following rule:

Utilization = maximum_tasks * (2(1/maximum_tasks) - 1)

174 RTEMS C User's Guide

As the number of tasks increases, the above formula approaches ln(2) for a worst-case utilization

factor of approximately 0.693. Many tasks sets can be scheduled with a greater utilization factor. In

fact, the average processor utilization threshold for a randomly generated task set is approximately

0.88.

18.2.4.3 Processor Utilization Rule Example

This example illustrates the application of the Processor Utilization Rule to an application with

three critical periodic tasks. The following table details the RMS priority, period, execution time,

and processor utilization for each task:

Task RMS Period Execution Processor

Priority Time Utilization

1 High 100 15 0.15

2 Medium 200 50 0.25

3 Low 300 100 0.33

The total processor utilization for this task set is 0.73 which is below the upper bound of 3 * (2(1/3)

- 1), or 0.779, imposed by the Processor Utilization Rule. Therefore, this task set is guaranteed to

be schedulable using RMS.

18.2.4.4 First Deadline Rule

If a given set of tasks do exceed the processor utilization upper limit imposed by the Processor

Utilization Rule, they can still be guaranteed to meet all their deadlines by application of the First

Deadline Rule. This rule can be stated as follows:

For a given set of independent periodic tasks, if each task meets its �rst deadline when all tasks

are started at the same time, then the deadlines will always be met for any combination of start

times.

A key point with this rule is that ALL periodic tasks are assumed to start at the exact same instant

in time. Although this assumption may seem to be invalid, RTEMS makes it quite easy to insure.

By having a non-preemptible user initialization task, all application tasks, regardless of priority,

can be created and started before the initialization deletes itself. This technique insures that all

tasks begin to compete for execution time at the same instant { when the user initialization task

deletes itself.

18.2.4.5 First Deadline Rule Example

The First Deadline Rule can insure schedulability even when the Processor Utilization Rule fails.

The example below is a modi�cation of the Processor Utilization Rule example where task execution

Chapter 18: Rate Monotonic Manager 175

time has been increased from 15 to 25 units. The following table details the RMS priority, period,

execution time, and processor utilization for each task:

Task RMS Period Execution Processor

Priority Time Utilization

1 High 100 25 0.25

2 Medium 200 50 0.25

3 Low 300 100 0.33

The total processor utilization for the modi�ed task set is 0.83 which is above the upper bound of

3 * (2(1/3) - 1), or 0.779, imposed by the Processor Utilization Rule. Therefore, this task set is

not guaranteed to be schedulable using RMS. However, the First Deadline Rule can guarantee the

schedulability of this task set. This rule calls for one to examine each occurrence of deadline until

either all tasks have met their deadline or one task failed to meet its �rst deadline. The following

table details the time of each deadline occurrence, the maximum number of times each task may

have run, the total execution time, and whether all the deadlines have been met.

Deadline Task Task Task Total All Deadlines

Time 1 2 3 Execution Time Net?

100 1 1 1 25 + 50 + 100 = 175 NO

200 2 1 1 50 + 50 + 100 = 200 YES

The key to this analysis is to recognize when each task will execute. For example at time 100,

task 1 must have met its �rst deadline, but tasks 2 and 3 may also have begun execution. In this

example, at time 100 tasks 1 and 2 have completed execution and thus have met their �rst deadline.

Tasks 1 and 2 have used (25 + 50) = 75 time units, leaving (100 - 75) = 25 time units for task 3 to

begin. Because task 3 takes 100 ticks to execute, it will not have completed execution at time 100.

Thus at time 100, all of the tasks except task 3 have met their �rst deadline.

At time 200, task 1 must have met its second deadline and task 2 its �rst deadline. As a result,

of the �rst 200 time units, task 1 uses (2 * 25) = 50 and task 2 uses 50, leaving (200 - 100) time

units for task 3. Task 3 requires 100 time units to execute, thus it will have completed execution

at time 200. Thus, all of the tasks have met their �rst deadlines at time 200, and the task set is

schedulable using the First Deadline Rule.

18.2.4.6 Relaxation of Assumptions

The assumptions used to develop the RMS schedulability rules are uncommon in most real-time

systems. For example, it was assumed that tasks have constant unvarying execution time. It is

possible to relax this assumption, simply by using the worst-case execution time of each task.

Another assumption is that the tasks are independent. This means that the tasks do not wait

for one another or contend for resources. This assumption can be relaxed by accounting for the

176 RTEMS C User's Guide

amount of time a task spends waiting to acquire resources. Similarly, each task's execution time

must account for any I/O performed and any RTEMS directive calls.

In addition, the assumptions did not account for the time spent executing interrupt service routines.

This can be accounted for by including all the processor utilization by interrupt service routines in

the utilization calculation. Similarly, one should also account for the impact of delays in accessing

local memory caused by direct memory access and other processors accessing local dual-ported

memory.

The assumption that nonperiodic tasks are used only for initialization or failure-recovery can be

relaxed by placing all periodic tasks in the critical task set. This task set can be scheduled and

analyzed using RMS. All nonperiodic tasks are placed in the non-critical task set. Although the

critical task set can be guaranteed to execute even under transient overload, the non-critical task

set is not guaranteed to execute.

In conclusion, the application designer must be fully cognizant of the system and its run-time behav-

ior when performing schedulability analysis for a system using RMS. Every hardware and software

factor which impacts the execution time of each task must be accounted for in the schedulability

analysis.

18.2.4.7 Further Reading

For more information on Rate Monotonic Scheduling and its schedulability analysis, the reader is

referred to the following:

C. L. Liu and J. W. Layland. "Scheduling Algorithms for Multiprogramming in a Hard

Real Time Environment." Journal of the Association of Computing Machinery. January

1973. pp. 46-61.

John Lehoczky, Lui Sha, and Ye Ding. "The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior." IEEE Real-Time Systems Symposium. 1989.

pp. 166-171.

Lui Sha and John Goodenough. "Real-Time Scheduling Theory and Ada." IEEE Computer.

April 1990. pp. 53-62.

Alan Burns. "Scheduling hard real-time systems: a review." Software Engineering Journal.

May 1991. pp. 116-128.

18.3 Operations

18.3.1 Creating a Rate Monotonic Period

The rtems_rate_monotonic_create directive creates a rate monotonic period which is to be used

by the calling task to delineate a period. RTEMS allocates a Period Control Block (PCB) from the

PCB free list. This data structure is used by RTEMS to manage the newly created rate monotonic

Chapter 18: Rate Monotonic Manager 177

period. RTEMS returns a unique period ID to the application which is used by other rate monotonic

manager directives to access this rate monotonic period.

18.3.2 Manipulating a Period

The rtems_rate_monotonic_period directive is used to establish and maintain periodic execu-

tion utilizing a previously created rate monotonic period. Once initiated by the rtems_rate_

monotonic_period directive, the period is said to run until it either expires or is reinitiated. The

state of the rate monotonic period results in one of the following scenarios:

� If the rate monotonic period is running, the calling task will be blocked for the remainder of

the outstanding period and, upon completion of that period, the period will be reinitiated

with the speci�ed period.

� If the rate monotonic period is not currently running and has not expired, it is initiated

with a length of period ticks and the calling task returns immediately.

� If the rate monotonic period has expired before the task invokes the rtems_rate_

monotonic_period directive, the period will be initiated with a length of period ticks and

the calling task returns immediately with a timeout error status.

18.3.3 Obtaining a Period's Status

If the rtems_rate_monotonic_period directive is invoked with a period of RTEMS_PERIOD_STATUS

ticks, the current state of the speci�ed rate monotonic period will be returned. The following table

details the relationship between the period's status and the directive status code returned by the

rtems_rate_monotonic_period directive:

� RTEMS_SUCCESSFUL - period is running

� RTEMS_TIMEOUT - period has expired

� RTEMS_NOT_DEFINED - period has never been initiated

Obtaining the status of a rate monotonic period does not alter the state or length of that period.

18.3.4 Canceling a Period

The rtems_rate_monotonic_canceldirective is used to stop the period maintained by the speci�ed

rate monotonic period. The period is stopped and the rate monotonic period can be reinitiated

using the rtems_rate_monotonic_period directive.

18.3.5 Deleting a Rate Monotonic Period

The rtems_rate_monotonic_delete directive is used to delete a rate monotonic period. If the

period is running and has not expired, the period is automatically canceled. The rate monotonic

178 RTEMS C User's Guide

period's control block is returned to the PCB free list when it is deleted. A rate monotonic period

can be deleted by a task other than the task which created the period.

18.3.6 Examples

The following sections illustrate common uses of rate monotonic periods to construct periodic tasks.

18.3.7 Simple Periodic Task

This example consists of a single periodic task which, after initialization, executes every 100 clock

ticks.

Chapter 18: Rate Monotonic Manager 179

rtems_task Periodic_task()

{

rtems_name name;

rtems_id period;

rtems_status_code status;

name = rtems_build_name('P', 'E', 'R', 'D');

(void) rate_monotonic_create(name, &period);

while (1) {

if (rate_monotonic_period(period, 100) == TIMEOUT)

break;

/* Perform some periodic actions */

}

/* missed period so delete period and SELF */

(void) rate_monotonic_delete(period);

(void) task_delete(SELF);

}

The above task creates a rate monotonic period as part of its initialization. The �rst time the loop

is executed, the rtems_rate_monotonic_period directive will initiate the period for 100 ticks and

return immediately. Subsequent invocations of the rtems_rate_monotonic_period directive will

result in the task blocking for the remainder of the 100 tick period. If, for any reason, the body

of the loop takes more than 100 ticks to execute, the rtems_rate_monotonic_period directive

will return the RTEMS_TIMEOUT status. If the above task misses its deadline, it will delete the rate

monotonic period and itself.

18.3.8 Task with Multiple Periods

This example consists of a single periodic task which, after initialization, performs two sets of

actions every 100 clock ticks. The �rst set of actions is performed in the �rst forty clock ticks

of every 100 clock ticks, while the second set of actions is performed between the fortieth and

seventieth clock ticks. The last thirty clock ticks are not used by this task.

180 RTEMS C User's Guide

task Periodic_task()

{

rtems_name name_1, name_2;

rtems_id period_1, period_2;

rtems_status_code status;

name_1 = rtems_build_name('P', 'E', 'R', '1');

name_2 = rtems_build_name('P', 'E', 'R', '2');

(void) rate_monotonic_create(name_1, &period_1);

(void) rate_monotonic_create(name_2, &period_2);

while (1) {

if (rate_monotonic_period(period_1, 100) == TIMEOUT)

break;

if (rate_monotonic_period(period_2, 40) == TIMEOUT)

break;

/*

* Perform first set of actions between clock

* ticks 0 and 39 of every 100 ticks.

*/

if (rate_monotonic_period(period_2, 30) == TIMEOUT)

break;

/*

* Perform second set of actions between clock 40 and 69

* of every 100 ticks. THEN ...

*

* Check to make sure we didn't miss the period_2 period.

*/

if (rate_monotonic_period(period_2, STATUS) == TIMEOUT)

break;

(void) rate_monotonic_cancel(period_2);

}

/* missed period so delete period and SELF */

(void) rate_monotonic_delete(period_1);

(void) rate_monotonic_delete(period_2);

(void) task_delete(SELF);

}

The above task creates two rate monotonic periods as part of its initialization. The �rst time the

loop is executed, the rtems_rate_monotonic_period directive will initiate the period 1 period

Chapter 18: Rate Monotonic Manager 181

for 100 ticks and return immediately. Subsequent invocations of the rtems_rate_monotonic_

period directive for period 1 will result in the task blocking for the remainder of the 100 tick

period. The period 2 period is used to control the execution time of the two sets of actions within

each 100 tick period established by period 1. The rtems_rate_monotonic_cancel(period_2)

call is performed to insure that the period 2 period does not expire while the task is blocked on

the period 1 period. If this cancel operation were not performed, every time the rtems_rate_

monotonic_period(period_1, 40) call is executed, except for the initial one, a directive status

of RTEMS_TIMEOUT is returned. It is important to note that every time this call is made, the period 1

period will be initiated immediately and the task will not block.

If, for any reason, the task misses any deadline, the rtems_rate_monotonic_period directive will

return the RTEMS_TIMEOUT directive status. If the above task misses its deadline, it will delete the

rate monotonic periods and itself.

18.4 Directives

This section details the rate monotonic manager's directives. A subsection is dedicated to each of

this manager's directives and describes the calling sequence, related constants, usage, and status

codes.

182 RTEMS C User's Guide

18.4.1 RATE MONOTONIC CREATE - Create a rate monotonic period

CALLING SEQUENCE:

rtems_status_code rtems_rate_monotonic_create(

rtems_name name,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - rate monotonic period created successfully

RTEMS_INVALID_NAME - invalid task name

RTEMS_TOO_MANY - too many periods created

DESCRIPTION:

This directive creates a rate monotonic period. The assigned rate monotonic id is returned in id.

This id is used to access the period with other rate monotonic manager directives. For control and

maintenance of the rate monotonic period, RTEMS allocates a PCB from the local PCB free pool

and initializes it.

NOTES:

This directive will not cause the calling task to be preempted.

Chapter 18: Rate Monotonic Manager 183

18.4.2 RATE MONOTONIC IDENT - Get ID of a period

CALLING SEQUENCE:

rtems_status_code rtems_rate_monotonic_ident(

rtems_name name,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - period identi�ed successfully

RTEMS_INVALID_NAME - period name not found

DESCRIPTION:

This directive obtains the period id associated with the period name to be acquired. If the period

name is not unique, then the period id will match one of the periods with that name. However,

this period id is not guaranteed to correspond to the desired period. The period id is used to access

this period in other rate monotonic manager directives.

NOTES:

This directive will not cause the running task to be preempted.

184 RTEMS C User's Guide

18.4.3 RATE MONOTONIC CANCEL - Cancel a period

CALLING SEQUENCE:

rtems_status_code rtems_rate_monotonic_cancel(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - period canceled successfully

RTEMS_INVALID_ID - invalid rate monotonic period id

RTEMS_NOT_OWNER_OF_RESOURCE - rate monotonic period not created by calling task

DESCRIPTION:

This directive cancels the rate monotonic period id. This period will be reinitiated by the next

invocation of rtems_rate_monotonic_period with id.

NOTES:

This directive will not cause the running task to be preempted.

The rate monotonic period speci�ed by id must have been created by the calling task.

Chapter 18: Rate Monotonic Manager 185

18.4.4 RATE MONOTONIC DELETE - Delete a rate monotonic period

CALLING SEQUENCE:

rtems_status_code rtems_rate_monotonic_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - period deleted successfully

RTEMS_INVALID_ID - invalid rate monotonic period id

DESCRIPTION:

This directive deletes the rate monotonic period speci�ed by id. If the period is running, it is

automatically canceled. The PCB for the deleted period is reclaimed by RTEMS.

NOTES:

This directive will not cause the running task to be preempted.

A rate monotonic period can be deleted by a task other than the task which created the period.

186 RTEMS C User's Guide

18.4.5 RATE MONOTONIC PERIOD - Conclude current/Start next
period

CALLING SEQUENCE:

rtems_status_code rtems_rate_monotonic_period(

rtems_id id,

rtems_interval length

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - period initiated successfully

RTEMS_INVALID_ID - invalid rate monotonic period id

RTEMS_NOT_OWNER_OF_RESOURCE - period not created by calling task

RTEMS_NOT_DEFINED - period has never been initiated (only possible when period is set to PE-

RIOD STATUS)

RTEMS_TIMEOUT - period has expired

DESCRIPTION:

This directive initiates the rate monotonic period id with a length of period ticks. If id is running,

then the calling task will block for the remainder of the period before reinitiating the period with the

speci�ed period. If id was not running (either expired or never initiated), the period is immediately

initiated and the directive returns immediately.

If invoked with a period of RTEMS_PERIOD_STATUS ticks, the current state of id will be returned.

The directive status indicates the current state of the period. This does not alter the state or

period of the period.

NOTES:

This directive will not cause the running task to be preempted.

|||||||

Chapter 18: Rate Monotonic Manager 187

18.4.6 RATE MONOTONIC GET STATUS - Obtain status information
on period

CALLING SEQUENCE:

rtems_status_code rtems_rate_monotonic_get_status(

rtems_id id,

rtems_rate_monotonic_period_status *status

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - period initiated successfully

RTEMS_INVALID_ID - invalid rate monotonic period id

RTEMS_INVALID_ADDRESS - invalid address of status

DESCRIPTION:

This directive returns status information associated with the rate monotonic period id in the fol-

lowing data structure:

typedef struct {

rtems_rate_monotonic_period_states state;

unsigned32 ticks_since_last_period;

unsigned32 ticks_executed_since_last_period;

} rtems_rate_monotonic_period_status;

If the period's state is RATE_MONOTONIC_INACTIVE, both ticks since last period and

ticks executed since last period will be set to 0. Otherwise, ticks since last period will contain

the number of clock ticks which have occurred since the last invocation of the rtems_rate_

monotonic_period directive. Also in this case, the ticks executed since last period will indicate

how much processor time the owning task has consumed since the invocation of the rtems_rate_

monotonic_period directive.

NOTES:

This directive will not cause the running task to be preempted.

188 RTEMS C User's Guide

Chapter 19: Board Support Packages 189

19 Board Support Packages

19.1 Introduction

A board support package (BSP) is a collection of user-provided facilities which interface RTEMS

and an application with a speci�c hardware platform. These facilities may include hardware initial-

ization, device drivers, user extensions, and a Multiprocessor Communications Interface (MPCI).

However, a minimal BSP need only support processor reset and initialization and, if needed, a clock

tick.

19.2 Reset and Initialization

An RTEMS based application is initiated or re-initiated when the processor is reset. This initializa-

tion code is responsible for preparing the target platform for the RTEMS application. Although the

exact actions performed by the initialization code are highly processor and target dependent, the

logical functionality of these actions are similar across a variety of processors and target platforms.

Normally, the application's initialization is performed at two separate times: before the call

to rtems_initialize_executive (reset application initialization) and after rtems_initialize_

executive in the user's initialization tasks (local and global application initialization). The order

of the startup procedure is as follows:

1. Reset application initialization.

2. Call to rtems_initialize_executive

3. Local and global application initialization.

The reset application initialization code is executed �rst when the processor is reset. All of the

hardware must be initialized to a quiescent state by this software before initializing RTEMS. When

in quiescent state, devices do not generate any interrupts or require any servicing by the applica-

tion. Some of the hardware components may be initialized in this code as well as any application

initialization that does not involve calls to RTEMS directives.

The processor's Interrupt Vector Table which will be used by the application may need to be set

to the required value by the reset application initialization code. Because interrupts are enabled

automatically by RTEMS as part of the rtems_initialize_executive directive, the Interrupt

Vector Table MUST be set before this directive is invoked to insure correct interrupt vectoring.

The processor's Interrupt Vector Table must be accessible by RTEMS as it will be modi�ed by

the rtems_interrupt_catch directive. On some CPUs, RTEMS installs it's own Interrupt Vector

Table as part of initialization and thus these requirements are met automatically. The reset code

which is executed before the call to rtems_initialize_executive has the following requirements:

� Must not make any RTEMS directive calls.

190 RTEMS C User's Guide

� If the processor supports multiple privilege levels, must leave the processor in the most

privileged, or supervisory, state.

� Must allocate a stack of at least RTEMS_MINIMUM_STACK_SIZE bytes and initialize the stack

pointer for the rtems_initialize_executive directive.

� Must initialize the processor's Interrupt Vector Table.

� Must disable all maskable interrupts.

� If the processor supports a separate interrupt stack, must allocate the interrupt stack and

initialize the interrupt stack pointer.

The rtems_initialize_executive directive does not return to the initialization code, but causes

the highest priority initialization task to begin execution. Initialization tasks are used to perform

both local and global application initialization which is dependent on RTEMS facilities. The user

initialization task facility is typically used to create the application's set of tasks.

19.2.1 Interrupt Stack Requirements

The worst-case stack usage by interrupt service routines must be taken into account when designing

an application. If the processor supports interrupt nesting, the stack usage must include the deepest

nest level. The worst-case stack usage must account for the following requirements:

� Processor's interrupt stack frame

� Processor's subroutine call stack frame

� RTEMS system calls

� Registers saved on stack

� Application subroutine calls

The size of the interrupt stack must be greater than or equal to the constant RTEMS_MINIMUM_

STACK_SIZE.

19.2.2 Processors with a Separate Interrupt Stack

Some processors support a separate stack for interrupts. When an interrupt is vectored and the

interrupt is not nested, the processor will automatically switch from the current stack to the

interrupt stack. The size of this stack is based solely on the worst-case stack usage by interrupt

service routines.

The dedicated interrupt stack for the entire application is supplied and initialized by the reset and

initialization code of the user's board support package. Since all ISRs use this stack, the stack size

must take into account the worst case stack usage by any combination of nested ISRs.

Chapter 19: Board Support Packages 191

19.2.3 Processors without a Separate Interrupt Stack

Some processors do not support a separate stack for interrupts. In this case, without special

assistance every task's stack must include enough space to handle the task's worst-case stack usage

as well as the worst-case interrupt stack usage. This is necessary because the worst-case interrupt

nesting could occur while any task is executing.

On many processors without dedicated hardware managed interrupt stacks, RTEMS manages a

dedicated interrupt stack in software. If this capability is supported on a CPU, then it is logically

equivalent to the processor supporting a separate interrupt stack in hardware.

19.3 Device Drivers

Device drivers consist of control software for special peripheral devices and provide a logical in-

terface for the application developer. The RTEMS I/O manager provides directives which allow

applications to access these device drivers in a consistent fashion. A Board Support Package may

include device drivers to access the hardware on the target platform. These devices typically include

serial and parallel ports, counter/timer peripherals, real-time clocks, disk interfaces, and network

controllers.

For more information on device drivers, refer to the I/O Manager chapter.

19.3.1 Clock Tick Device Driver

Most RTEMS applications will include a clock tick device driver which invokes the rtems_clock_

tick directive at regular intervals. The clock tick is necessary if the application is to utilize

timeslicing, the clock manager, the timer manager, the rate monotonic manager, or the timeout

option on blocking directives.

The clock tick is usually provided as an interrupt from a counter/timer or a real-time clock device.

When a counter/timer is used to provide the clock tick, the device is typically programmed to

operate in continuous mode. This mode selection causes the device to automatically reload the

initial count and continue the countdown without programmer intervention. This reduces the

overhead required to manipulate the counter/timer in the clock tick ISR and increases the accuracy

of tick occurrences. The initial count can be based on the microseconds per tick �eld in the RTEMS

Con�guration Table. An alternate approach is to set the initial count for a �xed time period

(such as one millisecond) and have the ISR invoke rtems_clock_tick on the microseconds per tick

boundaries. Obviously, this can induce some error if the con�gured microseconds per tick is not

evenly divisible by the chosen clock interrupt quantum.

It is important to note that the interval between clock ticks directly impacts the granularity of

RTEMS timing operations. In addition, the frequency of clock ticks is an important factor in the

overall level of system overhead. A high clock tick frequency results in less processor time being

available for task execution due to the increased number of clock tick ISRs.

192 RTEMS C User's Guide

19.4 User Extensions

RTEMS allows the application developer to augment selected features by invoking user-supplied

extension routines when the following system events occur:

� Task creation

� Task initiation

� Task reinitiation

� Task deletion

� Task context switch

� Post task context switch

� Task begin

� Task exits

� Fatal error detection

User extensions can be used to implement a wide variety of functions including execution pro�ling,

non-standard coprocessor support, debug support, and error detection and recovery. For example,

the context of a non-standard numeric coprocessor may be maintained via the user extensions. In

this example, the task creation and deletion extensions are responsible for allocating and deallocat-

ing the context area, the task initiation and reinitiation extensions would be responsible for priming

the context area, and the task context switch extension would save and restore the context of the

device.

For more information on user extensions, refer to the User Extensions chapter.

19.5 Multiprocessor Communications Interface (MPCI)

RTEMS requires that an MPCI layer be provided when a multiple node application is developed.

This MPCI layer must provide an e�cient and reliable communications mechanism between the

multiple nodes. Tasks on di�erent nodes communicate and synchronize with one another via the

MPCI. Each MPCI layer must be tailored to support the architecture of the target platform.

For more information on the MPCI, refer to the Multiprocessing Manager chapter.

19.5.1 Tightly-Coupled Systems

A tightly-coupled system is a multiprocessor con�guration in which the processors communicate

solely via shared global memory. The MPCI can simply place the RTEMS packets in the shared

memory space. The two primary considerations when designing an MPCI for a tightly-coupled

system are data consistency and informing another node of a packet.

Chapter 19: Board Support Packages 193

The data consistency problem may be solved using atomic "test and set" operations to provide

a "lock" in the shared memory. It is important to minimize the length of time any particular

processor locks a shared data structure.

The problem of informing another node of a packet can be addressed using one of two techniques.

The �rst technique is to use an interprocessor interrupt capability to cause an interrupt on the

receiving node. This technique requires that special support hardware be provided by either the

processor itself or the target platform. The second technique is to have a node poll for arrival of

packets. The drawback to this technique is the overhead associated with polling.

19.5.2 Loosely-Coupled Systems

A loosely-coupled system is a multiprocessor con�guration in which the processors communicate

via some type of communications link which is not shared global memory. The MPCI sends the

RTEMS packets across the communications link to the destination node. The characteristics of the

communications link vary widely and have a signi�cant impact on the MPCI layer. For example, the

bandwidth of the communications link has an obvious impact on the maximum MPCI throughput.

The characteristics of a shared network, such as Ethernet, lend themselves to supporting an MPCI

layer. These networks provide both the point-to-point and broadcast capabilities which are expected

by RTEMS.

19.5.3 Systems with Mixed Coupling

A mixed-coupling system is a multiprocessor con�guration in which the processors communicate

via both shared memory and communications links. A unique characteristic of mixed-coupling

systems is that a node may not have access to all communication methods. There may be multiple

shared memory areas and communication links. Therefore, one of the primary functions of the

MPCI layer is to e�ciently route RTEMS packets between nodes. This routing may be based on

numerous algorithms. In addition, the router may provide alternate communications paths in the

event of an overload or a partial failure.

19.5.4 Heterogeneous Systems

Designing an MPCI layer for a heterogeneous system requires special considerations by the devel-

oper. RTEMS is designed to eliminate many of the problems associated with sharing data in a

heterogeneous environment. The MPCI layer need only address the representation of thirty-two

(32) bit unsigned quantities.

For more information on supporting a heterogeneous system, refer the Supporting Heterogeneous

Environments in the Multiprocessing Manager chapter.

194 RTEMS C User's Guide

Chapter 20: User Extensions Manager 195

20 User ExtensionsManager

20.1 Introduction

The RTEMS User Extensions Manager allows the application developer to augment the executive

by allowing them to supply extension routines which are invoked at critical system events. The

directives provided by the user extensions manager are:

� rtems_extension_create - Create an extension set

� rtems_extension_ident - Get ID of an extension set

� rtems_extension_delete - Delete an extension set

20.2 Background

User extension routines are invoked when the following system events occur:

� Task creation

� Task initiation

� Task reinitiation

� Task deletion

� Task context switch

� Post task context switch

� Task begin

� Task exits

� Fatal error detection

These extensions are invoked as a function with arguments that are appropriate to the system

event.

20.2.1 Extension Sets

An extension set is de�ned as a set of routines which are invoked at each of the critical system

events at which user extension routines are invoked. Together a set of these routines typically

perform a speci�c functionality such as performance monitoring or debugger support. RTEMS is

informed of the entry points which constitute an extension set via the following structure:

196 RTEMS C User's Guide

typedef struct {

User_extensions_thread_create_extension thread_create;

User_extensions_thread_start_extension thread_start;

User_extensions_thread_restart_extension thread_restart;

User_extensions_thread_delete_extension thread_delete;

User_extensions_thread_switch_extension thread_switch;

User_extensions_thread_post_switch_extension thread_post_switch;

User_extensions_thread_begin_extension thread_begin;

User_extensions_thread_exitted_extension thread_exitted;

User_extensions_fatal_error_extension fatal;

} User_extensions_Table;

RTEMS allows the user to have multiple extension sets active at the same time. First, a single

static extension set may be de�ned as the application's User Extension Table which is included

as part of the Con�guration Table. This extension set is active for the entire life of the system

and may not be deleted. This extension set is especially important because it is the only way

the application can provided a FATAL error extension which is invoked if RTEMS fails during the

initialize executive directive. The static extension set is optional and may be con�gured as NULL

if no static extension set is required.

Second, the user can install dynamic extensions using the rtems_extension_create directive.

These extensions are RTEMS objects in that they have a name, an ID, and can be dynamically

created and deleted. In contrast to the static extension set, these extensions can only be created

and installed after the initialize executive directive successfully completes execution. Dynamic

extensions are useful for encapsulating the functionality of an extension set. For example, the

application could use extensions to manage a special coprocessor, do performance monitoring,

and to do stack bounds checking. Each of these extension sets could be written and installed

independently of the others.

All user extensions are optional and RTEMS places no naming restrictions on the user.

20.2.2 TCB Extension Area

RTEMS provides for a pointer to a user-de�ned data area for each extension set to be linked to

each task's control block. This set of pointers is an extension of the TCB and can be used to store

additional data required by the user's extension functions. It is also possible for a user extension to

utilize the notepad locations associated with each task although this may con
ict with application

usage of those particular notepads.

The TCB extension is an array of pointers in the TCB. The number of pointers in the area is the

same as the number of user extension sets con�gured. This allows an application to augment the

TCB with user-de�ned information. For example, an application could implement task pro�ling by

storing timing statistics in the TCB's extended memory area. When a task context switch is being

executed, the TASK SWITCH extension could read a real-time clock to calculate how long the task

being swapped out has run as well as timestamp the starting time for the task being swapped in.

Chapter 20: User Extensions Manager 197

If used, the extended memory area for the TCB should be allocated and the TCB extension

pointer should be set at the time the task is created or started by either the TASK CREATE

or TASK START extension. The application is responsible for managing this extended memory

area for the TCBs. The memory may be reinitialized by the TASK RESTART extension and should

be deallocated by the TASK DELETE extension when the task is deleted. Since the TCB exten-

sion bu�ers would most likely be of a �xed size, the RTEMS partition manager could be used to

manage the application's extended memory area. The application could create a partition of �xed

size TCB extension bu�ers and use the partition manager's allocation and deallocation directives

to obtain and release the extension bu�ers.

20.2.3 Extensions

The sections that follow will contain a description of each extension. Each section will contain a

prototype of a function with the appropriate calling sequence for the corresponding extension. The

names given for the C function and its arguments are all de�ned by the user. The names used in

the examples were arbitrarily chosen and impose no naming conventions on the user.

20.2.4 TASK CREATE Extension

The TASK CREATE extension directly corresponds to the task create directive. If this extension

is de�ned in any static or dynamic extension set and a task is being created, then the extension

routine will automatically be invoked by RTEMS. The extension should have a prototype similar

to the following:

rtems_extension user_task_create(

rtems_tcb *current_task,

rtems_tcb *new_task

);

where current task can be used to access the TCB for the currently executing task, and new task

can be used to access the TCB for the new task being created. This extension is invoked from

the task create directive after new task has been completely initialized, but before it is placed on

a ready TCB chain.

20.2.5 TASK START Extension

The TASK START extension directly corresponds to the task start directive. If this extension

is de�ned in any static or dynamic extension set and a task is being started, then the extension

routine will automatically be invoked by RTEMS. The extension should have a prototype similar

to the following:

rtems_extension user_task_start(

rtems_tcb *current_task,

rtems_tcb *started_task

);

198 RTEMS C User's Guide

where current task can be used to access the TCB for the currently executing task, and started task

can be used to access the TCB for the dormant task being started. This extension is invoked from

the task start directive after started task has been made ready to start execution, but before it is

placed on a ready TCB chain.

20.2.6 TASK RESTART Extension

The TASK RESTART extension directly corresponds to the task restart directive. If this extension

is de�ned in any static or dynamic extension set and a task is being restarted, then the extension

should have a prototype similar to the following:

rtems_extension user_task_restart(

rtems_tcb *current_task,

rtems_tcb *restarted_task

);

where current task can be used to access the TCB for the currently executing task, and

restarted task can be used to access the TCB for the task being restarted. This extension is

invoked from the task restart directive after restarted task has been made ready to start execution,

but before it is placed on a ready TCB chain.

20.2.7 TASK DELETE Extension

The TASK DELETE extension is associated with the task delete directive. If this extension is

de�ned in any static or dynamic extension set and a task is being deleted, then the extension

routine will automatically be invoked by RTEMS. The extension should have a prototype similar

to the following:

rtems_extension user_task_delete(

rtems_tcb *current_task,

rtems_tcb *deleted_task

);

where current task can be used to access the TCB for the currently executing task, and deleted task

can be used to access the TCB for the task being deleted. This extension is invoked from the

task delete directive after the TCB has been removed from a ready TCB chain, but before all its

resources including the TCB have been returned to their respective free pools. This extension should

not call any RTEMS directives if a task is deleting itself (current task is equal to deleted task).

20.2.8 TASK SWITCH Extension

The TASK SWITCH extension corresponds to a task context switch. If this extension is de�ned

in any static or dynamic extension set and a task context switch is in progress, then the extension

routine will automatically be invoked by RTEMS. The extension should have a prototype similar

to the following:

Chapter 20: User Extensions Manager 199

rtems_extension user_task_switch(

rtems_tcb *current_task,

rtems_tcb *heir_task

);

where current task can be used to access the TCB for the task that is being swapped out, and

heir task can be used to access the TCB for the task being swapped in. This extension is invoked

from RTEMS' dispatcher routine after the current task context has been saved, but before the

heir task context has been restored. This extension should not call any RTEMS directives.

20.2.9 TASK POST SWITCH Extension

The TASK POST SWITCH extension corresponds to a task context switch. If this extension is

de�ned in any static or dynamic extension set and a raw task context switch has been completed,

then the extension routine will automatically be invoked by RTEMS. The extension should have a

prototype similar to the following:

rtems_extension user_task_post_switch(

rtems_tcb *current_task

);

where current task can be used to access the TCB for the task that is being swapped out, and

heir task can be used to access the TCB for the task being swapped in. This extension is invoked

from RTEMS' dispatcher routine after the current task context has been restored and the extension

runs in the context of the current task.

20.2.10 TASK BEGIN Extension

The TASK BEGIN extension is invoked when a task begins execution. It is invoked immediately

before the body of the starting procedure and executes in the context in the task. This user

extension have a prototype similar to the following:

rtems_extension user_task_begin(

rtems_tcb *current_task

);

where current task can be used to access the TCB for the currently executing task which has begun.

The distinction between the TASK BEGIN and TASK START extension is that the TASK BEGIN

extension is executed in the context of the actual task while the TASK START extension is executed

in the context of the task performing the task start directive. For most extensions, this is not a

critical distinction.

200 RTEMS C User's Guide

20.2.11 TASK EXITTED Extension

The TASK EXITTED extension is invoked when a task exits the body of the starting procedure

by either an implicit or explicit return statement. This user extension have a prototype similar to

the following:

rtems_extension user_task_exitted(

rtems_tcb *current_task

);

where current task can be used to access the TCB for the currently executing task which has just

exitted.

Although exiting of task is often considered to be a fatal error, this extension allows recovery by

either restarting or deleting the exiting task. If the user does not wish to recover, then a fatal

error may be reported. If the user does not provide a TASK EXITTED extension or the provided

handler returns control to RTEMS, then the RTEMS default handler will be used. This default

handler invokes the directive fatal error occurred with the RTEMS_TASK_EXITTED directive status.

20.2.11.1 FATAL Error Extension

The FATAL error extension is associated with the fatal error occurred directive. If this extension

is de�ned in any static or dynamic extension set and the fatal error occurred directive has been

invoked, then this extension will be called. This extension should have a prototype similar to the

following:

rtems_extension user_fatal_error(

Internal_errors_Source the_source,

rtems_boolean is_internal,

rtems_unsigned32 the_error

);

where the error is the error code passed to the fatal error occurred directive. This extension is

invoked from the fatal error occurred directive.

If de�ned, the user's FATAL error extension is invoked before RTEMS' default fatal error routine

is invoked and the processor is stopped. For example, this extension could be used to pass control

to a debugger when a fatal error occurs. This extension should not call any RTEMS directives.

20.2.12 Order of Invocation

When one of the critical system events occur, the user extensions are invoked in either "forward"

or "reverse" order. Forward order indicates that the static extension set is invoked followed by

the dynamic extension sets in the order in which they were created. Reverse order means that the

dynamic extension sets are invoked in the opposite of the order in which they were created followed

by the static extension set. By invoking the extension sets in this order, extensions can be built

upon one another. At the following system events, the extensions are invoked in forward order:

Chapter 20: User Extensions Manager 201

� Task creation

� Task initiation

� Task reinitiation

� Task deletion

� Task context switch

� Post task context switch

� Task begins to execute

At the following system events, the extensions are invoked in reverse order:

� Task deletion

� Fatal error detection

At these system events, the extensions are invoked in reverse order to insure that if an extension

set is built upon another, the more complicated extension is invoked before the extension set it is

built upon. For example, by invoking the static extension set last it is known that the "system"

fatal error extension will be the last fatal error extension executed. Another example is use of

the task delete extension by the Standard C Library. Extension sets which are installed after the

Standard C Library will operate correctly even if they utilize the C Library because the C Library's

TASK DELETE extension is invoked after that of the other extensions.

20.3 Operations

20.3.1 Creating an Extension Set

The rtems_extension_create directive creates and installs an extension set by allocating a Ex-

tension Set Control Block (ESCB), assigning the extension set a user-speci�ed name, and assigning

it an extension set ID. Newly created extension sets are immediately installed and are invoked upon

the next system even supporting an extension.

20.3.2 Obtaining Extension Set IDs

When an extension set is created, RTEMS generates a unique extension set ID and assigns it

to the created extension set until it is deleted. The extension ID may be obtained by either of

two methods. First, as the result of an invocation of the rtems_extension_create directive, the

extension set ID is stored in a user provided location. Second, the extension set ID may be obtained

later using the rtems_extension_ident directive. The extension set ID is used by other directives

to manipulate this extension set.

202 RTEMS C User's Guide

20.3.3 Deleting an Extension Set

The rtems_extension_delete directive is used to delete an extension set. The extension set's

control block is returned to the ESCB free list when it is deleted. An extension set can be deleted

by a task other than the task which created the extension set. Any subsequent references to the

extension's name and ID are invalid.

20.4 Directives

This section details the user extension manager's directives. A subsection is dedicated to each of

this manager's directives and describes the calling sequence, related constants, usage, and status

codes.

Chapter 20: User Extensions Manager 203

20.4.1 EXTENSION CREATE - Create a extension set

CALLING SEQUENCE:

rtems_status_code rtems_extension_create(

rtems_name name,

rtems_extensions_table *table,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - extension set created successfully

RTEMS_INVALID_NAME - invalid extension set name

RTEMS_TOO_MANY - too many extension sets created

DESCRIPTION:

This directive creates a extension set. The assigned extension set id is returned in id. This id

is used to access the extension set with other user extension manager directives. For control and

maintenance of the extension set, RTEMS allocates an ESCB from the local ESCB free pool and

initializes it.

NOTES:

This directive will not cause the calling task to be preempted.

204 RTEMS C User's Guide

20.4.2 EXTENSION IDENT - Get ID of a extension set

CALLING SEQUENCE:

rtems_status_code rtems_extension_ident(

rtems_name name,

rtems_id *id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - extension set identi�ed successfully

RTEMS_INVALID_NAME - extension set name not found

DESCRIPTION:

This directive obtains the extension set id associated with the extension set name to be acquired.

If the extension set name is not unique, then the extension set id will match one of the extension

sets with that name. However, this extension set id is not guaranteed to correspond to the desired

extension set. The extension set id is used to access this extension set in other extension set related

directives.

NOTES:

This directive will not cause the running task to be preempted.

Chapter 20: User Extensions Manager 205

20.4.3 EXTENSION DELETE - Delete a extension set

CALLING SEQUENCE:

rtems_status_code rtems_extension_delete(

rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - extension set deleted successfully

RTEMS_INVALID_ID - invalid extension set id

DESCRIPTION:

This directive deletes the extension set speci�ed by id. If the extension set is running, it is auto-

matically canceled. The ESCB for the deleted extension set is reclaimed by RTEMS.

NOTES:

This directive will not cause the running task to be preempted.

A extension set can be deleted by a task other than the task which created the extension set.

NOTES:

This directive will not cause the running task to be preempted.

206 RTEMS C User's Guide

Chapter 21: Con�guring a System 207

21 Con�guring a System

21.1 Con�guration Table

The RTEMS Con�guration Table is used to tailor an application for its speci�c needs. For example,

the user can con�gure the number of device drivers or which APIs may be used. THe address of the

user-de�ned Con�guration Table is passed as an argument to the rtems_initialize_executive

directive, which MUST be the �rst RTEMS directive called. The RTEMS Con�guration Table is

de�ned in the following C structure:

typedef struct {

void *work_space_start;

rtems_unsigned32 work_space_size;

rtems_unsigned32 maximum_extensions;

rtems_unsigned32 microseconds_per_tick;

rtems_unsigned32 ticks_per_timeslice;

rtems_unsigned32 maximum_devices;

rtems_unsigned32 number_of_device_drivers;

rtems_driver_address_table *Device_driver_table;

rtems_unsigned32 number_of_initial_extensions;

rtems_extensions_table *User_extension_table;

rtems_multiprocessing_table *User_multiprocessing_table;

rtems_api_configuration_table *RTEMS_api_configuration;

posix_api_configuration_table *POSIX_api_configuration;

} rtems_configuration_table;

work space start is the address of the RTEMS RAM Workspace. This area contains items

such as the various object control blocks (TCBs, QCBs, ...) and task stacks.

If the address is not aligned on a four-word boundary, then RTEMS will

invoke the fatal error handler during rtems_initialize_executive.

work space size is the calculated size of the RTEMS RAM Workspace. The section Sizing

the RTEMS RAM Workspace details how to arrive at this number.

microseconds per tick

is number of microseconds per clock tick.

ticks per timeslice is the number of clock ticks for a timeslice.

maximum devices is the maximum number of devices that can be registered.

number of device drivers

is the number of device drivers for the system. There should be the same

number of entries in the Device Driver Table. If this �eld is zero, then the

User driver address table entry should be NULL.

Device driver table is the address of the Device Driver Table. This table contains the entry

points for each device driver. If the number of device drivers �eld is zero,

208 RTEMS C User's Guide

then this entry should be NULL. The format of this table will be discussed

below.

number of initial extensions

is the number of initial user extensions. There should be the same num-

ber of entries as in the User extension table. If this �eld is zero, then the

User driver address table entry should be NULL.

User extension table is the address of the User Extension Table. This table contains the entry

points for the static set of optional user extensions. If no user extensions are

con�gured, then this entry should be NULL. The format of this table will

be discussed below.

User multiprocessing table

is the address of the Multiprocessor Con�guration Table. This table con-

tains information needed by RTEMS only when used in a multiprocessor

con�guration. This �eld must be NULL when RTEMS is used in a single

processor con�guration.

RTEMS api con�guration

is the address of the RTEMS API Con�guration Table. This table contains

information needed by the RTEMS API. This �eld should be NULL if the

RTEMS API is not used. [NOTE: Currently the RTEMS API is required

to support support components such as BSPs and libraries which use this

API.]

POSIX api con�guration

is the address of the POSIX API Con�guration Table. This table contains

information needed by the POSIX API. This �eld should be NULL if the

POSIX API is not used.

21.2 RTEMS API Con�guration Table

The RTEMS API Con�guration Table is used to con�gure the managers which constitute the

RTEMS API for a particular application. For example, the user can con�gure the maximum

number of tasks for this application. The RTEMS API Con�guration Table is de�ned in the

following C structure:

Chapter 21: Con�guring a System 209

typedef struct {

rtems_unsigned32 maximum_tasks;

rtems_unsigned32 maximum_timers;

rtems_unsigned32 maximum_semaphores;

rtems_unsigned32 maximum_message_queues;

rtems_unsigned32 maximum_partitions;

rtems_unsigned32 maximum_regions;

rtems_unsigned32 maximum_ports;

rtems_unsigned32 maximum_periods;

rtems_unsigned32 number_of_initialization_tasks;

rtems_initialization_tasks_table *User_initialization_tasks_table;

} rtems_api_configuration_table;

maximum tasks is the maximum number of tasks that can be concurrently active (created)

in the system including initialization tasks.

maximum timers is the maximum number of timers that can be concurrently active in the

system.

maximum semaphores

is the maximum number of semaphores that can be concurrently active in

the system.

maximum message queues

is the maximum number of message queues that can be concurrently active

in the system.

maximum partitions is the maximum number of partitions that can be concurrently active in the

system.

maximum regions is the maximum number of regions that can be concurrently active in the

system.

maximum ports is the maximum number of ports into dual-port memory areas that can be

concurrently active in the system.

number of initialization tasks

is the number of initialization tasks con�gured. At least one initialization

task must be con�gured.

User initialization tasks table

is the address of the Initialization Task Table. This table contains the in-

formation needed to create and start each of the initialization tasks. The

format of this table will be discussed below.

21.3 POSIX API Con�guration Table

The POSIX API Con�guration Table is used to con�gure the managers which constitute the POSIX

API for a particular application. For example, the user can con�gure the maximum number of

210 RTEMS C User's Guide

threads for this application. The POSIX API Con�guration Table is de�ned in the following C

structure:

typedef struct {

void *(*thread_entry)(void *);

} posix_initialization_threads_table;

typedef struct {

int maximum_threads;

int maximum_mutexes;

int maximum_condition_variables;

int maximum_keys;

int maximum_queued_signals;

int number_of_initialization_tasks;

posix_initialization_threads_table *User_initialization_tasks_table;

} posix_api_configuration_table;

maximum threads is the maximum number of threads that can be concurrently active (created)

in the system including initialization threads.

maximum mutexes is the maximum number of mutexes that can be concurrently active in the

system.

maximum condition variables

is the maximum number of condition variables that can be concurrently

active in the system.

maximum keys is the maximum number of keys that can be concurrently active in the sys-

tem.

maximum queued signals

is the maximum number of queued signals that can be concurrently pending

in the system.

number of initialization threads

is the number of initialization threads con�gured. At least one initialization

threads must be con�gured.

User initialization threads table

is the address of the Initialization Threads Table. This table con-

tains the information needed to create and start each of the initializa-

tion threads. The format of each entry in this table is de�ned in the

posix initialization threads table structure.

21.4 CPU Dependent Information Table

The CPU Dependent Information Table is used to describe processor dependent information re-

quired by RTEMS. This table is generally used to supply RTEMS with information only known

Chapter 21: Con�guring a System 211

by the Board Support Package. The contents of this table are discussed in the CPU Dependent

Information Table chapter of the Applications Supplement document for a speci�c target processor.

21.5 Initialization Task Table

The Initialization Task Table is used to describe each of the user initialization tasks to the Initial-

ization Manager. The table contains one entry for each initialization task the user wishes to create

and start. The �elds of this data structure directly correspond to arguments to the task create and

task start directives. The number of entries is found in the number of initialization tasks entry in

the Con�guration Table. The format of each entry in the Initialization Task Table is de�ned in the

following C structure:

typedef struct {

rtems_name name;

rtems_unsigned32 stack_size;

rtems_task_priority initial_priority;

rtems_attribute attribute_set;

rtems_task_entry entry_point;

rtems_mode mode_set;

rtems_task_argument argument;

} rtems_initialization_tasks_table;

name is the name of this initialization task.

stack size is the size of the stack for this initialization task.

initial priority is the priority of this initialization task.

attribute set is the attribute set used during creation of this initialization task.

entry point is the address of the entry point of this initialization task.

mode set is the initial execution mode of this initialization task.

argument is the initial argument for this initialization task.

A typical declaration for an Initialization Task Table might appear as follows:

rtems_initialization_tasks_table

Initialization_tasks[2] = {

{ INIT_1_NAME,

1024,

1,

DEFAULT_ATTRIBUTES,

Init_1,

DEFAULT_MODES,

1

},

{ INIT_2_NAME,

212 RTEMS C User's Guide

1024,

250,

FLOATING_POINT,

Init_2,

NO_PREEMPT,

2

}

};

21.6 Driver Address Table

The Device Driver Table is used to inform the I/O Manager of the set of entry points for each

device driver con�gured in the system. The table contains one entry for each device driver required

by the application. The number of entries is de�ned in the number of device drivers entry in the

Con�guration Table. The format of each entry in the Device Driver Table is de�ned in the following

C structure:

typedef struct {

rtems_device_driver_entry initialization;

rtems_device_driver_entry open;

rtems_device_driver_entry close;

rtems_device_driver_entry read;

rtems_device_driver_entry write;

rtems_device_driver_entry control;

} rtems_driver_address_table;

initialization is the address of the entry point called by rtems_io_initialize to initialize

a device driver and its associated devices.

open is the address of the entry point called by rtems_io_open.

close is the address of the entry point called by rtems_io_close.

read is the address of the entry point called by rtems_io_read.

write is the address of the entry point called by rtems_io_write.

control is the address of the entry point called by rtems_io_control.

Driver entry points con�gured as NULL will always return a status code of RTEMS_SUCCESSFUL.

No user code will be executed in this situation.

A typical declaration for a Device Driver Table might appear as follows:

rtems_driver_address_table Driver_table[2] = {

{ tty_initialize, tty_open, tty_close, /* major = 0 */

tty_read, tty_write, tty_control

},

{ lp_initialize, lp_open, lp_close, /* major = 1 */

Chapter 21: Con�guring a System 213

NULL, lp_write, lp_control

}

};

More information regarding the construction and operation of device drivers is provided in the I/O

Manager chapter.

21.7 User Extensions Table

The User Extensions Table is used to inform RTEMS of the optional user-supplied static extension

set. This table contains one entry for each possible extension. The entries are called at critical

times in the life of the system and individual tasks. The application may create dynamic extensions

in addition to this single static set. The format of each entry in the User Extensions Table is de�ned

in the following C structure:

typedef User_extensions_routine rtems_extension;

typedef User_extensions_thread_create_extension rtems_task_create_extension;

typedef User_extensions_thread_delete_extension rtems_task_delete_extension;

typedef User_extensions_thread_start_extension rtems_task_start_extension;

typedef User_extensions_thread_restart_extension rtems_task_restart_extension;

typedef User_extensions_thread_switch_extension rtems_task_switch_extension;

typedef User_extensions_thread_begin_extension rtems_task_begin_extension;

typedef User_extensions_thread_exitted_extension rtems_task_exitted_extension;

typedef User_extensions_fatal_extension rtems_fatal_extension;

typedef User_extensions_Table rtems_extensions_table;

typedef struct {

rtems_task_create_extension thread_create;

rtems_task_start_extension thread_start;

rtems_task_restart_extension thread_restart;

rtems_task_delete_extension thread_delete;

rtems_task_switch_extension thread_switch;

rtems_task_post_switch_extension thread_post_switch;

rtems_task_begin_extension thread_begin;

rtems_task_exitted_extension thread_exitted;

rtems_fatal_extension fatal;

} User_extensions_Table;

thread create is the address of the user-supplied subroutine for the TASK CREATE ex-

tension. If this extension for task creation is de�ned, it is called from the

task create directive. A value of NULL indicates that no extension is pro-

vided.

thread start is the address of the user-supplied subroutine for the TASK START exten-

sion. If this extension for task initiation is de�ned, it is called from the

214 RTEMS C User's Guide

task start directive. A value of NULL indicates that no extension is pro-

vided.

thread restart is the address of the user-supplied subroutine for the TASK RESTART ex-

tension. If this extension for task re-initiation is de�ned, it is called from

the task restart directive. A value of NULL indicates that no extension is

provided.

thread delete is the address of the user-supplied subroutine for the TASK DELETE ex-

tension. If this RTEMS extension for task deletion is de�ned, it is called

from the task delete directive. A value of NULL indicates that no extension

is provided.

thread switch is the address of the user-supplied subroutine for the task context switch ex-

tension. This subroutine is called from RTEMS dispatcher after the current

task has been swapped out but before the new task has been swapped in.

A value of NULL indicates that no extension is provided. As this routine is

invoked after saving the current task's context and before restoring the heir

task's context, it is not necessary for this routine to save and restore any

registers.

thread post switch is the address of the user-supplied subroutine for the post task context switch

extension. This subroutine is called from RTEMS dispatcher in the context

of the task which has just been swapped in.

thread begin is the address of the user-supplied subroutine which is invoked immediately

before a task begins execution. It is invoked in the context of the beginning

task. A value of NULL indicates that no extension is provided.

thread exitted is the address of the user-supplied subroutine which is invoked when a task

exits. This procedure is responsible for some action which will allow the

system to continue execution (i.e. delete or restart the task) or to termi-

nate with a fatal error. If this �eld is set to NULL, the default RTEMS

TASK EXITTED handler will be invoked.

fatal is the address of the user-supplied subroutine for the FATAL extension. This

RTEMS extension of fatal error handling is called from the rtems_fatal_

error_occurred directive. If the user's fatal error handler returns or if this

entry is NULL then the default RTEMS fatal error handler will be executed.

A typical declaration for a User Extension Table which de�nes the TASK CREATE,

TASK DELETE, TASK SWITCH, and FATAL extension might appear as follows:

rtems_extensions_table User_extensions = {

task_create_extension,

NULL,

NULL,

Chapter 21: Con�guring a System 215

task_delete_extension,

task_switch_extension,

NULL,

NULL,

fatal_extension

};

More information regarding the user extensions is provided in the User Extensions chapter.

21.8 Multiprocessor Con�guration Table

The Multiprocessor Con�guration Table contains information needed when using RTEMS in a mul-

tiprocessor con�guration. Many of the details associated with con�guring a multiprocessor system

are dependent on the multiprocessor communications layer provided by the user. The address of

the Multiprocessor Con�guration Table should be placed in the User multiprocessing table entry

in the primary Con�guration Table. Further details regarding many of the entries in the Multi-

processor Con�guration Table will be provided in the Multiprocessing chapter. The format of the

Multiprocessor Con�guration Table is de�ned in the following C structure:

typedef struct {

rtems_unsigned32 node;

rtems_unsigned32 maximum_nodes;

rtems_unsigned32 maximum_global_objects;

rtems_unsigned32 maximum_proxies;

rtems_mpci_table *User_mpci_table;

} rtems_multiprocessing_table;

node is a unique processor identi�er and is used in routing messages between

nodes in a multiprocessor con�guration. Each processor must have a unique

node number. RTEMS assumes that node numbers start at one and increase

sequentially. This assumption can be used to advantage by the user-supplied

MPCI layer. Typically, this requirement is made when the node numbers are

used to calculate the address of inter-processor communication links. Zero

should be avoided as a node number because some MPCI layers use node

zero to represent broadcasted packets. Thus, it is recommended that node

numbers start at one and increase sequentially.

maximum nodes is the number of processor nodes in the system.

maximum global objects

is the maximum number of global objects which can exist at any given mo-

ment in the entire system. If this parameter is not the same on all nodes

in the system, then a fatal error is generated to inform the user that the

system is inconsistent.

maximum proxies is the maximum number of proxies which can exist at any given moment

on this particular node. A proxy is a substitute task control block which

216 RTEMS C User's Guide

represent a task residing on a remote node when that task blocks on a remote

object. Proxies are used in situations in which delayed interaction is required

with a remote node.

User mpci table is the address of the Multiprocessor Communications Interface Table. This

table contains the entry points of user-provided functions which constitute

the multiprocessor communications layer. This table must be provided in

multiprocessor con�gurations with all entries con�gured. The format of this

table and details regarding its entries can be found in the next section.

21.9 Multiprocessor Communications Interface Table

The format of this table is de�ned in the following C structure:

typedef struct {

rtems_unsigned32 default_timeout; /* in ticks */

rtems_unsigned32 maximum_packet_size;

rtems_mpci_initialization_entry initialization;

rtems_mpci_get_packet_entry get_packet;

rtems_mpci_return_packet_entry return_packet;

rtems_mpci_send_entry send;

rtems_mpci_receive_entry receive;

} rtems_mpci_table;

default timeout is the default maximum length of time a task should block waiting for a

response to a directive which results in communication with a remote node.

The maximum length of time is a function the user supplied multiprocessor

communications layer and the media used. This timeout only applies to

directives which would not block if the operation were performed locally.

maximum packet size

is the size in bytes of the longest packet which the MPCI layer is capable of

sending. This value should represent the total number of bytes available for

a RTEMS interprocessor messages.

initialization is the address of the entry point for the initialization procedure of the user

supplied multiprocessor communications layer.

get packet is the address of the entry point for the procedure called by RTEMS to obtain

a packet from the user supplied multiprocessor communications layer.

return packet is the address of the entry point for the procedure called by RTEMS to

return a packet to the user supplied multiprocessor communications layer.

send is the address of the entry point for the procedure called by RTEMS to send

an envelope to another node. This procedure is part of the user supplied

multiprocessor communications layer.

Chapter 21: Con�guring a System 217

receive is the address of the entry point for the procedure called by RTEMS to

retrieve an envelope containing a message from another node. This procedure

is part of the user supplied multiprocessor communications layer.

More information regarding the required functionality of these entry points is provided in the

Multiprocessor chapter.

21.10 Determining Memory Requirements

Since memory is a critical resource in many real-time embedded systems, RTEMS was speci�cally

designed to allow unused managers to be excluded from the run-time environment. This allows

the application designer the
exibility to tailor RTEMS to most e�ciently meet system require-

ments while still satisfying even the most stringent memory constraints. As result, the size of the

RTEMS executive is application dependent. A Memory Requirements worksheet is provided in the

Applications Supplement document for a speci�c target processor. This worksheet can be used

to calculate the memory requirements of a custom RTEMS run-time environment. To insure that

enough memory is allocated for future versions of RTEMS, the application designer should round

these memory requirements up. The following managers may be optionally excluded:

� signal

� region

� dual ported memory

� event

� multiprocessing

� partition

� timer

� semaphore

� message

� rate monotonic

RTEMS based applications must somehow provide memory for RTEMS' code and data space.

Although RTEMS' data space must be in RAM, its code space can be located in either ROM or

RAM. In addition, the user must allocate RAM for the RTEMS RAM Workspace. The size of this

area is application dependent and can be calculated using the formula provided in the Memory

Requirements chapter of the Applications Supplement document for a speci�c target processor.

All RTEMS data variables and routine names used by RTEMS begin with the underscore ()

character followed by an upper-case letter. If RTEMS is linked with an application, then the

application code should NOT contain any symbols which begin with the underscore character and

followed by an upper-case letter to avoid any naming con
icts. All RTEMS directive names should

be treated as reserved words.

218 RTEMS C User's Guide

21.11 Sizing the RTEMS RAMWorkspace

The RTEMS RAM Workspace is a user-speci�ed block of memory reserved for use by RTEMS.

The application should NOT modify this memory. This area consists primarily of the RTEMS

data structures whose exact size depends upon the values speci�ed in the Con�guration Table. In

addition, task stacks and
oating point context areas are dynamically allocated from the RTEMS

RAM Workspace.

The starting address of the RTEMS RAM Workspace must be aligned on a four-byte boundary.

Failure to properly align the workspace area will result in the rtems_fatal_error_occurred di-

rective being invoked with the RTEMS_INVALID_ADDRESS error code.

A worksheet is provided in the Memory Requirements chapter of the Applications Supplement

document for a speci�c target processor to assist the user in calculating the minimum size of the

RTEMS RAM Workspace for each application. The value calculated with this worksheet is the

minimum value that should be speci�ed as the work space size parameter of the Con�guration

Table. The user is cautioned that future versions of RTEMS may not have the same memory

requirements per object. Although the value calculated is su�cient for a particular target processor

and release of RTEMS, memory usage is subject to change across versions and target processors.

The user is advised to allocate somewhat more memory than the worksheet recommends to insure

compatibility with future releases for a speci�c target processor and other target processors. To

avoid problems, the user should recalculate the memory requirements each time one of the following

events occurs:

� a con�guration parameter is modi�ed,

� task or interrupt stack requirements change,

� task
oating point attribute is altered,

� RTEMS is upgraded, or

� the target processor is changed.

Failure to provide enough space in the RTEMS RAM Workspace will result in the rtems_fatal_

error_occurred directive being invoked with the appropriate error code.

Chapter 22: Multiprocessing Manager 219

22 MultiprocessingManager

22.1 Introduction

In multiprocessor real-time systems, new requirements, such as sharing data and global resources

between processors, are introduced. This requires an e�cient and reliable communications vehicle

which allows all processors to communicate with each other as necessary. In addition, the rami-

�cations of multiple processors a�ect each and every characteristic of a real-time system, almost

always making them more complicated.

RTEMS addresses these issues by providing simple and
exible real-time multiprocessing capabili-

ties. The executive easily lends itself to both tightly-coupled and loosely-coupled con�gurations of

the target system hardware. In addition, RTEMS supports systems composed of both homogeneous

and heterogeneous mixtures of processors and target boards.

A major design goal of the RTEMS executive was to transcend the physical boundaries of the

target hardware con�guration. This goal is achieved by presenting the application software with a

logical view of the target system where the boundaries between processor nodes are transparent.

As a result, the application developer may designate objects such as tasks, queues, events, signals,

semaphores, and memory blocks as global objects. These global objects may then be accessed

by any task regardless of the physical location of the object and the accessing task. RTEMS

automatically determines that the object being accessed resides on another processor and performs

the actions required to access the desired object. Simply stated, RTEMS allows the entire system,

both hardware and software, to be viewed logically as a single system.

22.2 Background

RTEMS makes no assumptions regarding the connection media or topology of a multiprocessor

system. The tasks which compose a particular application can be spread among as many processors

as needed to satisfy the application's timing requirements. The application tasks can interact using

a subset of the RTEMS directives as if they were on the same processor. These directives allow

application tasks to exchange data, communicate, and synchronize regardless of which processor

they reside upon.

The RTEMS multiprocessor execution model is multiple instruction streams with multiple data

streams (MIMD). This execution model has each of the processors executing code independent of

the other processors. Because of this parallelism, the application designer can more easily guarantee

deterministic behavior.

By supporting heterogeneous environments, RTEMS allows the systems designer to select the most

e�cient processor for each subsystem of the application. Con�guring RTEMS for a heterogeneous

environment is no more di�cult than for a homogeneous one. In keeping with RTEMS philosophy

220 RTEMS C User's Guide

of providing transparent physical node boundaries, the minimal heterogeneous processing required

is isolated in the MPCI layer.

22.2.1 Nodes

A processor in a RTEMS system is referred to as a node. Each node is assigned a unique non-

zero node number by the application designer. RTEMS assumes that node numbers are assigned

consecutively from one to maximum nodes. The node number, node, and the maximum number

of nodes, maximum nodes, in a system are found in the Multiprocessor Con�guration Table. The

maximum nodes �eld and the number of global objects, maximum global objects, is required to be

the same on all nodes in a system.

The node number is used by RTEMS to identify each node when performing remote operations.

Thus, the Multiprocessor Communications Interface Layer (MPCI) must be able to route messages

based on the node number.

22.2.2 Global Objects

All RTEMS objects which are created with the GLOBAL attribute will be known on all other

nodes. Global objects can be referenced from any node in the system, although certain directive

speci�c restrictions (e.g. one cannot delete a remote object) may apply. A task does not have to

be global to perform operations involving remote objects. The maximum number of global objects

is the system is user con�gurable and can be found in the maximum global objects �eld in the

Multiprocessor Con�guration Table. The distribution of tasks to processors is performed during

the application design phase. Dynamic task relocation is not supported by RTEMS.

22.2.3 Global Object Table

RTEMS maintains two tables containing object information on every node in a multiprocessor

system: a local object table and a global object table. The local object table on each node is

unique and contains information for all objects created on this node whether those objects are local

or global. The global object table contains information regarding all global objects in the system

and, consequently, is the same on every node.

Since each node must maintain an identical copy of the global object table, the maximum number

of entries in each copy of the table must be the same. The maximum number of entries in each

copy is determined by the maximum global objects parameter in the Multiprocessor Con�guration

Table. This parameter, as well as the maximum nodes parameter, is required to be the same on all

nodes. To maintain consistency among the table copies, every node in the system must be informed

of the creation or deletion of a global object.

Chapter 22: Multiprocessing Manager 221

22.2.4 Remote Operations

When an application performs an operation on a remote global object, RTEMS must generate

a Remote Request (RQ) message and send it to the appropriate node. After completing the

requested operation, the remote node will build a Remote Response (RR) message and send it to

the originating node. Messages generated as a side-e�ect of a directive (such as deleting a global

task) are known as Remote Processes (RP) and do not require the receiving node to respond.

Other than taking slightly longer to execute directives on remote objects, the application is unaware

of the location of the objects it acts upon. The exact amount of overhead required for a remote

operation is dependent on the media connecting the nodes and, to a lesser degree, on the e�ciency

of the user-provided MPCI routines.

The following shows the typical transaction sequence during a remote application:

1. The application issues a directive accessing a remote global object.

2. RTEMS determines the node on which the object resides.

3. RTEMS calls the user-provided MPCI routine GET PACKET to obtain a packet in which

to build a RQ message.

4. After building a message packet, RTEMS calls the user-provided MPCI routine

SEND PACKET to transmit the packet to the node on which the object resides (referred

to as the destination node).

5. The calling task is blocked until the RR message arrives, and control of the processor is

transferred to another task.

6. The MPCI layer on the destination node senses the arrival of a packet (commonly in an

ISR), and calls the rtems_multiprocessing_announce directive. This directive readies the

Multiprocessing Server.

7. The Multiprocessing Server calls the user-provided MPCI routine RECEIVE PACKET,

performs the requested operation, builds an RR message, and returns it to the originating

node.

8. The MPCI layer on the originating node senses the arrival of a packet (typically via an inter-

rupt), and calls the RTEMS rtems_multiprocessing_announce directive. This directive

readies the Multiprocessing Server.

9. The Multiprocessing Server calls the user-provided MPCI routine RECEIVE PACKET,

readies the original requesting task, and blocks until another packet arrives. Control is

transferred to the original task which then completes processing of the directive.

If an uncorrectable error occurs in the user-provided MPCI layer, the fatal error handler should be

invoked. RTEMS assumes the reliable transmission and reception of messages by the MPCI and

makes no attempt to detect or correct errors.

222 RTEMS C User's Guide

22.2.5 Proxies

A proxy is an RTEMS data structure which resides on a remote node and is used to represent a

task which must block as part of a remote operation. This action can occur as part of the rtems_

semaphore_obtain and rtems_message_queue_receive directives. If the object were local, the

task's control block would be available for modi�cation to indicate it was blocking on a message

queue or semaphore. However, the task's control block resides only on the same node as the task.

As a result, the remote node must allocate a proxy to represent the task until it can be readied.

The maximum number of proxies is de�ned in the Multiprocessor Con�guration Table. Each

node in a multiprocessor system may require a di�erent number of proxies to be con�gured. The

distribution of proxy control blocks is application dependent and is di�erent from the distribution

of tasks.

22.2.6 Multiprocessor Con�guration Table

The Multiprocessor Con�guration Table contains information needed by RTEMS when used in a

multiprocessor system. This table is discussed in detail in the section Multiprocessor Con�guration

Table of the Con�guring a System chapter.

22.3 Multiprocessor Communications Interface Layer

The Multiprocessor Communications Interface Layer (MPCI) is a set of user-provided procedures

which enable the nodes in a multiprocessor system to communicate with one another. These

routines are invoked by RTEMS at various times in the preparation and processing of remote

requests. Interrupts are enabled when an MPCI procedure is invoked. It is assumed that if the

execution mode and/or interrupt level are altered by the MPCI layer, that they will be restored

prior to returning to RTEMS.

The MPCI layer is responsible for managing a pool of bu�ers called packets and for sending these

packets between system nodes. Packet bu�ers contain the messages sent between the nodes. Typi-

cally, the MPCI layer will encapsulate the packet within an envelope which contains the information

needed by the MPCI layer. The number of packets available is dependent on the MPCI layer im-

plementation.

The entry points to the routines in the user's MPCI layer should be placed in the Multiprocessor

Communications Interface Table. The user must provide entry points for each of the following table

entries in a multiprocessor system:

� initialization initialize the MPCI

� get packet obtain a packet bu�er

� return packet return a packet bu�er

� send packet send a packet to another node

Chapter 22: Multiprocessing Manager 223

� receive packet called to get an arrived packet

A packet is sent by RTEMS in each of the following situations:

� an RQ is generated on an originating node;

� an RR is generated on a destination node;

� a global object is created;

� a global object is deleted;

� a local task blocked on a remote object is deleted;

� during system initialization to check for system consistency.

If the target hardware supports it, the arrival of a packet at a node may generate an interrupt.

Otherwise, the real-time clock ISR can check for the arrival of a packet. In any case, the rtems_

multiprocessing_announce directive must be called to announce the arrival of a packet. After

exiting the ISR, control will be passed to the Multiprocessing Server to process the packet. The

Multiprocessing Server will call the get packet entry to obtain a packet bu�er and the receive entry

entry to copy the message into the bu�er obtained.

22.3.1 INITIALIZATION

The INITIALIZATION component of the user-provided MPCI layer is called as part of the rtems_

initialize_executive directive to initialize the MPCI layer and associated hardware. It is in-

voked immediately after all of the device drivers have been initialized. This component should be

adhere to the following prototype:

rtems_mpci_entry user_mpci_initialization(

rtems_configuration_table *configuration

);

where con�guration is the address of the user's Con�guration Table. Operations on global objects

cannot be performed until this component is invoked. The INITIALIZATION component is invoked

only once in the life of any system. If the MPCI layer cannot be successfully initialized, the fatal

error manager should be invoked by this routine.

One of the primary functions of the MPCI layer is to provide the executive with packet bu�ers.

The INITIALIZATION routine must create and initialize a pool of packet bu�ers. There must be

enough packet bu�ers so RTEMS can obtain one whenever needed.

22.3.2 GET PACKET

The GET PACKET component of the user-provided MPCI layer is called when RTEMS must

obtain a packet bu�er to send or broadcast a message. This component should be adhere to the

following prototype:

224 RTEMS C User's Guide

rtems_mpci_entry user_mpci_get_packet(

rtems_packet_prefix **packet

);

where packet is the address of a pointer to a packet. This routine always succeeds and, upon return,

packet will contain the address of a packet. If for any reason, a packet cannot be successfully

obtained, then the fatal error manager should be invoked.

RTEMS has been optimized to avoid the need for obtaining a packet each time a message is sent

or broadcast. For example, RTEMS sends response messages (RR) back to the originator in the

same packet in which the request message (RQ) arrived.

22.3.3 RETURN PACKET

The RETURN PACKET component of the user-provided MPCI layer is called when RTEMS needs

to release a packet to the free packet bu�er pool. This component should be adhere to the following

prototype:

rtems_mpci_entry user_mpci_return_packet(

rtems_packet_prefix *packet

);

where packet is the address of a packet. If the packet cannot be successfully returned, the fatal

error manager should be invoked.

22.3.4 RECEIVE PACKET

The RECEIVE PACKET component of the user-provided MPCI layer is called when RTEMS needs

to obtain a packet which has previously arrived. This component should be adhere to the following

prototype:

rtems_mpci_entry user_mpci_receive_packet(

rtems_packet_prefix **packet

);

where packet is a pointer to the address of a packet to place the message from another node. If a

message is available, then packet will contain the address of the message from another node. If no

messages are available, this entry packet should contain NULL.

22.3.5 SEND PACKET

The SEND PACKET component of the user-provided MPCI layer is called when RTEMS needs

to send a packet containing a message to another node. This component should be adhere to the

following prototype:

rtems_mpci_entry user_mpci_send_packet(

rtems_unsigned32 node,

rtems_packet_prefix **packet

);

Chapter 22: Multiprocessing Manager 225

where node is the node number of the destination and packet is the address of a packet which

containing a message. If the packet cannot be successfully sent, the fatal error manager should be

invoked.

If node is set to zero, the packet is to be broadcasted to all other nodes in the system. Although

some MPCI layers will be built upon hardware which support a broadcast mechanism, others may

be required to generate a copy of the packet for each node in the system.

Many MPCI layers use the packet length �eld of the MP packet pre�x of the packet to avoid sending

unnecessary data. This is especially useful if the media connecting the nodes is relatively slow.

The to convert �eld of the MP packet pre�x portion of the packet indicates how much of the packet

(in unsigned32's) may require conversion in a heterogeneous system.

22.3.6 Supporting Heterogeneous Environments

Developing an MPCI layer for a heterogeneous system requires a thorough understanding of the

di�erences between the processors which comprise the system. One di�cult problem is the varying

data representation schemes used by di�erent processor types. The most pervasive data represen-

tation problem is the order of the bytes which compose a data entity. Processors which place the

least signi�cant byte at the smallest address are classi�ed as little endian processors. Little endian

byte-ordering is shown below:

+---------------+----------------+---------------+----------------+

| | | | |

| Byte 3 | Byte 2 | Byte 1 | Byte 0 |

| | | | |

+---------------+----------------+---------------+----------------+

Conversely, processors which place the most signi�cant byte at the smallest address are classi�ed

as big endian processors. Big endian byte-ordering is shown below:

+---------------+----------------+---------------+----------------+

| | | | |

| Byte 0 | Byte 1 | Byte 2 | Byte 3 |

| | | | |

+---------------+----------------+---------------+----------------+

Unfortunately, sharing a data structure between big endian and little endian processors requires

translation into a common endian format. An application designer typically chooses the common

endian format to minimize conversion overhead.

Another issue in the design of shared data structures is the alignment of data structure elements.

Alignment is both processor and compiler implementation dependent. For example, some processors

allow data elements to begin on any address boundary, while others impose restrictions. Common

restrictions are that data elements must begin on either an even address or on a long word boundary.

Violation of these restrictions may cause an exception or impose a performance penalty.

226 RTEMS C User's Guide

Other issues which commonly impact the design of shared data structures include the represen-

tation of
oating point numbers, bit �elds, decimal data, and character strings. In addition, the

representation method for negative integers could be one's or two's complement. These factors

combine to increase the complexity of designing and manipulating data structures shared between

processors.

RTEMS addressed these issues in the design of the packets used to communicate between nodes.

The RTEMS packet format is designed to allow the MPCI layer to perform all necessary conversion

without burdening the developer with the details of the RTEMS packet format. As a result, the

MPCI layer must be aware of the following:

� All packets must begin on a four byte boundary.

� Packets are composed of both RTEMS and application data. All RTEMS data is treated

as thirty-two (32) bit unsigned quantities and is in the �rst RTEMS_MINIMUM_UNSIGNED32S_

TO_CONVERT thirty-two (32) quantities of the packet.

� The RTEMS data component of the packet must be in native endian format. Endian

conversion may be performed by either the sending or receiving MPCI layer.

� RTEMS makes no assumptions regarding the application data component of the packet.

22.4 Operations

22.4.1 Announcing a Packet

The rtems_multiprocessing_announce directive is called by the MPCI layer to inform RTEMS

that a packet has arrived from another node. This directive can be called from an interrupt service

routine or from within a polling routine.

22.5 Directives

This section details the additional directives required to support RTEMS in a multiprocessor con-

�guration. A subsection is dedicated to each of this manager's directives and describes the calling

sequence, related constants, usage, and status codes.

Chapter 22: Multiprocessing Manager 227

22.5.1 MULTIPROCESSING ANNOUNCE - Announce the arrival of a
packet

CALLING SEQUENCE:

void rtems_multiprocessing_announce(void);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive informs RTEMS that a multiprocessing communications packet has arrived from

another node. This directive is called by the user-provided MPCI, and is only used in multiprocessor

con�gurations.

NOTES:

This directive is typically called from an ISR.

This directive will almost certainly cause the calling task to be preempted.

This directive does not generate activity on remote nodes.

228 RTEMS C User's Guide

Chapter 23: Directive Status Codes 229

23 Directive Status Codes

RTEMS_SUCCESSFUL - successful completion

RTEMS_TASK_EXITTED - returned from a task

RTEMS_MP_NOT_CONFIGURED - multiprocessing not con�gured

RTEMS_INVALID_NAME - invalid object name

RTEMS_INVALID_ID - invalid object id

RTEMS_TOO_MANY - too many

RTEMS_TIMEOUT - timed out waiting

RTEMS_OBJECT_WAS_DELETED - object was deleted while waiting

RTEMS_INVALID_SIZE - invalid speci�ed size

RTEMS_INVALID_ADDRESS - invalid address speci�ed

RTEMS_INVALID_NUMBER - number was invalid

RTEMS_NOT_DEFINED - item not initialized

RTEMS_RESOURCE_IN_USE - resources outstanding

RTEMS_UNSATISFIED - request not satis�ed

RTEMS_INCORRECT_STATE - task is in wrong state

RTEMS_ALREADY_SUSPENDED - task already in state

RTEMS_ILLEGAL_ON_SELF - illegal for calling task

RTEMS_ILLEGAL_ON_REMOTE_OBJECT - illegal for remote object

RTEMS_CALLED_FROM_ISR - invalid environment

RTEMS_INVALID_PRIORITY - invalid task priority

RTEMS_INVALID_CLOCK - invalid time bu�er

RTEMS_INVALID_NODE - invalid node id

RTEMS_NOT_CONFIGURED - directive not con�gured

RTEMS_NOT_OWNER_OF_RESOURCE - not owner of resource

RTEMS_NOT_IMPLEMENTED - directive not implemented

RTEMS_INTERNAL_ERROR - RTEMS inconsistency detected

RTEMS_NO_MEMORY - could not get enough memory

230 RTEMS C User's Guide

Chapter 24: Example Application 231

24 Example Application

/* example.c

*

* This file contains an example of a simple RTEMS

* application. It contains a Configuration Table, a

* user initialization task, and a simple task.

*

* This example assumes that a board support package exists

* and invokes the initialize_executive() directive.

*/

#include "rtems.h"

rtems_task init_task();

#define INIT_NAME rtems_build_name('A', 'B', 'C', ' ' ')

rtems_initialization_tasks_table init_task = {

{ INIT_NAME, /* init task name "ABC" */

1024, /* init task stack size */

1, /* init task priority */

DEFAULT_ATTRIBUTES, /* init task attributes */

init_task, /* init task entry point */

TIMESLICE, /* init task initial mode */

0 /* init task argument */

}

};

rtems_configuration_table User_Configuration_Table = {

NULL, /* filled in by the BSP */

65536, /* executive RAM size */

2, /* maximum tasks */

0, /* maximum timers */

0, /* maximum semaphores */

0, /* maximum message queues */

0, /* maximum messages */

0, /* maximum partitions */

0, /* maximum regions */

0, /* maximum ports */

0, /* maximum periods */

0, /* maximum extensions */

RTEMS_MILLISECONDS_TO_MICROSECONDS(10), /* number of ms in a tick */

1, /* num of ticks in a timeslice */

1, /* number of user init tasks */

init_task_tbl, /* user init task(s) table */

0, /* number of device drivers */

NULL, /* ptr to driver address table */

232 RTEMS C User's Guide

NULL, /* ptr to extension table */

NULL /* ptr to MP config table */

};

task user_application(

rtems_task_argument ignored

);

#define USER_APP_NAME 1 /* any 32-bit name; unique helps */

rtems_task init_task(

rtems_task_argument ignored

)

{

rtems_id tid;

/* example assumes SUCCESSFUL return value */

(void) rtems_task_create(USER_APP_NAME, 1, 1024,

RTEMS_NO_PREEMPT, RTEMS_FLOATING_POINT, &tid);

(void) rtems_task_start(tid, user_application, 0);

(void) rtems_task_delete(SELF);

}

rtems_task user_application()

{

/* application specific initialization goes here */

while (1) { /* infinite loop */

/* APPLICATION CODE GOES HERE

*

* This code will typically include at least one

* directive which causes the calling task to

* give up the processor.

*/

}

}

Chapter 25: Glossary 233

25 Glossary

active A term used to describe an object which has been created by an application.

aperiodic task A task which must execute only at irregular intervals and has only a soft

deadline.

application In this document, software which makes use of RTEMS.

ASR see Asynchronous Signal Routine.

asynchronous Not related in order or timing to other occurrences in the system.

Asynchronous Signal Routine

Similar to a hardware interrupt except that it is associated with a task and is

run in the context of a task. The directives provided by the signal manager

are used to service signals.

awakened A term used to describe a task that has been unblocked and may be scheduled

to the CPU.

big endian A data representation scheme in which the bytes composing a numeric value

are arranged such that the most signi�cant byte is at the lowest address.

bit-mapped A data encoding scheme in which each bit in a variable is used to represent

something di�erent. This makes for compact data representation.

block A physically contiguous area of memory.

blocked The task state entered by a task which has been previously started and

cannot continue execution until the reason for waiting has been satis�ed.

broadcast To simultaneously send a message to a logical set of destinations.

BSP see Board Support Package.

Board Support Package

A collection of device initialization and control routines speci�c to a partic-

ular type of board or collection of boards.

bu�er A �xed length block of memory allocated from a partition.

calling convention The processor and compiler dependent rules which de�ne the mechanism

used to invoke subroutines in a high-level language. These rules de�ne the

passing of arguments, the call and return mechanism, and the register set

which must be preserved.

Central Processing Unit

This term is equivalent to the terms processor and microprocessor.

234 RTEMS C User's Guide

chain A data structure which allows for e�cient dynamic addition and removal of

elements. It di�ers from an array in that it is not limited to a prede�ned

size.

coalesce The process of merging adjacent holes into a single larger hole. Sometimes

this process is referred to as garbage collection.

Con�guration Table A table which contains information used to tailor RTEMS for a particular

application.

context All of the processor registers and operating system data structures associated

with a task.

context switch Alternate term for task switch. Taking control of the processor from one

task and transferring it to another task.

control block A data structure used by the executive to de�ne and control an object.

core When used in this manual, this term refers to the internal executive utility

functions. In the interest of application portability, the core of the executive

should not be used directly by applications.

CPU An acronym for Central Processing Unit.

critical section A section of code which must be executed indivisibly.

CRT An acronym for Cathode Ray Tube. Normally used in reference to the man-

machine interface.

deadline A �xed time limit by which a task must have completed a set of actions. Be-

yond this point, the results are of reduced value and may even be considered

useless or harmful.

device A peripheral used by the application that requires special operation software.

See also device driver.

device driver Control software for special peripheral devices used by the application.

directives RTEMS' provided routines that provide support mechanisms for real-time

applications.

dispatch The act of loading a task's context onto the CPU and transferring control

of the CPU to that task.

dormant The state entered by a task after it is created and before it has been started.

Device Driver Table A table which contains the entry points for each of the con�gured device

drivers.

dual-ported A term used to describe memory which can be accessed at two di�erent

addresses.

Chapter 25: Glossary 235

embedded An application that is delivered as a hidden part of a larger system. For

example, the software in a fuel-injection control system is an embedded

application found in many late-model automobiles.

envelope A bu�er provided by the MPCI layer to RTEMS which is used to pass

messages between nodes in a multiprocessor system. It typically contains

routing information needed by the MPCI. The contents of an envelope are

referred to as a packet.

entry point The address at which a function or task begins to execute. In C, the entry

point of a function is the function's name.

events A method for task communication and synchronization. The directives pro-

vided by the event manager are used to service events.

exception A synonym for interrupt.

executing The task state entered by a task after it has been given control of the CPU.

executive In this document, this term is used to referred to RTEMS. Commonly, an

executive is a small real-time operating system used in embedded systems.

exported An object known by all nodes in a multiprocessor system. An object created

with the GLOBAL attribute will be exported.

external address The address used to access dual-ported memory by all the nodes in a system

which do not own the memory.

FIFO An acronym for First In First Out.

First In First Out A discipline for manipulating entries in a data structure.

oating point coprocessor

A component used in computer systems to enhance performance in mathe-

matically intensive situations. It is typically viewed as a logical extension of

the primary processor.

freed A resource that has been released by the application to RTEMS.

global An object that has been created with the GLOBAL attribute and exported

to all nodes in a multiprocessor system.

handler The equivalent of a manager, except that it is internal to RTEMS and forms

part of the core. A handler is a collection of routines which provide a related

set of functions. For example, there is a handler used by RTEMS to manage

all objects.

hard real-time system

A real-time system in which a missed deadline causes the worked performed

to have no value or to result in a catastrophic e�ect on the integrity of the

system.

236 RTEMS C User's Guide

heap A data structure used to dynamically allocate and deallocate variable sized

blocks of memory.

heterogeneous A multiprocessor computer system composed of dissimilar processors.

homogeneous A multiprocessor computer system composed of a single type of processor.

ID An RTEMS assigned identi�cation tag used to access an active object.

IDLE task A special low priority task which assumes control of the CPU when no other

task is able to execute.

interface A speci�cation of the methodology used to connect multiple independent

subsystems.

internal address The address used to access dual-ported memory by the node which owns the

memory.

interrupt A hardware facility that causes the CPU to suspend execution, save its

status, and transfer control to a speci�c location.

interrupt level A mask used to by the CPU to determine which pending interrupts should

be serviced. If a pending interrupt is below the current interrupt level, then

the CPU does not recognize that interrupt.

Interrupt Service Routine

An ISR is invoked by the CPU to process a pending interrupt.

I/O An acronym for Input/Output.

ISR An acronym for Interrupt Service Routine.

kernel In this document, this term is used as a synonym for executive.

list A data structure which allows for dynamic addition and removal of entries.

It is not statically limited to a particular size.

little endian A data representation scheme in which the bytes composing a numeric value

are arranged such that the least signi�cant byte is at the lowest address.

local An object which was created with the LOCAL attribute and is accessible

only on the node it was created and resides upon. In a single processor

con�guration, all objects are local.

local operation The manipulation of an object which resides on the same node as the calling

task.

logical address An address used by an application. In a system without memory manage-

ment, logical addresses will equal physical addresses.

loosely-coupled A multiprocessor con�guration where shared memory is not used for com-

munication.

Chapter 25: Glossary 237

major number The index of a device driver in the Device Driver Table.

manager A group of related RTEMS' directives which provide access and control over

resources.

memory pool Used interchangeably with heap.

message A sixteen byte entity used to communicate between tasks. Messages are sent

to message queues and stored in message bu�ers.

message bu�er A block of memory used to store messages.

message queue An RTEMS object used to synchronize and communicate between tasks by

transporting messages between sending and receiving tasks.

Message Queue Control Block

A data structure associated with each message queue used by RTEMS to

manage that message queue.

minor number A numeric value passed to a device driver, the exact usage of which is driver

dependent.

mode An entry in a task's control block that is used to determine if the task allows

preemption, timeslicing, processing of signals, and the interrupt disable level

used by the task.

MPCI An acronym for Multiprocessor Communications Interface Layer.

multiprocessing The simultaneous execution of two or more processes by a multiple processor

computer system.

multiprocessor A computer with multiple CPUs available for executing applications.

Multiprocessor Communications Interface Layer

A set of user-provided routines which enable the nodes in a multiprocessor

system to communicate with one another.

Multiprocessor Con�guration Table

The data structure de�ning the characteristics of the multiprocessor target

system with which RTEMS will communicate.

multitasking The alternation of execution amongst a group of processes on a single CPU.

A scheduling algorithm is used to determine which process executes at which

time.

mutual exclusion A term used to describe the act of preventing other tasks from accessing a

resource simultaneously.

nested A term used to describe an ASR that occurs during another ASR or an ISR

that occurs during another ISR.

238 RTEMS C User's Guide

node A term used to reference a processor running RTEMS in a multiprocessor

system.

non-existent The state occupied by an uncreated or deleted task.

numeric coprocessor A component used in computer systems to enhance performance in mathe-

matically intensive situations. It is typically viewed as a logical extension of

the primary processor.

object In this document, this term is used to refer collectively to tasks, timers,

message queues, partitions, regions, semaphores, ports, and rate monotonic

periods. All RTEMS objects have IDs and user-assigned names.

object-oriented A term used to describe systems with common mechanisms for utilizing

a variety of entities. Object-oriented systems shield the application from

implementation details.

operating system The software which controls all the computer's resources and provides the

base upon which application programs can be written.

overhead The portion of the CPUs processing power consumed by the operating sys-

tem.

packet A bu�er which contains the messages passed between nodes in a multipro-

cessor system. A packet is the contents of an envelope.

partition An RTEMS object which is used to allocate and deallocate �xed size blocks

of memory from an dynamically speci�ed area of memory.

Partition Control Block

A data structure associated with each partition used by RTEMS to manage

that partition.

pending A term used to describe a task blocked waiting for an event, message,

semaphore, or signal.

periodic task A task which must execute at regular intervals and comply with a hard

deadline.

physical address The actual hardware address of a resource.

poll A mechanism used to determine if an event has occurred by periodically

checking for a particular status. Typical events include arrival of data, com-

pletion of an action, and errors.

pool A collection from which resources are allocated.

portability A term used to describe the ease with which software can be rehosted on

another computer.

posting The act of sending an event, message, semaphore, or signal to a task.

Chapter 25: Glossary 239

preempt The act of forcing a task to relinquish the processor and dispatching to

another task.

priority A mechanism used to represent the relative importance of an element in a

set of items. RTEMS uses priority to determine which task should execute.

priority inheritance An algorithm that calls for the lower priority task holding a resource to have

its priority increased to that of the highest priority task blocked waiting for

that resource. This avoids the problem of priority inversion.

priority inversion A form of inde�nite postponement which occurs when a high priority tasks

requests access to shared resource currently allocated to low priority task.

The high priority task must block until the low priority task releases the

resource.

processor utilization The percentage of processor time used by a task or a set of tasks.

proxy An RTEMS control structure used to represent, on a remote node, a task

which must block as part of a remote operation.

Proxy Control Block A data structure associated with each proxy used by RTEMS to manage

that proxy.

PTCB An acronym for Partition Control Block.

PXCB An acronym for Proxy Control Block.

quantum The application de�ned unit of time in which the processor is allocated.

queue Alternate term for message queue.

QCB An acronym for Message Queue Control Block.

ready A task occupies this state when it is available to be given control of the

CPU.

real-time A term used to describe systems which are characterized by requiring de-

terministic response times to external stimuli. The external stimuli require

that the response occur at a precise time or the response is incorrect.

reentrant A term used to describe routines which do not modify themselves or global

variables.

region An RTEMS object which is used to allocate and deallocate variable size

blocks of memory from a dynamically speci�ed area of memory.

Region Control Block

A data structure associated with each region used by RTEMS to manage

that region.

registers Registers are locations physically located within a component, typically used

for device control or general purpose storage.

240 RTEMS C User's Guide

remote Any object that does not reside on the local node.

remote operation The manipulation of an object which does not reside on the same node as

the calling task.

return code Also known as error code or return value.

resource A hardware or software entity to which access must be controlled.

resume Removing a task from the suspend state. If the task's state is ready following

a call to the rtems_task_resume directive, then the task is available for

scheduling.

return code A value returned by RTEMS directives to indicate the completion status of

the directive.

RNCB An acronym for Region Control Block.

round-robin A task scheduling discipline in which tasks of equal priority are executed in

the order in which they are made ready.

RS-232 A standard for serial communications.

running The state of a rate monotonic timer while it is being used to delineate a

period. The timer exits this state by either expiring or being canceled.

schedule The process of choosing which task should next enter the executing state.

schedulable A set of tasks which can be guaranteed to meet their deadlines based upon

a speci�c scheduling algorithm.

segments Variable sized memory blocks allocated from a region.

semaphore An RTEMS object which is used to synchronize tasks and provide mutually

exclusive access to resources.

Semaphore Control Block

A data structure associated with each semaphore used by RTEMS to manage

that semaphore.

shared memory Memory which is accessible by multiple nodes in a multiprocessor system.

signal An RTEMS provided mechanism to communicate asynchronously with a

task. Upon reception of a signal, the ASR of the receiving task will be

invoked.

signal set A thirty-two bit entity which is used to represent a task's collection of pend-

ing signals and the signals sent to a task.

SMCB An acronym for Semaphore Control Block.

soft real-time system A real-time system in which a missed deadline does not compromise the

integrity of the system.

Chapter 25: Glossary 241

sporadic task A task which executes at irregular intervals and must comply with a hard

deadline. A minimum period of time between successive iterations of the

task can be guaranteed.

stack A data structure that is managed using a Last In First Out (LIFO) disci-

pline. Each task has a stack associated with it which is used to store return

information and local variables.

status code Also known as error code or return value.

suspend A term used to describe a task that is not competing for the CPU because

it has had a rtems_task_suspend directive.

synchronous Related in order or timing to other occurrences in the system.

system call In this document, this is used as an alternate term for directive.

target The system on which the application will ultimately execute.

task A logically complete thread of execution. The CPU is allocated among the

ready tasks.

Task Control Block A data structure associated with each task used by RTEMS to manage that

task.

task switch Alternate terminology for context switch. Taking control of the processor

from one task and given to another.

TCB An acronym for Task Control Block.

tick The basic unit of time used by RTEMS. It is a user-con�gurable number of

microseconds. The current tick expires when the rtems_clock_tick direc-

tive is invoked.

tightly-coupled A multiprocessor con�guration system which communicates via shared mem-

ory.

timeout An argument provided to a number of directives which determines the max-

imum length of time an application task is willing to wait to acquire the

resource if it is not immediately available.

timer An RTEMS object used to invoke subprograms at a later time.

Timer Control Block A data structure associated with each timer used by RTEMS to manage that

timer.

timeslicing A task scheduling discipline in which tasks of equal priority are executed for

a speci�c period of time before being preempted by another task.

timeslice The application de�ned unit of time in which the processor is allocated.

TMCB An acronym for Timer Control Block.

242 RTEMS C User's Guide

transient overload A temporary rise in system activity which may cause deadlines to be missed.

Rate Monotonic Scheduling can be used to determine if all deadlines will be

met under transient overload.

user extensions Software routines provided by the application to enhance the functionality

of RTEMS.

User Extension Table

A table which contains the entry points for each user extensions.

User Initialization Tasks Table

A table which contains the information needed to create and start each of

the user initialization tasks.

user-provided Alternate term for user-supplied. This term is used to designate any software

routines which must be written by the application designer.

user-supplied Alternate term for user-provided. This term is used to designate any software

routines which must be written by the application designer.

vector Memory pointers used by the processor to fetch the address of routines which

will handle various exceptions and interrupts.

wait queue The list of tasks blocked pending the release of a particular resource. Message

queues, regions, and semaphores have a wait queue associated with them.

yield When a task voluntarily releases control of the processor.

Command and Variable Index 243

Command andVariable Index

There are currently no Command and Variable Index entries.

244 RTEMS C User's Guide

Concept Index 245

Concept Index

There are currently no Concept Index entries.

246 RTEMS C User's Guide

i

Table of Contents

Preface . 1

1 Overview . 5

1.1 Introduction . 5

1.2 Real-time Application Systems . 5

1.3 Real-time Executive . 6

1.4 RTEMS Application Architecture . 7

1.5 RTEMS Internal Architecture . 7

1.6 User Customization and Extensibility . 8

1.7 Portability . 8

1.8 Memory Requirements . 9

1.9 Audience . 9

1.10 Conventions . 10

1.11 Manual Organization . 10

2 Key Concepts . 13

2.1 Introduction . 13

2.2 Objects. 13

2.3 Communication and Synchronization . 14

2.4 Time . 15

2.5 Memory Management . 16

3 Initialization Manager . 17

3.1 Introduction . 17

3.2 Background . 17

3.2.1 Initialization Tasks . 17

3.2.2 The System Initialization Task . 17

3.2.3 The Idle Task . 18

3.2.4 Initialization Manager Failure . 18

3.3 Operations . 18

3.3.1 Initializing RTEMS . 19

3.3.2 Shutting Down RTEMS . 19

3.4 Directives . 19

3.4.1 INITIALIZE EXECUTIVE - Initialize RTEMS 20

3.4.2 INITIALIZE EXECUTIVE EARLY - Initialize RTEMS and

do NOT Start Multitasking . 21

ii RTEMS C User's Guide

3.4.3 INITIALIZE EXECUTIVE LATE - Complete Initialization

and Start Multitasking . 22

3.4.4 SHUTDOWN EXECUTIVE - Shutdown RTEMS 23

4 Task Manager . 25

4.1 Introduction . 25

4.2 Background . 25

4.2.1 Task De�nition . 25

4.2.2 Task Control Block . 26

4.2.3 Task States . 26

4.2.4 Task Priority . 26

4.2.5 Task Mode . 27

4.2.6 Accessing Task Arguments . 28

4.2.7 Floating Point Considerations . 28

4.2.8 Building a Task's Attribute Set . 29

4.2.9 Building a Mode and Mask . 29

4.3 Operations . 30

4.3.1 Creating Tasks . 30

4.3.2 Obtaining Task IDs . 30

4.3.3 Starting and Restarting Tasks . 30

4.3.4 Suspending and Resuming Tasks . 31

4.3.5 Delaying the Currently Executing Task 31

4.3.6 Changing Task Priority . 32

4.3.7 Changing Task Mode . 32

4.3.8 Notepad Locations . 32

4.3.9 Task Deletion . 32

4.4 Directives . 33

4.4.1 TASK CREATE - Create a task . 34

4.4.2 TASK IDENT - Get ID of a task . 36

4.4.3 TASK START - Start a task . 37

4.4.4 TASK RESTART - Restart a task . 38

4.4.5 TASK DELETE - Delete a task . 39

4.4.6 TASK SUSPEND - Suspend a task . 40

4.4.7 TASK RESUME - Resume a task . 41

4.4.8 TASK SET PRIORITY - Set task priority 42

4.4.9 TASK MODE - Change current task's mode 43

4.4.10 TASK GET NOTE - Get task notepad entry 45

4.4.11 TASK SET NOTE - Set task notepad entry 46

4.4.12 TASK WAKE AFTER - Wake up after interval 47

4.4.13 TASK WAKE WHEN - Wake up when speci�ed 48

iii

5 Interrupt Manager . 49

5.1 Introduction . 49

5.2 Background . 49

5.2.1 Processing an Interrupt . 49

5.2.2 RTEMS Interrupt Levels . 50

5.2.3 Disabling of Interrupts by RTEMS . 50

5.3 Operations . 51

5.3.1 Establishing an ISR . 51

5.3.2 Directives Allowed from an ISR . 51

5.4 Directives . 52

5.4.1 INTERRUPT CATCH - Establish an ISR 53

5.4.2 INTERRUPT DISABLE - Disable Interrupts 54

5.4.3 INTERRUPT ENABLE - Enable Interrupts 55

5.4.4 INTERRUPT FLASH - Flash Interrupts 56

5.4.5 INTERRUPT IS IN PROGRESS - Is an ISR in Progress

. 57

6 Clock Manager . 59

6.1 Introduction . 59

6.2 Background . 59

6.2.1 Required Support . 59

6.2.2 Time and Date Data Structures . 59

6.2.3 Clock Tick and Timeslicing . 60

6.2.4 Delays . 60

6.2.5 Timeouts . 60

6.3 Operations . 60

6.3.1 Announcing a Tick . 60

6.3.2 Setting the Time . 61

6.3.3 Obtaining the Time . 61

6.4 Directives . 61

6.4.1 CLOCK SET - Set system date and time 62

6.4.2 CLOCK GET - Get system date and time information . . 63

6.4.3 CLOCK TICK - Announce a clock tick 64

7 Timer Manager . 65

7.1 Introduction . 65

7.2 Background . 65

7.2.1 Required Support . 65

7.2.2 Timers . 65

7.2.3 Timer Service Routines . 65

7.3 Operations . 66

7.3.1 Creating a Timer . 66

iv RTEMS C User's Guide

7.3.2 Obtaining Timer IDs . 66

7.3.3 Initiating an Interval Timer . 66

7.3.4 Initiating a Time of Day Timer . 66

7.3.5 Canceling a Timer . 66

7.3.6 Resetting a Timer . 67

7.3.7 Deleting a Timer . 67

7.4 Directives . 67

7.4.1 TIMER CREATE - Create a timer . 68

7.4.2 TIMER IDENT - Get ID of a timer . 69

7.4.3 TIMER CANCEL - Cancel a timer . 70

7.4.4 TIMER DELETE - Delete a timer . 71

7.4.5 TIMER FIRE AFTER - Fire timer after interval 72

7.4.6 TIMER FIRE WHEN - Fire timer when speci�ed 73

7.4.7 TIMER RESET - Reset an interval timer. 74

8 Semaphore Manager . 75

8.1 Introduction . 75

8.2 Background . 75

8.2.1 Nested Resource Access . 76

8.2.2 Priority Inversion . 76

8.2.3 Priority Inheritance . 76

8.2.4 Priority Ceiling . 77

8.2.5 Building a Semaphore's Attribute Set 77

8.2.6 Building a SEMAPHORE OBTAIN Option Set 78

8.3 Operations . 78

8.3.1 Creating a Semaphore . 78

8.3.2 Obtaining Semaphore IDs . 79

8.3.3 Acquiring a Semaphore . 79

8.3.4 Releasing a Semaphore . 79

8.3.5 Deleting a Semaphore . 80

8.4 Directives . 80

8.4.1 SEMAPHORE CREATE - Create a semaphore 81

8.4.2 SEMAPHORE IDENT - Get ID of a semaphore 83

8.4.3 SEMAPHORE DELETE - Delete a semaphore 84

8.4.4 SEMAPHORE OBTAIN - Acquire a semaphore 85

8.4.5 SEMAPHORE RELEASE - Release a semaphore 87

9 Message Manager . 89

9.1 Introduction . 89

9.2 Background . 89

9.2.1 Messages . 89

9.2.2 Message Queues . 89

v

9.2.3 Building a Message Queue's Attribute Set 89

9.2.4 Building a MESSAGE QUEUE RECEIVE Option Set . . . 90

9.3 Operations . 90

9.3.1 Creating a Message Queue . 90

9.3.2 Obtaining Message Queue IDs . 91

9.3.3 Receiving a Message . 91

9.3.4 Sending a Message . 91

9.3.5 Broadcasting a Message . 91

9.3.6 Deleting a Message Queue . 92

9.4 Directives . 92

9.4.1 MESSAGE QUEUE CREATE - Create a queue 93

9.4.2 MESSAGE QUEUE IDENT - Get ID of a queue 95

9.4.3 MESSAGE QUEUE DELETE - Delete a queue 96

9.4.4 MESSAGE QUEUE SEND - Put message at rear of a queue

. 97

9.4.5 MESSAGE QUEUE URGENT - Put message at front of a

queue . 98

9.4.6 MESSAGE QUEUE BROADCAST - Broadcast N messages

to a queue . 99

9.4.7 MESSAGE QUEUE RECEIVE - Receive message from a

queue . 100

9.4.8 MESSAGE QUEUE GET NUMBER PENDING - Get

number of messages pending on a queue 102

9.4.9 MESSAGE QUEUE FLUSH - Flush all messages on a queue

. 103

10 Event Manager . 105

10.1 Introduction . 105

10.2 Background . 105

10.2.1 Event Sets . 105

10.2.2 Building an Event Set or Condition 105

10.2.3 Building an EVENT RECEIVE Option Set 106

10.3 Operations . 106

10.3.1 Sending an Event Set . 106

10.3.2 Receiving an Event Set . 107

10.3.3 Determining the Pending Event Set 107

10.3.4 Receiving all Pending Events . 107

10.4 Directives . 107

10.4.1 EVENT SEND - Send event set to a task 108

10.4.2 EVENT RECEIVE - Receive event condition 109

vi RTEMS C User's Guide

11 Signal Manager . 111

11.1 Introduction . 111

11.2 Background . 111

11.2.1 Signal Manager De�nitions . 111

11.2.2 A Comparison of ASRs and ISRs . 111

11.2.3 Building a Signal Set . 111

11.2.4 Building an ASR's Mode . 112

11.3 Operations . 112

11.3.1 Establishing an ASR . 113

11.3.2 Sending a Signal Set . 113

11.3.3 Processing an ASR . 113

11.4 Directives . 114

11.4.1 SIGNAL CATCH - Establish an ASR 115

11.4.2 SIGNAL SEND - Send signal set to a task. 116

12 Partition Manager . 117

12.1 Introduction . 117

12.2 Background . 117

12.2.1 Partition Manager De�nitions . 117

12.2.2 Building a Partition's Attribute Set 117

12.3 Operations . 118

12.3.1 Creating a Partition . 118

12.3.2 Obtaining Partition IDs . 118

12.3.3 Acquiring a Bu�er . 118

12.3.4 Releasing a Bu�er . 118

12.3.5 Deleting a Partition . 118

12.4 Directives . 119

12.4.1 PARTITION CREATE - Create a partition 120

12.4.2 PARTITION IDENT - Get ID of a partition 122

12.4.3 PARTITION DELETE - Delete a partition 123

12.4.4 PARTITION GET BUFFER - Get bu�er from a partition

. 124

12.4.5 PARTITION RETURN BUFFER - Return bu�er to a

partition . 125

13 Region Manager . 127

13.1 Introduction . 127

13.2 Background . 127

13.2.1 Region Manager De�nitions . 127

13.2.2 Building an Attribute Set . 127

13.2.3 Building an Option Set . 128

13.3 Operations . 128

vii

13.3.1 Creating a Region . 128

13.3.2 Obtaining Region IDs . 129

13.3.3 Adding Memory to a Region . 129

13.3.4 Acquiring a Segment . 129

13.3.5 Releasing a Segment . 129

13.3.6 Obtaining the Size of a Segment . 130

13.3.7 Deleting a Region . 130

13.4 Directives . 130

13.4.1 REGION CREATE - Create a region 131

13.4.2 REGION IDENT - Get ID of a region 133

13.4.3 REGION DELETE - Delete a region 134

13.4.4 REGION EXTEND - Add memory to a region 135

13.4.5 REGION GET SEGMENT - Get segment from a region

. 136

13.4.6 REGION RETURN SEGMENT - Return segment to a

region . 138

13.4.7 REGION GET SEGMENT SIZE - Obtain size of a

segment . 139

14 Dual-Ported Memory Manager 141

14.1 Introduction . 141

14.2 Background . 141

14.3 Operations . 141

14.3.1 Creating a Port . 141

14.3.2 Obtaining Port IDs . 142

14.3.3 Converting an Address . 142

14.3.4 Deleting a DPMA Port . 142

14.4 Directives . 142

14.4.1 PORT CREATE - Create a port . 143

14.4.2 PORT IDENT - Get ID of a port . 144

14.4.3 PORT DELETE - Delete a port . 145

14.4.4 PORT EXTERNAL TO INTERNAL - Convert external to

internal address . 146

14.4.5 PORT INTERNAL TO EXTERNAL - Convert internal to

external address . 147

15 I/O Manager . 149

15.1 Introduction . 149

15.2 Background . 149

15.2.1 Device Driver Table . 149

15.2.2 Major and Minor Device Numbers 149

15.2.3 Device Names . 150

viii RTEMS C User's Guide

15.2.4 Device Driver Environment . 150

15.2.5 Device Driver Interface . 150

15.2.6 Device Driver Initialization . 151

15.3 Operations . 151

15.3.1 Register and Lookup Name . 151

15.3.2 Accessing an Device Driver . 151

15.4 Directives . 151

15.4.1 IO INITIALIZE - Initialize a device driver 152

15.4.2 IO REGISTER NAME - Register a device. 153

15.4.3 IO LOOKUP NAME - Lookup a device 154

15.4.4 IO OPEN - Open a device . 155

15.4.5 IO CLOSE - Close a device . 156

15.4.6 IO READ - Read from a device . 157

15.4.7 IO WRITE - Write to a device . 158

15.4.8 IO CONTROL - Special device services 159

16 Fatal Error Manager . 161

16.1 Introduction . 161

16.2 Background . 161

16.3 Operations . 161

16.3.1 Announcing a Fatal Error . 161

16.4 Directives . 162

16.4.1 FATAL ERROR OCCURRED - Invoke the fatal error

handler . 163

17 Scheduling Concepts . 165

17.1 Introduction . 165

17.2 Scheduling Mechanisms . 165

17.2.1 Task Priority and Scheduling . 166

17.2.2 Preemption . 166

17.2.3 Timeslicing . 166

17.2.4 Manual Round-Robin . 166

17.2.5 Dispatching Tasks . 167

17.3 Task State Transitions . 167

18 Rate Monotonic Manager . 171

18.1 Introduction . 171

18.2 Background . 171

18.2.1 Rate Monotonic Manager Required Support 171

18.2.2 Rate Monotonic Manager De�nitions 171

18.2.3 Rate Monotonic Scheduling Algorithm 172

18.2.4 Schedulability Analysis . 173

ix

18.2.4.1 Assumptions . 173

18.2.4.2 Processor Utilization Rule 173

18.2.4.3 Processor Utilization Rule Example 174

18.2.4.4 First Deadline Rule . 174

18.2.4.5 First Deadline Rule Example 174

18.2.4.6 Relaxation of Assumptions 175

18.2.4.7 Further Reading . 176

18.3 Operations . 176

18.3.1 Creating a Rate Monotonic Period 176

18.3.2 Manipulating a Period . 177

18.3.3 Obtaining a Period's Status . 177

18.3.4 Canceling a Period . 177

18.3.5 Deleting a Rate Monotonic Period 177

18.3.6 Examples . 178

18.3.7 Simple Periodic Task . 178

18.3.8 Task with Multiple Periods . 179

18.4 Directives . 181

18.4.1 RATE MONOTONIC CREATE - Create a rate monotonic

period . 182

18.4.2 RATE MONOTONIC IDENT - Get ID of a period . . . 183

18.4.3 RATE MONOTONIC CANCEL - Cancel a period 184

18.4.4 RATE MONOTONIC DELETE - Delete a rate monotonic

period . 185

18.4.5 RATE MONOTONIC PERIOD - Conclude current/Start

next period . 186

18.4.6 RATE MONOTONIC GET STATUS - Obtain status

information on period . 187

19 Board Support Packages. 189

19.1 Introduction . 189

19.2 Reset and Initialization . 189

19.2.1 Interrupt Stack Requirements . 190

19.2.2 Processors with a Separate Interrupt Stack 190

19.2.3 Processors without a Separate Interrupt Stack 191

19.3 Device Drivers . 191

19.3.1 Clock Tick Device Driver . 191

19.4 User Extensions . 192

19.5 Multiprocessor Communications Interface (MPCI) 192

19.5.1 Tightly-Coupled Systems . 192

19.5.2 Loosely-Coupled Systems . 193

19.5.3 Systems with Mixed Coupling . 193

19.5.4 Heterogeneous Systems . 193

x RTEMS C User's Guide

20 User Extensions Manager . 195

20.1 Introduction . 195

20.2 Background . 195

20.2.1 Extension Sets . 195

20.2.2 TCB Extension Area . 196

20.2.3 Extensions . 197

20.2.4 TASK CREATE Extension . 197

20.2.5 TASK START Extension . 197

20.2.6 TASK RESTART Extension . 198

20.2.7 TASK DELETE Extension . 198

20.2.8 TASK SWITCH Extension . 198

20.2.9 TASK POST SWITCH Extension 199

20.2.10 TASK BEGIN Extension . 199

20.2.11 TASK EXITTED Extension . 200

20.2.11.1 FATAL Error Extension 200

20.2.12 Order of Invocation . 200

20.3 Operations . 201

20.3.1 Creating an Extension Set. 201

20.3.2 Obtaining Extension Set IDs . 201

20.3.3 Deleting an Extension Set . 202

20.4 Directives . 202

20.4.1 EXTENSION CREATE - Create a extension set 203

20.4.2 EXTENSION IDENT - Get ID of a extension set 204

20.4.3 EXTENSION DELETE - Delete a extension set 205

21 Con�guring a System . 207

21.1 Con�guration Table . 207

21.2 RTEMS API Con�guration Table . 208

21.3 POSIX API Con�guration Table . 209

21.4 CPU Dependent Information Table . 210

21.5 Initialization Task Table . 211

21.6 Driver Address Table . 212

21.7 User Extensions Table . 213

21.8 Multiprocessor Con�guration Table . 215

21.9 Multiprocessor Communications Interface Table 216

21.10 Determining Memory Requirements . 217

21.11 Sizing the RTEMS RAM Workspace . 218

xi

22 Multiprocessing Manager . 219

22.1 Introduction . 219

22.2 Background . 219

22.2.1 Nodes . 220

22.2.2 Global Objects . 220

22.2.3 Global Object Table . 220

22.2.4 Remote Operations . 221

22.2.5 Proxies . 222

22.2.6 Multiprocessor Con�guration Table 222

22.3 Multiprocessor Communications Interface Layer 222

22.3.1 INITIALIZATION . 223

22.3.2 GET PACKET . 223

22.3.3 RETURN PACKET . 224

22.3.4 RECEIVE PACKET . 224

22.3.5 SEND PACKET . 224

22.3.6 Supporting Heterogeneous Environments 225

22.4 Operations . 226

22.4.1 Announcing a Packet . 226

22.5 Directives . 226

22.5.1 MULTIPROCESSING ANNOUNCE - Announce the

arrival of a packet . 227

23 Directive Status Codes . 229

24 Example Application . 231

25 Glossary . 233

Command and Variable Index . 243

Concept Index . 245

xii RTEMS C User's Guide

